
FLoP - 1.6.0

Fast Logging Project for Snort

Dr. Dirk Geschke
Dirk@geschke-online.de

FLoP - 1.6.0: Fast Logging Project for Snort
by Dr. Dirk Geschke

Published May 2006
Copyright © 2006 Dirk Geschke

Table of Contents
Abstract ..v

1. Introduction ..1

2. Programs of the project...2

3. The snort patch..4

3.1. Statistics with snort...4

4. Configuration of FLoP ..7

4.1. Some notes on the configuration options..7

5. The programssockserv and servsock...10

5.1. The details ofsockserv...10
5.1.1. Options...11
5.1.2. Signalhandling..13
5.1.3. Some additional notes...13

5.2. The details ofservsock...14
5.2.1. Options...15
5.2.2. The configuration file ofservsock...18
5.2.3. Signalhandling..22
5.2.4. Some additional notes...22

6. The programs alert and drop...25

6.1. The details ofalert ..25
6.2. The details ofdrop..25
6.3. The command line options ofalert anddrop ...26
6.4. The configuration file foralert anddrop ...27
6.5. Signalhandling..29

7. The program getpacket...31

7.1. The extension of the database scheme..31
7.2. The command line options ofgetpacket..32
7.3. The configuration file ofgetpacket..33
7.4. Some final notes ongetpacket..34

8. The program fpg, af alsepositivegenerator ...35

8.1. The details of thefpg program..35
8.2. The command line options offpg ...36
8.3. Some final remarks on the programfpg..37

9. Thecontrib directory ..39

9.1. The programrules.pl ..39
9.1.1. The options ofrules.pl ...39
9.1.2. The configuration filerules.pl.conf ..40

9.2. The filescreate_mysql andcreate_postgresql ...41
9.3. Thecgi files...41
9.4. The perl scriptstats.pl ...42

10. Summary of the tools and a final survey...43

iii

List of Examples
3-1. A simple perl script to feed an RRDtool database with a time step of 30 seconds. Here we only

account for the rate of received packets but it is easily extended to use the other data.....................5

iv

Abstract

The design ofsnort (http://www.snort.org/) requires a sequential work in the preprocessors, detection
engine and output plugins for each network packet generating an alert. To enhance the detection
capabilities of snort it would be an advantage to decouple the output plugins from the snort process. This
is one feature of theFLoPproject.

The second target regards the collection of alerts generated by several sensors on onecentral server. On
this server all alerts are inserted into onedatabasefor further processing, analyzing and/or archiving.
The processes buffer all alerts until they are spooled to thecentral serveror are inserted in thedatabase.

v

Chapter 1. Introduction

The network intrusion detection systemsnort (http://www.snort.org/) captures network traffic. Each of
those packets is first processed by the preprocessors. Here, among other things, the packets are
reassembled on IP or TCP basis or are normalized like http traffic. After this stage the packet is either
discarded (for the snort process) or forwarded to the detection engine. The detection engine applies
several rule sets on this packet. If one rule matches an alert is generated and all output plugins are called
sequentially to process this packet and the related informations like which rule generated the alert.

After the whole chain is worked through the next network packet can be analyzed. All packets arrived in
between have to be buffered either by the kernel or thelibpcap. If there are too many network packets
and/or snort takes too long for processing the individual packets (or one output plugin blocks) it is likely
that some packets are dropped.

So on a heavy network attack a lot of packets may be dropped due to the fact that snort is working on the
output processing. On the other hand if there is no traffic snort will be idle.

One solution is to decouple the output plugins from snort. Why should snort bother about the various
formats of alerts or how to insert the packets in a database? It would be of a great advantage to restrict
snort to only detect alerts.

This is whereFLoPstarts. It decouples the output plugins from snort, gathers all alerts and sends them to
a central server. At the server they where collected and inserted into a database for further processing.
Additionally all alerts are buffered until they are processed (or where explicitly dropped by a
configuration parameter if too many alerts are buffered).

1

Chapter 2. Programs of the project

The project actually consists of six programs and one patch for snort:

The patch and programs of FLoP

snort-2.x.x_patch

This patch adds an output plugin to write the alerts via an unix domain socket1

sockserv

This program generates the unix domain socket to which snort can write the alerts. The received
alerts are buffered and transmitted to a central server runningservsock.

servsock

On thecentral serverall alerts from all remote sensors are collected and written to adatabase.
Additionally alerts with high priority can be written to an unix domain socket where another
program receives these alerts and send them via email to a list of predefined recipients.

alert

Alerts received via an unix domain socket are collected and send to a list of recipients.

drop

If too many alerts are buffered a memory shortage can arise. To avoid this a low and high water
mark can be set. If more than high water alerts are in the buffer as many alerts are dropped to an
unix domain socket until the low water mark is reached. This program collects these alerts and
sends them via email to a list of recipients or prints them tostdoutif sending of an email fails.

getpacket

There is a possibility to store additonal information about the captured network packets in the
database. If these informations are available then this program can rebuild apcapfile consisting of
the original captured network packet. This file can be used with programs like tcpdump or ethereal.
To use this feature the database scheme has to be extended. SeeREADME.database for more
informations on this topic.

fpg

This False-Positive-Generator takes asnortconfiguration file and creates for nearly each rule a
network packet able to raise an alert. This program is useful for performance and stress tests of the
whole chain starting with snort and ending at the database.

The next sections explain all these programs, how they work and how they can be configured.

2

Chapter 2. Programs of the project

Notes
1. All used unix domain sockets are of typedatagramto avoid blocking if one process creating the

socket is not available.

3

Chapter 3. The snort patch

This patch is needed to activate an output plugin which enables snort to write all alert information and
the suspicious network packet to an unix datagram socket. To apply the patch you need only to change to
the snort source directory and use the command:

snort-2.x.x$ patch -p1 < /path/to/FLoP-1.6.0/patches/snort-2.x.x_patch

After configureandmake thesnort program understands a new option in thesnort.conf file:

output alert_unixsock_db: /tmp/snort[, all|log|alert]

The parameter of this output plugin describes where the unix domain socket should be found. Since we
use unix domain sockets of typedatagramit is not required that this socket exists. If there is no such
socket, snort will simply write a warning message and continue to work. If the socket gets created in
between, snort will use it. So snort is never blocked by this output plugin (except the reading process is
explicit blocking).

Since snort-2.1.3 there exists also the possibility to write alternatively thelog packets to the socket or
both. If all is mentioned then only one packet is written to the socket if they are in both output chains.

Note: FLoP does not distinguish betweenlog andalert. Therefore both kinds are ment if analert is
mentioned in this document!

Further there is the option-Y added to snort to avoid writing any alerts to the file system. (Before
snort-2.3 this option was-Q but now-Q is used for the snort-inline part.)

Note: If you use the optionall this is not necessary. If an output plugin is activated thenormalouput
plugin is disabled. So ifall is used then no alert or log data are written to the file system.

If you usealert then you can disable writing of log informations with the snort option-N or the
equivalent-K none . If you only use thelog then you can disable the alerts with the snort option-A

none .

So this additional option-Y is no longer necessary but is still part of the snort patch.

The log facility is necessary if you want to store tagged packets or packets of adynaimcrule in the
database. Take also a look at the programgetpacket.

4

Chapter 3. The snort patch

3.1. Statistics with snort

The patch additionally extends snort by a-x option (before snort-2.4 this option is-Z). This enables
snort to write statistical inforamtion about the actual status to the unix domain socket/tmp/stats .
These informations include the number of received and dropped packets, how many alerts where
generated and which protocols where involved since the last time. The time intervall is the parameter
after this option.

With the command

snort -x 30

the statistics are written every 30 seconds to the special unix datagram socket. Again, if this socket is not
available, nothing will be written but snort will still work.

This information can be used in conjunction with theRRDTool
(http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) to create some nice pictures like:

Statistics picture from snort generated withRRDTool

Example 3-1. A simple perl script to feed anRRDtooldatabase with a time step of 30 seconds. Here
we only account for the rate of received packets but it is easily extended to use the other data.

#!/usr/bin/perl
use IO::Socket;
use IO::Handle;
use Socket;
use RRDs;

$UXSOCKADDR="/tmp/stats";

5

Chapter 3. The snort patch

unlink($UXSOCKADDR);
$sock = IO::Socket::UNIX->new(Local => $UXSOCKADDR, Type => SOCK_DGRAM) ➊

or die "Can’t bind to Unix Socket: $!\n";
$sock->setsockopt(SOL_SOCKET, SO_RCVBUF, 65440); ➋

print "Ready to accept conntections!\n";

$RRDrecv="recv.RRD";

if (! -e $RRDrecv) ➌

{
$CreateRRD=true;

}
while (1) {

$len=44;
$sock->recv($input,$len);
$TotalEvents++;

@fields=unpack(" L L L L L L L L L L L",$input);
print "\n";

if ($CreateRRD eq true)
{

RRDs::create ("$RRDrecv", "--start", "$fields[0]", "--step", "30", ➍

"DS:Statistics:GAUGE:61:0:U", "RRA:AVERAGE:0.5:1:100",
"RRA:AVERAGE:0.5:10:24", "RRA:AVERAGE:0.5:20:144");

$CreateRRD=false;
}

RRDs::update ($RRDrecv, "$fields[0]:$fields[1]"); ➎

}

➊ Open an unix domain socket of typedatagramto be able to receive data from snort.

➋ Increase the receive buffer of the socket.

➌ Test if a RRD database exist, if not we have to create one.

➍ There is no RRD database, so we create one here.

➎ Update the RRD database.

Note: These and maybe more informations could be received via the snort preprocessorperfmonitor. But
this option is older than the preprocessor and therefore it is still part of the snort patch. Maybe this option
should be removed in favour ofperfmonitor.

6

Chapter 4. Configuration of FLoP

After the snort sources are patched you have to runconfigure in the snort source directory. This will
create the fileconfig.h which is needed to compile FLoP. Both, snort and FLoP should use the same
types of variables.

After this is done change to the FLoP directory and call hereconfigure. You have to mention the path to
the snort sources with the directive--with-snort= /path/to/snortand at least one database: Either
Mysql (--with-mysql= /path/to/mysql) or PostgreSQL (--with-postgres= /path/to/postgresql).

Further you have to decide if the features and programsdrop (--enable-drop , this is now default),
alert (--enable-alert , this is now default),getpacket(--enable-getpacket) andfpg
(--enable-fpg) should be compiled. To buildfpg you must have libnet version 1.1 or newer.

4.1. Some notes on the configuration options

Whereas the path to the snort sources and the type of database are required some others are optional and
some are recommended.

The configure options in detail

--prefix= DIR

Gives the prefix to the installed binary, manual pages, documentation files and configuration files.
These are stalled inDIR/bin, DIR/man,DIR/doc andDIR/conf.

--with-snort= DIR

This option is required.DIR should point to the configured snort sources. These are required to
build the FLoP package. At least we needconfig.h of the snort sources. Additionally there is a
little test to see if the patch is applied.

--with-mysql= DIR

This option activates the support for theMySQLdatabase.DIR should point to theMySQLdirectory
where the header and library files can be found. If first tries to runDIR/bin/mysql_configto get the
compiler settings and flags.

--with-postgres= DIR

This option activates the support for thePostgreSQLdatabase.DIR should point to thePostgeSQL
directory where the header and library files can be found. The first try is to runDIR/bin/pg_config
to get the compiler settings and flags. Note: You can activate both databases. You have to decide
within servsock.conf which one should be used.

7

Chapter 4. Configuration of FLoP

--with-libbind

This enables the use of libbind during the link process. Since the programs can use the library
functionsgetipnodebyname() andgetipnodebyaddr() which are not part of every operating
system we can use this library for these functions. If this option is not activated then the functions
gethostbyname() andgethostbyaddr() are used instead. So probably you will not activate
this configure option.

--enable-drop

This enables the build of the programdrop and activates the interfaces insockservandservsock.
Note: You have still to activate this feature via the command line options or the configuration file.
So it is save to enable this feature and therefore it is activated by default.

--enable-alert

This enables the build of the programalert and activates the interfaces insockservandservsock.
Note: You still have to activate this feature via the command line options or the configuration file.
So it is save to enable this feature and therefore it is enabled by default.

--enable-getpacket

This enables the build of the programgetpacketwhich is able to rebuild a file with the network
packet inpcapformat from the database. Note: You have to extend the database scheme to use this
feature and have to adviseservsockto store the additional needed information in the database.

If you want to uselibpcap to build the pcap file from the database you have to use the option
--with-libpcap . But normally this is not necessary,getpacketis able to build the pcap file
without the use oflibpcap .

--enable-fpg

This enables the build of the programfpg. To compile this program you need the libnet library
version 1.1 or newer. Since the API of libnet seems to change quiet frequently it is not unlekely that
it will not compile clean. Therefore the option to compile this program is disabled by default.

--enable-prepare

This enables the use of thePREPAREcommand in conjunction with thePostgreSQLdatabase. The
effect is that allSQLstatements where prepared, it is no longer necessary to do a type chech and
similar operations. This may enhance the performance of the database access.

Note: This is not implemented for theMySQLdatabase.

Note: It seems that at least with the actual snort database scheme this kind of optimization is already
done by the client library ofPostgreSQL.

8

Chapter 4. Configuration of FLoP

--enable-cache

This enables the use of acachefor thesig_id s. If an alert is to be inserted the first thing is to ask
for the sig_id of the signature. This is used for all furtherINSERTs. Since this is the onlyread
statement it slows down the database access. The idea is to store all usedsig_id s in acacheto
avoid furtherSELECTs for them. Thiscacheis implemented as a red-black binary tree.

--with-maxclients= clients

This option is specifies how many sensors can connect toservsocksimultaneously. The default are
25 sensors or alternativelysockservprocesses.

On some systems the database library and header files are already part of the operating system. There it
can happen that for example the mysql header files are not found in/path/to/mysql/include/ . Here
you may find them in/usr/include/mysql where the compiler will not search for this headers by
default. Thererfore it may be useful to set theCPPFLAGStogether with theconfigurecommand:

CPPFLAGS=-I/usr/include/mysql ./configure --with-mysql=/usr ...

Additionally the optionsCFLAGSfor compiler flags andLDFLAGSfor linker options may be useful.

NOTE: If mysql_configor pg_configis used to get the compiler settings and flags you should not need
to adjust these FLAGS.

For further information read the fileINSTALL and the variousREADMEfiles of the distribution.

9

Chapter 5. The programs sockserv and
servsock

These two programs are very similar and work with two parallel threads. One thread receives the alerts
and the other processes these data.

The principal of thesockserv/servsockprocess.

The first thread of the programsockserv1 receives alerts fromsnort and stores them in a buffer in
memory. The second thread takes these alerts and forwards them viaTCP/IPto theservsock2 program.
This program consists of a master program waiting for connections fromsockservprocesses of remote
sensors. For each connection one process is forked off. Each of these processes consist of two threads.
One thread simply receives the incoming alerts, the second stores them to the database.

Starting with version 1.5.0 there is a third thread running, a control thread. This thread listens on a
named pipewhich can be used to change several options during runtime. See the fileREADME.ctrl for
further informations.

5.1. The details of sockserv

This program provides an unix domain socket forsnort. One thread simply receives alerts via this socket
and stores them in memory, see picturesockserv/servsockprocess.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. The
output plugins fromsnort are reduced to a simple write statement on an unix domain socket. If more
alerts are generated thansockservcan send to thecentral serverthese alerts are buffered in memory
until the attack flood decreases.

10

Chapter 5. The programssockservandservsock

To reduce the problem on memory shortage due to an high attack flood, the maximum number of alerts
in the buffer can be limited. This is done via two parameters, theLowWater andHighWater marks. If
more alerts than theHighWater mark are buffered in memory as many alerts are dropped until the
LowWater mark is reached. All dropped alerts are written to an unix domain socket. The programdrop
is able to provide such a socket, receive these alerts and send them via email to a list of recipients.
Otherwise, if you do not usedrop, the these informations are written tostdoutor syslog.

If eithersockservcan not connect toservsockon startup or the connection is closed during runtime the
program tries to reopen the connection after a short delay for several times.

Note: If the buffer ofsockservis empty at this point of time it tries a reconnect only if a new alert arrives.

All output can be redirected tosyslog, using the facilityLOCAL0and levelINFO. A daemon modeis also
supported. Finally statistics could be printed on a periodical basis or once by using the named pipe of the
sockservprocess.

5.1.1. Options

There are several options available:

sockserv [-bhlqv] [-A delay] [-D dropsocket] [-H HighWater] [-I interface]
[-L LowWater] [-m mode] [-M maxtry] [-N sensorname] [-p port]
[-P pidfile] [-s snortsocket] [-S server] [-V area,level] [-w dir] [-W waittime]

The sockserv options in detail

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these
values betweendelay seconds is printed in brackets. See also option-l .

-b

Start the process in the background:daemon mode. This automatically activates option-l .

-D dropsocket

If there are more thanHighWater alerts buffered then the newest alerts are dropped to
dropsocket until theLowWater mark is reached.

-h

Print a help message and exit.

-H HighWater

Sets theHighWater mark, see option-D . The default value is 10000.

11

Chapter 5. The programssockservandservsock

-I interface

Interface on which snort is sniffing. This parameter is optional but together with the sensorname,
see Option-N , it should be unique. By default this option is not used.

-l

Log statitiscs tosysloginstead ofstdout . See also option-A .

-q

Enable quiet dropping, no dropped alerts were written to thedropsocket , see option-D .

-L LowWater

Sets theLowWater mark, see option-D . The default value is 9900.

-m mode

Sets the umask tomode for the daemon mode. This affects the mode for the created unix socket and
PID file. The mode can be either given inascii, octal (with leading0) or hex(with leading0x)
format.

-M maxtry

Sets the maximum number of tries to (re-) connect to theserver . See also option-W.

-N sensorname

Sensorname which should be used in the database. By default this is the hostname of the machine
runningsockserv. It is now possible to use more than one instance ofsockservper sensor. Note:
You have to change the unix socket for different instances, see Option-s .

-p port

Defines on whichport to try to reach theserver runningservsock. See also option-S .

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user runningsockserv!

-s snortsocket

Defines the name and directory where the unix domain socket is opened for snort. The default is
/tmp/snort .

Maybe the default should be changed to something like/tmp/snort_ sensornameif option -N is
used.

-S server

Defines the server runningservsock. The name can be either a full qualified domain name or an IP
address. The default is127.0.0.1 . See also option-p .

12

Chapter 5. The programssockservandservsock

Note: The default is only useful for testing. In real productive systems you should use a separate
server for the database andservsock.

-V area,value

Sets the debug level of the program.Area specifies the section of the code which should generate
debug output.value should be between 0 (disabled) and 9 (maximum output). For further
information read the fileREADME.debug.

-w dir

Sets the working directory in daemon mode todir . The default is to use the current working
directory. It is useful to choose/ to avoid blocking of mounted filesystems.

-W waittime

Time in seconds to wait between two tries to connect to the server. See also option-M.

5.1.2. Signalhandling

Currently the following signals are used withsockserv:

Signals used with sockserv

SIGINT

Cancels the process, prints the final statistics and performs a clean exit. Thesocketname and
pidfile are removed.

SIGTERM

This signal results in the same behaviour asSIGINT .

SIGPIPE

This signal is ignored. If theservsockprogram is interrupted during the data is sended. In this case
we simply try to open a new connection and therefore we have to ignore this signal.

SIGHUP3

If this signal is receivedsockservstops and restarts. First, if enabled, all buffered alerts are dropped
via dropsocket and the final statistics are printed. Furthersocketname andpidfile are
removed to enable a restart of the program. (Otherwise the program would fail since the id does not
change!)

The actual version ofsockservuses a control thread to change some parameters during runtime. This
thread is also used to print statistics on a periodically interval instead of using signals.

13

Chapter 5. The programssockservandservsock

5.1.3. Some additional notes

Thedrop feature is not enabled by default and has to be compiled in separately. If it is not compiled in
then the options-D , -L and-H are missing in the output of the-h option. It is highly advisable to choose
a very largeHighWater mark to buffer as many alerts as possible. This will reduce the possibility of
information loss. On the other hand the difference betweenHighWater andLowWater should not be
too large. To minimize information loss the alerts are spooled viadrop to a mail server. Normally this
server is either located on thecentral serveror is reached via this server. If there are too many alerts
spooled todrop the emails become unreadable long.

Problems should only arise if the connection to theservsockprogram is lost for a longer period. But if
there are network problems then it is alike thatdrop will fail too. If this happens then the alerts are
written either tostdoutor syslog.

Be cautious: With increasing buffer usage the memory consumption raises with about 3 kB for each alert
(actually 1048 bytes per alert on anx86_32System plus payload). But this memory is shared with the
snort process. So set theHighWater to a value where it is safe for the snort process.

If a pid file exists then the program checks only for a running process with this PID. If one process is
found the program exits. There is no check for which program is running, only if one with this PID
exists!

5.2. The details of servsock

This program provides an TCP socket forsockserv. After asockservprocess has successfully connected
a child process is forked off for this communication. The child process consists of two threads. One
thread simply receives alerts via the TCP socket and stores them in memory, see picture
sockserv/servsockprocess. The second thread feeds the stored alerts to adatabase.

To successfully connect there are a few things which must be fullfilled:

• If the endianess of the sensor and central server are different then a connection is permanently refused.
This does not work.

• There is only one remote sensor with the same sensor name (see option-N and interface (see option
-I of sockserv) allowed. If a second sensor with the same sensor name and interface tries to connect
the access is denied.

• If there are still not yet processed data from the last connection between the remote sensor and the
central server then the connection is as long refused as these data are not stored in the database

• If the database is not available if a sockserv process tries to connect then the connection is refused
temporarily.

14

Chapter 5. The programssockservandservsock

• If there is a swap file available, then the connection is temporarily halted until the data of the swap file
is read into memory.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. If
more alerts are available thanservsockcan insert into thedatabase4 the alerts are buffered in memory.

To reduce the problem on memory shortage due to a high overload, the number of alerts in the buffer can
be limited. This is done as withsockservvia two parameters, theLowWater andHighWater marks. If
more alerts than theHighWater mark are buffered in memory as many alerts are dropped until the
LowWater mark is reached. All dropped alerts are written to an unix domain socket. The programdrop
is able to receive these alerts and send them via email to a list of recipients.

If eithersockservcan not connect toservsockon startup or the connection is closed during runtime the
program tries to reopen the connection after a short delay for several times.

All output can be redirected tosyslog, using the facilityLOCAL0and levelINFO. A daemon mode is also
supported. Finally, statistics could be printed on a periodical basis or once by sending aSIGUSR1to the
servsockmaster process. This process will advice all child processes to print the statitistics.

5.2.1. Options

There are several options available:

servsock [-bCdefhlnqTuv] [-A delay] [-c config] [-D dropsocket]
[-H HighWater] [-L LowWater] [-m mode] [-M priority]
[-p port] [-P pidfile] [-s snortsocket] [-S server]
[-U alertsocket] [-V area,level] [-w dir] [-W SwapDir] [-Z TimeZone]

The servsock options in detail

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these
values betweendelay seconds is printed in brackets. See also option-l .

-b

Start the process in the background:daemon mode. This automatically activates option-l .

-d

Dump the actual configuration on startup. This is useful if both, a configuration file (see) and
command line options are used in combination and for debbuging purposes

15

Chapter 5. The programssockservandservsock

-C

Specifies the use of a red-black tree to cache sig_id values of the database. This speeds up the
INSERTs in the database but you have to enable it during the configuration run with the
--enable-cache . See also the configure file optionDBCache.

-c config

Specifies which configuration file should be used. The default isservsock.conf

-D dropsocket

If there are more thanHighWater alerts buffered then the newest alerts are dropped to
dropsocket until theLowWater mark is reached.

-e

Specifies the use ofPREPAREstatements with the database. This may speeds up theINSERTs in the
database but you have to enable it during the configuration run with the--enable-prepare . See
also the configure file optionDBPrepare . This works only with thePostgreSQLdatabase.

-f

Store additional information in the database so that apcapfile can be created with the program
getpacket. Note: You need an extended database schema to use this option. See the file
README.payload in the distribution.

-h

Print a help message and exit.

-H HighWater

Sets theHighWater mark, see option-D . There is no default value used.

-l

Log statitiscs tosysloginstead ofstdout . See also option-A .

-L LowWater

Sets the LowWater mark, see option-D . There is no default value used.

-m mode

Sets the umask tomode for the daemon mode. This affects the mode for the created unix socket and
pid file. The mode can be either given inascii, octal (with leading0) or hex(with leading0x)
format.

-M priority

Sets the required priority for alerts to be written toAlertSocket . The programalert is able to read
these alerts and send emails to a list of recipients.

16

Chapter 5. The programssockservandservsock

-n

Do not resolve the full qualified names of the sensors, use the IP addresses instead. This will avoid
conflicts with thedatabaseif on a new connection the DNS resolution fails or resolves to another
name.

-p port

Defines on whichport servsockshould listen, see also option-S .

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user runningservsock!

-q

Enable quiet dropping, no dropped alerts were written to thedropsocket , see option-D .

-r

Store additional information in the database so that apcapfile including all tagged packets relating
to an alert can be created with the programgetpacket. Note: You need an extended database schema
to use this option. See the fileREADME.payload in the distribution.

-s socketname

Defines the name and directory where the unix domain socket of thedatabaseis opened. A value of
NULL results in an internalNULLpointer, this is useful in combination withPostgreSQL. It is also
possible to use a TCP socket viahostname:port.

-S server

Defines the interface whereservsockshould listen on. The name can be either a full qualified
domain name5 or an IP address. The default is0.0.0.0 to bind on all available and configured
interfaces. See also option-p .

-T

Enable trust modus for thedatabase. If set, it is assumed that the alert description is already part of
the database. If this is not the case, all these informations are inserted. So it is safe to enable this
feature unless the transfer of alert message is disabled insnort. But this (removing of the alert
message within snort) is a veryexperimentalfeature and is usually disabled by default. (But would
save 256 Bytes on the wire!)

-U alertsocket

Specifies where the unix domain socket of the alert program can be found, see also-M.

-u

Disables the use of thealertsocket . This is useful if the alert is activated in the configuration file
but there is noalert program running. So it is only useful for debugging.

-v

Print version information.

17

Chapter 5. The programssockservandservsock

-w dir

Sets the working directory indaemon modeto dir . The default is to use the current working
directory. It is useful to choose/ to avoid blocking of mounted filesystems.

-W SwapDir

Sets the directory where the swap filesensor_ SensorNameis created and alerts are buffered if the
database connection is lost.

-V area,value

Sets the debug level of the program.Area specifies the section of the code which should generate
debug output.value should be between 0 (disabled) and 9 (maximum output). For further
information read the fileREADME.debug.

-Z TimeZone

Specifies which timezone should be used to store the time in the database (local timezone versus
UTC). A ZimeZone of zero means to use the same timezone as localtime, any other value would
result in the use of UTC. The default is to use the local timezone.

5.2.2. The configuration file of servsock

Additionally to the command line arguments there are some options which must be set via the
configuration file. At least thedatabaseconfiguration has to be set in the configuration file6.

The command line options have precedence above the settings in the configuartion file. If an option is
mentioned on the command line this value is used regardless of the settings in the configuration file.

On the other hand all parameters of the command line can be set in the configuration file (except option
-u). So the command line options are more suitable for quick tests.

The format of the file is simple, the first word is a keyword and the second is the value. They are
separated by a colon (:) or equal sign (=). White spaces are allowed in any number.

The values can be put in single (’) or double (") quotes, all between is used as the value with one
exception. This exception is the comment sign (#). All entries after this sign are ignored. To use the
command sign it has to be escaped with a backslash: \#.

To use white spaces in a value they must be surrounded by quotes.

So all this results in a value with space, exept the last one without quotes. This will result inspa :

’spa ce’ = "spa ce" = spa ce

18

Chapter 5. The programssockservandservsock

All keywords are case insensitive (but not the values!).

The parameters of the configuration file for servsock in detail

DBuser : name

Specifies the name of thedatabaseuser who is allowed to doINSERTs,SELECTs andUPDATEs of
tables. The default issnort.

DBpassword : password

Specifies the password used among with theDBuser name to connect to thedatabase. Note: An
empty password has to be represented by empty quotes, which is the default.

DBname: name

Name of thedatabasewhereservsockshould insert the alerts, defaults tosnort.

DBtype : name

Type of thedatabaseto use. Actually onlyMySQL(http://www.mysql.com/) andPostgreSQL

(http://www.postgresql.org/) are supported and have to be enabled at compile time ofservsock. No
default is set since it is not clear whichdatabasesupport was enabled at compile time ofservsock.

DBencoding : name

Defines the encoding scheme wich is used to insert the payload into thedatabase. Allowed values
arehex , base64 andascii . Thebase64 encoding requires less memory in thedatabasebut it
makes it difficult to search for special entries in the payload. Theascii 7 encoding stores only ascii
characters in the database, all binary data is replaced by a dot. So the only really useful option is the
hex scheme which is the default orbase64 if saving of database space is desired.

DBtrust : value

A non-zerovalue enables thetrust modus for the database. If this modus is enabled it is assumed
that all possible signatures are already part of the database. This will result in slight fasterINSERTs
since less detailedSELECTstatements are needed8. It is safe to enable this even if you are not sure,
missing signatures will still be inserted. The equivalent command line is-T .

DBCache: value

A non-zerovalue enables the use of acachefor thesig_id. Since during inserts the onlySELECTs
are done to get thesig_id. Thecacheis implemented as a red-black tree. To use this option you have
to enable it during the configure run with--enable-cache . The equivalent command line to
activate the use of thecacheis -C .

DBPrepare : value

A non-zerovalue enables the use ofPREPAREwith the database. This may speed up theINSERTs.
To use this option you have to enable it during the configure run with--enable-prepare . This
works only with thePostgreSQLdatabase. The equivalent command line to activate this feature is
-e .

19

Chapter 5. The programssockservandservsock

DBtrans : value

A non-zerovalue enables the use oftransactionstogether with the database. If you use the MySQL
database you have to use tables of typeInnoDB, otherwise the transactions are simply ignored.

PIDFile : pidfile

Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock! This correspond to option-P .

SocketName : socketname

This specifies where to find the unix domain socket of the database. If the wordNULL (all capital!)
is given, the database libraries find the socket by their own mechanism. This is useful in
combination with thePostgreSQLdatabase. This is equal to the-s . If socketname contains a
colon (:) the first part is interpreted as ahostname, the second as aport number and a TCP
connection to the database is used.

ServerName : name

Defines on which interface defined by the addressservsockshould listen on. Possible values for
name are either full qualified names (not very useful) or a dotted IP address. The default is
0.0.0.0 to listen on all available interfaces.

ServerPort : value

Defines the port whereservsockwill listen on. The default is port1234 . Compare to option-p .

AlarmDelay : value

Write everyvalue seconds statistics of received, sent and dropped alerts. In braces the differences
to the last output are printed. See option-A .

Syslog : value

If the value is non-zero then the statistics are logged viasyslogand not printed tostdout . The
facility is LOCAL0and the level isINFO. Compare to option-l

FQNSensor : value

With a value of zero the IP address of the sensor is used as sensor name in conjunction with the
database. The equivalent command line option is-n .

AlertSocket : alertsocket

Name of the unix domain socket where alerts with high priority are written to. See option-U . If
alertsocket has the nameNULL then the alert feature is disabled.

UnixPriority : value

The value determines the minimum priority where alerts are additionally written to the
AlertSocket 9. The command line equivalent is the option-M.

DropSocket : dropsocket

Name of the unix domain socket where alerts are dropped to if the number of queued alerts reaches
theHighWater mark. Compare to option-H . If dropsocket has the nameNULL then the drop

20

Chapter 5. The programssockservandservsock

feature is disabled.

DropQuiet : value

If value is not zero then all dropped alerts are not written to theDropSocket . Note: Dropping is
not disabled by this parameter.

HighWater : value

If the number of queued alerts reaches thisvalue thenservsockbegins to drop alerts to the
DropSocket . This corresponds to option-H .

LowWater : value

This value must be smaller thanHighWater 10. If the HighWater mark is reached so many alerts
are dropped to theDropSocket until this LowWater value is reached. This corresponds to option
-L .

DaemonMode: value

A non-zerovalue enables thedaemon mode, the program forks into the background. This
automatically activates theSyslog option. See option-b .

Umask: mode

Sets theumaskto mode for theDaemonMode. This affects the mode for the createdPIDFile . The
mode can be either given inascii, octal (with leading0) or hex(with leading0x). This is equal to
the option-m.

SwapDir : SwapDir

Sets the directory where the swap filesensor_ SensorNameis created. This file is used to swap out
alerts if the database has gone and is read in again if the database is available and the remote sensor
connects again. The default is to use/var/tmp . See option-W.

FullPayload : value

Store additional information in the database so that apcapfile can be created with the program
getpacket. Note: You need an extended database schema to use this option. See the file
README.payload in the distribution and option-f .

Reference : value

Store additional information in the database so that apcapfile including all tagged packets can be
created with the programgetpacket. Note: You need an extended database schema to use this
option. See the fileREADME.payload in the distribution and option-r .

Debug: area,value

Sets the debug level of the program.Area specifies the section of the code which should generate
debug output.value should be between 0 (disabled) and 9 (maximum output). For further
information read the fileREADME.debug. See option-V .

21

Chapter 5. The programssockservandservsock

TimeZone : area,value

Specifies which timezone should be used. A value of zero forTimeZone results in the use of the
timezone of localtime. Any other value will result in the use of UTC. See also option-Z .

5.2.3. Signalhandling

Currently the following signals are used withservsock:

SIGUSR1

Print statitics about received, sent and dropped alerts.

SIGINT

Cancels the master process, prints the final statistics and makes a clean exit. Thesocketname and
PIDfile are removed. The child processes dump the buffered alerts to the swap file and exit.

SIGTERM

This signal results in the same behaviour asSIGINT .

SIGHUP3

If this signal is received by the master process thenservsockstops each child process by sending a
SIGTERMsignal and restarts itself11. First all buffered alerts are written to the swap files and the final
statistics are printed. FurtherSocketName andPIDFile are removed to enable a restart of the
program. (Otherwise the program would fail since the PID did not change!) The child processes
simply ignore theSIGHUPsignal.

The actual version ofservsockuses a control thread to change some parameters during runtime. This
thread is also used to print statistics on a periodically interval instead of using signals.

5.2.4. Some additional notes

Thedropandalert features are not enabled by default and have to be compiled inservsockseparately. If
it is not compiled in then the options-D , -L and-H are missing for thedrop and the options-M, -u and
-U are missing for thealert program in the output of the-h option.

In contrast tosockservtheLowWater andHighWater marks have to be choosen with more caution.
First there are more processes running than theservsockprocesses especially thedatabase. Further the
bottleneck is not the network, it is usually thedatabase. So it is quite normal that here the number of
buffered alerts increase rapidly on heavy attacks.

Since the sensor name is taken from the IP address of the computer runningsockserv(the remote sensor)
there is only onesockservinstance per IP address allowed. Otherwise there will be a lot of collisions of

22

Chapter 5. The programssockservandservsock

inserts related to thedatabase. (Two different sensors with the same name try to insert two different
alerts with the same database Sensor ID, for example.)

If the connection dies,sockservopens a new connection and a newservsockprocess is forked off. But if
the oldservsockthread feeding thedatabasedid not finished yet there arises a problem like the same
sensor is logging twice times. Thereforeservsockhas a list of up to25 (see the configure option
--with-maxclients to adjust this value) running child processes with the sensor name they are
dealing with. So if there is still one process running any new connection of asockservprocess with the
same sensor name is rejected!

On startup a handshake must be fullfilled. During this phase the endianess of both partner, the
availability of the database and the presence of a non-zero swap file are checked. Depending on the result
a conncetion is either allowed, temporarily rejected or permanently denied.

If a SIGHUP3 signal is received by the process with the PID stored in thePIDFile all child processes are
terminated first. If there are buffered alerts it can take some time until all of them are written to the swap
files. So a time delay on restart is not uncommon.

If either aSIGINT or SIGTERMis received by theservsockprocess handling a connection then all
buffered alerts are written to theswapfile. Since this are threaded programs this may cause some
problems withLinux usinglinuxthreadsinstead of the newerNTPL implementation. Note, theNTPL is
only available with kernel2.6.

Nore: With the oldlinuxthreadsyou will see two processes for each thread, one in user land and one in
kernel land instead of one process. Therefore it may cause some problems with the signal handler, not all
PIDs behave the same.

If a PIDFile exists the program checks for a running process with the id of this file. If one is found the
program exits to avoid running the same program twice. But there is no check for which program is
running, only if there is one in the process list!

Notes
1. This program povides an unix domainsocket and connects to aserver.

2. This program povides anserver and writes the alerts via an unix domainsocket to the database.

3. One important thing to obey is that either the program has to be started with absolute path or relative
to the daemon working directory (option-w). Or the program has to be started without any path
information at all and should be found in the systemPATH. Otherwise the program will not find the
own executable and will fail.

4. Sometimes databases hang on many inserts due to things like internal garbage collection. In addition
there are many tables which have to be filled in for each alert. All this will slow down the insert rate
of thedatabase.

23

Chapter 5. The programssockservandservsock

5. This not really useful since central server have usually more than on interface or you need a full
qualified domain name for only this interface. Most name server resolve IP addresses in a round
robin procedure for more than one IP address. So the interface on whichservsockbounds would not
be unambigous.

6. Especially thepasswordfor the database should not appear in the processlist.

7. This option should be removed in the future in favour of usinghex , it is only available to be
compatible with the database output plugin of snort.

8. This behaviour is a little bit different to the default one. Here we check or all values like revision and
priority even if they are zero. In the other case we check forNULLvalues if they are zero. Indeed I
think if the values are not set in the rule (aka the value is zero) this value should be inserted with the
rule in opposite to keep it aNULLvalue. This behaviour was changed in FLoP-1.6.0.

9. This keyword should be replaced byAlertPriority in a future release.

10. The mimimum difference between this two marks should be at least greater than 10.

11. This results in a time delay for a restart since first it must be waited until all child processes exit.

24

Chapter 6. The programs alert and drop

These two programs are very similar and are compiled out of the same source code. They provide an
unix domain socket to receive alerts and try to send them via email to a list of defined recipients.

The alerts are buffered in memory before sending them via email. This can be triggered either on a
periodically basis or if a given number of alerts is reached. Both variants can be activated separately but
it is a good idea to use both. The time interval is useful to collect alerts instead of sending one separat
mail for each alert which could result in a denial of service. The maximum number of alerts has the
advantage to keep the used memory small and the emails in a readable size. Otherwise it could happen
that too many alerts have to be stored in memory until an email could be send. So both options are useful
in combination.

6.1. The details of alert

This program works in contrast todrop only with servsockand receives alerts via the unix domain
sockets of priority equal or higherUnixPriority 1. See also option-M of servsock.

The primary idea of this program is to have a separate mechanism to inform about critical alerts. Since it
is very likely that thedatabaseis filled with a lot of less important alerts it is quite possible to either
overlook the important alerts or to find them too late.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can
be adjusted via the command line option-M or theMaxCount keyword.

If it is not possible to send an email within this time the program simply exits. Another process should
inform an operator about this problem.

6.2. The details of drop

This program works in contrast toalert with both,sockservandservsock. It receives alerts via the unix
domain socket if theHighWater mark of queued alerts insockserv or servsock are reached.

The primary idea of this program is to keep at least minimal informations about alerts. If there are too
many alerts buffered some processes could fail due to memory shortage. So there should be a mechanism
to drop some alerts to keep the buffer size limited. These alerts will not be inserted in thedatabasebut
are mailed to a list of recipients.

25

Chapter 6. The programsalert anddrop

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can
be adjusted via the command line option-M or theMaxCount keyword.

If it is not possible to send an email during this time the program writes the content of this email to
stdout . Another process should inform an operator about this problem. In contrast toalert does this
program not exit, it simply continues to work.

6.3. The command line options of alert and drop

Both programs use the same command line options, there is no difference between these options.

drop | alert [-bDFhlpTvV] [-A delay] [-c config] [-d domain]
[-f from] [-L level] [-m mode] [-M max] [-p port]
[-P PIDfile] [-r rcpt] [-s socket] [-S server] [-w dir]

The alert and drop options in detail

-A delay

Try everydelay seconds to send an email if there are any alerts in the buffer.

-b

Start in daemon mode, switch to a background process. This automatically activates the option-l .

-c config

This defines the name of the configuration file to use.

-d domain

Usedomain asHELOstring on a connection to theMailServer, see option-S .

-f from

Sets the sender address of the emails tofrom .

-F

Try to resolve the sensor names via DNS.

-h

Print a help text and exit.

-l

Print viasysloginstead ofstdout .

-L level

If a number oflevel alerts are buffered then send an email. A value of zero disables this feature.

26

Chapter 6. The programsalert anddrop

-m mode

Sets the umask tomode for thedaemon mode. This affects the mode for the created unix socket and
PID file. The mode can be either given inascii, octal (with leading0) or hex(with leading0x)
format.

-M maxcount

Specifies the maximum number of tries to send an email. If still no email could be send the program
alert exits and the programdrop prints all alerts tostdout or syslog, see option-l .

-p port

Try to reach themail serveron thisport . The default is port 25, see also option-S .

-P PIDFile

Specifies which file should be used to store the PID. This file must be writeable by the user running
alert/drop!

-r recipient

Sets the address of one recipient for the emails. This option can be used several times to build a list
of recipients.

-s socketname

Specifies which unix domain socket of typedatagramshould be opened to listen for alerts.

-S server

Specifies the mail server which should be used to send the emails. This server should allow relaying
for the server runningalert or drop.

-v

Print version information and exit.

-V

Activates the verbose mode, some useful informations are printed if an email is sent. This is useful
for debugging if there are any problems with the mail server.

-w dir

Sets the working directory in daemon mode todir . The default is to use the current working
directory. It is useful to choose/ to avoid blocking of mounted filesystems.

6.4. The configuration file for alert and drop

The format of the configuration file is the same as forservsockandsockserv.

27

Chapter 6. The programsalert anddrop

The parameters of the configuration file for alert and drop in detail

AlarmDelay : time

The program will check everytime seconds for the presence of received alerts. If there are any an
email is send. The default is 5 minutes (300 seconds). The equivalent command line option is-A .

AlarmLevel : level

If the number of received alerts reacheslevel than an email is sent regardless of the status of
AlarmDelay . The default is 0 which disables this feature. But it is recommed to use this feature
since it limits the number of alerts which are buffered in memory. The command line option is-L .

DaemonMode: value

A non-zero value enables the daemon mode. The program forks off in the background and detaches
from the terminal. See also optionDaemonDir andUmask. This automatically enables also the
optionSyslog . The command line option-b .

FQNNames: value

A non-zero value enables resolving of full qualified names of the reporting sensor. To reduce CPU
usage this values are cached in an internal list2. See also option-F .

MailServer : name

Specifies the server which should be used for relaying of the emails. This server should allow
relaying for the different hosts runningsockservandservsock. The default server islocalhost .
The command line option is-S .

MailPort : number

Specifies that the mail server is reached via portnumber . The default is port25. The command line
option is-p .

MailRecipient : address

Sets the address of one recipient of the emails. This option can be used several times to build a list
of recipients. This is equal to the command line option-r .

MailSender : address

Sets the address of the sender of the emails. The command line option is-f .

MailDomain : domainname

Specifies the domain name which should be used in a mail session on startup (HELOstring), see
option-d .

MaxCount : count

Specifies the maximum number of tries to connect to the mailserver and deliver mails. Aftercount

tries the programalert terminates! The programdrop simply writes all alerts to syslog or stdout
and continues to work. See option-M.

28

Chapter 6. The programsalert anddrop

PIDFile : filename

Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock! This correspond to option-P .

SocketName : socket

This specifies which unix domain socket should be opened forsockservandservsock. This is equal
to the-s .

Syslog : value

If the value is non-zero then all output is written tosyslogand not printed tostdout . The facility
is LOCAL0and the level isINFO. Compare to option-l

Umask: mode

Sets theumaskto mode for theDaemonMode. This affects the mode for the createdPIDFile and
unix domain socket (seeSocketName). Themode can be either given inascii, octal (with leading
0) or hex(with leading0x). This is equal to the option-m.

DaemonDir : directory

Sets the working directory in daemon mode todaemondir . The default is to use the current
working directory. It is useful to choose/ to avoid blocking of mounted filesystems. See option-w .

6.5. Signalhandling

Currently the following signals are used withalert anddrop:

SIGINT

Cancels the program, the socket and PID file are removed and the program exits. The programdrop
prints all buffered alerts, either viastdout or syslog, see option-l or keywordSyslog , before it
exits.

SIGTERM

This signal results in the same behaviour asSIGINT .

SIGHUP3

If this signal is received the unix domain socket will be closed, the socket and PID file removed and
thre porgram gets restarted. The programdrop prints first all buffered alerts.

SIGALRM

This signal is used to print statistics on a periodically basis. If this signal is send to the master
process it is forwarded to all child processes.

29

Chapter 6. The programsalert anddrop

Notes
1. Be careful how you define the order of priorities. This has changed during the several versions of

snort. So either 0 or 1 are the lowest or highest priority. You have to choose between these two
variants!

2. If the DNS name changes while the program runs, the old names are still used. This is unlikely but
the program may run for a long time.

30

Chapter 7. The program getpacket

This program can build a network packet inpcapformat which can be used by an analyzer liketcpdump
or ethereal.

This requires some additional options to be used.

• The standard database scheme as shipped with snort must be extended.

• The payload has to be stored inhexformat or inbase64.The encoding inascii is useless by design.

• The option-f of servsockor the parameterFullPayload in servsock.conf have to be enabled
when the alert is stored in the database.

• Actually onlyethernetis supported for the link layer. But to use another link layer is not really a
problem.Update:The actual version support also thelinux cooked mode.

The advantage of this approach is that the protocol analyzing mechanisms of programs likeetherealare
far better than it is possible withACID/Base. For example think of DNS queries or responses.

7.1. The extension of the database scheme

To store the additional header and pcap information in the database the normal scheme (as part of snort)
must be extended. These extensions work well even with programs likeACID/Base.

These extensions must be done within the database, either withmysql or psql. If you have choosen the
right database then enter at the command prompt the following commands:

ALTER TABLE data ADD COLUMN data_header TEXT;

This command adds a column for the missing packet headers. The payload stored by the normal process
contains only the protocol payload of the alert. ATCPalert only stores the payload embedded in the
TCPstream, noTCPheader norIP header nor the link level data.

ALTER TABLE data ADD COLUMN pcap_header TEXT;

This column stores thepcapheader containing the time when the packet was captured and the snaplen.

ALTER TABLE schema ADD COLUMN full_payload SMALLINT;

With this column it is possible to note that the database is capable of storing the extended data.

31

Chapter 7. The programgetpacket

UPDATE schema SET full_payload=1;

This sets the capability to store the full payload. If set to 1 thenservsockwill accept the-f option or
FullPayload keyword.

Similarily, if the -r option orReference keyword should be useable to store the reference of tagged
packets then the event table has to be extended:

ALTER TABLE event ADD COLUMN reference INT4;

And the schema table has to be extended and updated so that we can query this settings.

ALTER TABLE schema ADD COLUMN reference SMALLINT; UPDATE schema SET
reference=1;

If all this commands were applied to the database you have still to activate the storage of the additional
data withinservsock.

Thecontrib/ directory contains two scripts which can build the database scheme 107 with all
extensions. The created schemes are completelyACID/Basecompatible:create_mysql and
create_postgresql

7.2. The command line options of getpacket
getpacket [-ahtvz] [-c ConfigFile] [-C PacketCount] [-S SensorID] [-w DumpFile]

The getpacket options in detail

-a

Build a pcap file of all packets with the same revision (tagged packets) which contain SID and CID.
The option-t is automatically activated. Therefore you need an extended database scheme (see
README.payload).

-c ConfigFile

Specifies which configuration file should be used. The default isgetpacket.conf in the
installation configuration directory. It is also possible to use theservsock.conf of servsock. The
not needed keywords are ignored, only a warning is printed tostdout . This configuration file
contains the data to needed to access the database.

-C CounterID

Specifies the counterCID of the alert in the database. Together with the sensor IDSID this data is
unambiguous specified.

32

Chapter 7. The programgetpacket

-S SensorID

Specifies the ID of the sensorSID in the database. Together with theCID is the data is unambiguous
specified.

-t

Specifies that getpacket should attempt to use the reference column to include all the tagged packets
relating to the initialSID/CID pair.

-v

Prints information about the version and exits.

-w DumpFile

Specifies which file is used to store thepcapdata. If the special file name "- " is mentioned then the
pcap data is written tostdout .

-z

Deactive the recreation of a pcap file with tagged packets. This way it is possible to disable the
activation within the configuration file.

7.3. The configuration file of getpacket

The getpacket keywords in detail

DBuser : name

Specifies the name of thedatabaseuser who is allowed to doSELECTs of the tables. The default is
snort.

DBpassword : password

Specifies the password used among with theDBuser name to connect to thedatabase. Note: An
empty password has to be represented by empty quotes, which is the default.

DBname: name

Name of thedatabasewheregetpacketshould select the alert packet data, defaults tosnort.

DBtype : name

Type of thedatabaseto use. Actually onlyMySQL(http://www.mysql.com/) andPostgres

(http://www.postgresql.org/) are supported and have to be enabled at compile time ofservsock. No
default is set since it is not clear whichdatabasesupport was enabled at compile time ofservsock.

SocketName : socketname

This specifies where to find the unix domain socket of the database. If the wordNULL (all capital!)
is given, the database libraries find the socket by their own mechanism. This is useful in
combination with thePostgreSQLdatabase.

33

Chapter 7. The programgetpacket

If the servsock.conf file is used then only the necessary keywords are used. All other options are
ignored and a warning is printed tostderr .

7.4. Some final notes on getpacket

If the full payload is not stored in the database then an emptypcapfile only consisting of apcapfile
header is created. An error message is printed tostderr.

Some alert packets seem to have no payload (if you use ACID for example) but this is only for the higher
level protocols valid. Only some preprocessor alerts have no payload at all since they may not act on a
special network packet (e.g. thesfPortscanpreprocessor).

The restriction to ethernet packets is only for thepcapheader. Since the data link layer may have
different sizes this must be entered in thepcapfile header. But this information is not forwarded to the
central server. This value can be easily adjusted.Update:The actual version support also thelinux
cooked mode.

Note: The rebuilt packet also contains the MAC addresses of the ethernet packet and the capture time of
the host runningsnort.

If the reference data is not stored in the event table, getpacket cannot dump all related tagged packets in
the pcap file.

34

Chapter 8. The program fpg, a f alse positive
generator

This program1 creates network packets which raise false positive alerts withinsnort. It reads asnort
configuration file and tries to build one network packet for each rule containing all necessary values.

Nearly all kind of network packets can be created, only some newer features ofsnort like byte_test

and someICMP types are not supported2.

Note:There is an ongoing discussion about how useful or useless these kind of false positiv generators
are. But at least there are some obviously reasons why they may be useful. For example, if you want to
see what happens if the output plugins reach there limits you will need something which is able to
generate enough alerts. Or think of finding problems in preprocessors or rules. If you find one this way
then the use of such programs are more than justified. On the other hand, to use these kind of programs
to estimate a limit up to wheresnort is able to perform his work may fool you since a lot of preprocessor
works are ignored. So however, there are at least soem good reasons for these programs to exist.

8.1. The details of the fpg program

Actual fpg uses a lot of snort keywords. Up to 5 levels3 of include files are supported.

snort keywords used by fpg

• include

• alert

• log

• var

• tcp

• udp

• icmp

• any

• rpc

• msg

• content

• uricontent

• dsize

• sameip

• offset

35

Chapter 8. The programfpg, a f alse positive generator

• distance

• depth

• within

• fragbits

• id

• ip_proto

• ttl

• itype

• icode

• icmp_id

• icmp_seq

• isdataat

• flags

• flow

• seq

• ack

Options not mentioned here are simply ignored4. You have explicitly to specify a source and destination
address. So any special address in the configuration file are overwritten. So some rules will not raise
alerts due to this wrong addresses.

8.2. The command line options of fpg
fpg [-hve] [-c config] [-D count] [-n count] [-M maxpackets]

[-R msec] [-T msec] -s source -d destination

The fpg options in detail

-c config

Specifies which configuration file ofsnort should be used to generate the network packets. The
default issnort.conf in the current directory.

-d destination

This option is mandatory and specifies the destination address used in the network packets. So any
destination addresses in the configuration file are ignored.

-D count

Insert everycount packets a time delay, see option-T . This feature is disabled by default.

36

Chapter 8. The programfpg, a f alse positive generator

-e

Runfpg in an endless loop, after the configuration file is worked through the program starts again at
the beginning. The option-M is still valid. See also option-n .

-h

Print some help information and exit.

-M maxpackets

Specifies the maximum number of network packets to be generated and sent. See also-e and-n .

-n count

Send each build network packetcount times. See also-M which is still valid and option-e .

-R msec

Specifies a random delay between two network packets of maximalmsec milliseconds. This is
useful to get a more random like traffic and to limit the rate.

-s source

This option is mandatory and specifies the source address used in the network packets. So any
source addresses in the configuration file are ignored.

-T msec

Specifies the time delay between the number of network packets specified by the-D option. This is
useful to avoid an overrun of the sending queue.

-v

Print version information and exit.

8.3. Some final remarks on the program fpg

Without any limitation and a fast machine the rate of generating network packets is much faster as the
network device is able to generate. Therefore the options-D and-T were introduced5.

The-R option was introduced to get a more realistic network traffic shape. This way it is possible to
study the behaviour ofsnort on a more realistic scenario.

The-n option is the fastest way to generate a lot of alert packets, but all are equal. If one packet is build
it is sent several times again. So all these packets look identical.

With the-e option the configuration file is walked through several times and all network packets are new
build. Any unspecified values in the configuration file are replaced by random values. So with this option
the network packets for the same rule look a bit different.

37

Chapter 8. The programfpg, a f alse positive generator

The destination address should be a valid one, there should exist a target with this address. Otherwise all
packets will be blocked at the last hop with unsaturated arp requests for the destination address.

Be aware that nearly all packets will result inResetor ICMP packets sent back to the mentioned source
address (see option-s).

Notes
1. To build network packets with own contents, e.g. different source addresses as the system has, TCP

packets with flags set and so on, you must be root to use this progam!

2. To raise alerts within snort-2.0.0 you have to disable thestream4 preprocssor. This preprocessor
discards all packets which are not established and the rule says the packet has to be established.

3. This is only one parameter in the source file and can be easily increased.

4. These options are ignored, not the whole rule!

5. TheC functionusleep() is used, wich can sleep for microseconds. But the finest granularity of this
function is in the range of 100Hz (Starting with Linux-2.6 this value is adjustable up to 1000Hzbut
some other operating systems may not be able to use other values). Therefore we use a delay in
miliseconds every few packets instead of anusleep() after each packet is sent.

38

Chapter 9. The contrib directory

This directory contains some more or less helpful programs and scripts for the various programs.

9.1. The program rules.pl

This is a very useful perl script which is able to fill the database with informations about all signatures,
classifications and references.

The normal process is to ask the database if a signature is already stored in the database. This program
can store all possible signature based alerts in the database. If this has been done and you are using
optionDBTrust with servsockthen you can speed up the database access because you have only to ask
if a sig_id to a given signatureid (with the same priority and revision) exists, there is no need to ask for a
given signaturemessage.

If you additionally enables the use of a cache (-C or DBCache of servsockyou can further increase the
INSERT rate into the database.

The program first checks that theclassificationandreferenceare part of the database. The next step is to
check if the signatures are already part of the database, if not then they were added. If not, then the new
signature is added.

Note:Normally the priority of a signature is only estimated via the classification. Since the priority can
be given individually and may have other values on different sensors the priority range can be adjusted.

The fileclassification.pl is a perl script which is more or less a framework which only updates the
classification table in the database.

9.1.1. The options of rules.pl

There are only a few options available:

rules.pl [-h] [-c config] [-C classification.config] [-P priorityrange]
[-R reference.config] file1.rule file2.rule ...

Some value can be set via the configuration file mentioned by option-c , the default isrules.pl.conf

in the actual directory. The filesclassificaion.config andreference.config are part of the
snortdistribution.

39

Chapter 9. Thecontrib directory

If the -P is used then all rules are inserted starting with priority one up to the given value.

Finally a list of files can be mentioned, they should all contain signatures in the formsnort uses them.

9.1.2. The configuration file rules.pl.conf

There are only a fewkeywordswhich can be used byrules.pl, most of them regard the database access.

$dbtype =database ;

Estimates which type of database should be used, this value can be eithermysqlor postgres.

$dbname=name;

Estimates which database should be used to insert the rules in.

$dbuser =username ;

Connect asusername to the database. This user must be able toINSERT into the database.

$dbpass =password ;

This sets the password which is used with theusername to access the database.

$dbhost =host ;

This defines on whichhost the database is running, this may be empty. If no name is given then
localhostis used.

$dbport =port ;

This defines the port which should be used to address the database running onhost . This may be
empty in which case the default for theDBType is used.

$ClassFile =filename ;

This defines the name and location of theclassification.config . This is normally located in
theetc/ of thesnortsource distribution.

$ReferenceFile =filename ;

This defines the name and location of thereference.config . This is normally located in the
etc/ of thesnortsource distribution.

$PrioRange =value ;

If value is not set or zero then the normal priority as defined by the rule is used. Otherwise the
whole range from 1 tovalue is stored in the database.

Note: The last entry in therules.pl.conf must be1; since this file is included viado "$conffile";

An example filerules.pl.conf is located in thecontrib/ directory.

40

Chapter 9. Thecontrib directory

9.2. The files create_mysql and create_postgresql

These two files are similar to that distributed withsnort. The main difference is that these are extended to
store the full payload and reference id in the database. The refernce id is useful to recreate a traffic
stream if they were save via atagkeyword in the rule.

A further enhancement is the support of scheme 107 which is able to save thegenerator IDso it can be
clearly identified which part ofsnort raised this alert.

This files can besourcedfrom the command line interface of the database (mysql or psql). Usually the
option \i /path/to/create/file is the relevant part.

Note: You still have to create a user and grant them the right privileges so thatservsockcan use the
database.

9.3. The cgi files

The filessum.pl , db-cgi.pl , ip.pl , list.pl , select.pl , signature.pl anddbh.pm can be
used to build a small web interface in order to query the database for some statistics and alerts. All you
have to do is to put them in a cgi directory of your database.

All perl script expect that they are invoked via the directory/cgi.bin/ . Further at the beginning of
each script there is aBEGIN statement which extends the perl search paht. This path should contain the
file dbh.pm .

The filedbh.pm defines the database access method. It should be easy to change the parameter in this
file to the needed ones.

sum.pl

This script gives a summary overview of the sensors in the database and the different kinds of alerts.
This is useful as a starting point.

db-cgi.pl

This is used to display on single alert.

list.pl

This is used to display a list of search results. From each result the scriptdb-cgi.pl can be
invoked for displaying further details.

ip.pl

This script is used to display results based on an IP address or protocol.

41

Chapter 9. Thecontrib directory

select.pl

This program can be used to fetch an alert from the database by a given sensor idSIDand counter id
CID.

signature.pl

This script fetches informations based on a special signature.

All these scripts are at least a framework and can be used as starting point to build some useful
applications. So one idea was to createHTML links to an alert in the database which can be send via the
alert. This can easily be implemented since theSIDandCID are already known.

9.4. The perl script stats.pl

This is an easy script which can be used to feed anRRDfile. Thestatisticswere created with a similar
script like this program.

But probably this is no longer needed or useful sinceperfmonitorpreprocessor is available. But it is still
part of this project.

42

Chapter 10. Summary of the tools and a final
survey

Thepictureshows how all these tools work together.snort watches the Ethernet wire for suspicious
traffic and reports alerts tosockservwhich forwards them toservsock. This program writes the alerts
together with the payload in adatabase.

An illustration howsockserv, servsock, alert anddrop work together1.

The programfpg can be used to generate traffic on the ethernet which should raise alerts withinsnort.
These alerts are written to the unix domain socket/tmp/snort wheresockservreads them.

One thread ofsockservreads in these alerts whereas the second thread sends the alerts via TCP (port
1234) to thecentral sever. All alerts are buffered to account for bottlenecks in the chain.

On thecentral severthe master process ofservsockwaits for new incoming connections from remote
sensors. If a new conncetion is established a process is forked off to handle this commmunication.

One thread is of this process receives the alerts and stores them in a memory buffer. The second thread

43

Chapter 10. Summary of the tools and a final survey

takes these alerts out of the buffer and stores them via an unix domain socket in thedatabase. On alerts
with a high priority the details and ID of this event are written to the unix domain socket/tmp/alert .

The programalert reads this alert informations and collects them. On a periodically basis or if a given
number of alerts is reached this information is send via email to a list of recipients.

If there are too many buffered alerts withinservsocka drop functionality is activated. If theHighWater

mark is reached then as many alerts are written and dropped as many to/tmp/drop until theLowWater

mark is reached.

The programdrop reads these alerts and collect them. It works likealert but does not store the database
ID since these alerts are not part and will not be part of thedatabase. If the sending of mail fails for
several times these alerts are written tostdout or syslogso no alerts should be lost. This behaviour is
different toalert which would simply delete these alerts2.

Notes
1. The programdrop can also work withsockservbut this is omitted in this picture.

2. The reason for this behaviour is quite simple: The programalert is intended to inform about alerts
with high priority if they arrive. But these alerts are already part of the database. So if the sending of
mail fails one can still find these alerts in the database.

44

	FLoP 1.6.0
	Table of Contents
	List of Examples
	Abstract
	Chapter 1. Introduction
	Chapter 2. Programs of the project
	The patch and programs of FLoP

	Chapter 3. The snort patch
	3.1. Statistics with snort

	Chapter 4. Configuration of FLoP
	4.1. Some notes on the configuration options
	The configure options in detail

	Chapter 5. The programs sockserv and servsock
	5.1. The details of sockserv
	5.1.1. Options
	The sockserv options in detail

	5.1.2. Signalhandling
	Signals used with sockserv

	5.1.3. Some additional notes

	5.2. The details of servsock
	5.2.1. Options
	The servsock options in detail

	5.2.2. The configuration file of servsock
	The parameters of the configuration file for servsock in detail

	5.2.3. Signalhandling
	5.2.4. Some additional notes

	Chapter 6. The programs alert and drop
	6.1. The details of alert
	6.2. The details of drop
	6.3. The command line options of alert and drop
	The alert and drop options in detail

	6.4. The configuration file for alert and drop
	The parameters of the configuration file for alert and drop in detail

	6.5. Signalhandling

	Chapter 7. The program getpacket
	7.1. The extension of the database scheme
	7.2. The command line options of getpacket
	The getpacket options in detail

	7.3. The configuration file of getpacket
	The getpacket keywords in detail

	7.4. Some final notes on getpacket

	Chapter 8. The program fpg, a false positive generator
	8.1. The details of the fpg program
	8.2. The command line options of fpg
	The fpg options in detail

	8.3. Some final remarks on the program fpg

	Chapter 9. The contrib directory
	9.1. The program rules.pl
	9.1.1. The options of rules.pl
	9.1.2. The configuration file rules.pl.conf

	9.2. The files createmysql and createpostgresql
	9.3. The cgi files
	9.4. The perl script stats.pl

	Chapter 10. Summary of the tools and a final survey

