
Web Application Worms:
Myth or Reality?
Automated, self-propagating attacks on vulnerabilities in custom Web application code

Written by
Amichai Shulman
Chief Technology Officer

2

Table of Contents

Table of Contents.. 2

Abstract.. 3

Introduction ... 3

Anatomy of an Automated Application Worm 4

War Searching.. 5

Advanced War Searching.. 7

The Search of Death ... 9

Conclusion.. 9

Bibliography... 11

Web Application Worms:
Myth or Reality?

Abstract

This paper discusses the possibility of automated, self-propagating
attacks on custom Web application code. It will show that such
attacks are not only feasible but that their theoretical success rate is
far greater than worms targeting commercial infrastructure (e.g.,
Slammer, Code Red, Blaster, Nachi, etc.).

It is the intent of this paper to raise awareness of the threat posed by
automated attacks on vulnerabilities that exist in every organization’s
Web infrastructure. Threat’s of this type that cannot be avoided by
counting on current IPS technologies and the law of large numbers.

Introduction

Application level attacks are attacks on the top layer of the OSI
model – the application layer. These attacks may target either
generic application infrastructure solutions, (e.g. IIS or Apache) - or
they can attack the custom code and business logic which is unique
to each Web application. Traditional automated worms are commonly
designed to exploit known vulnerabilities of generic infrastructure
solutions. A worm enables a single hacker to simultaneously attack
a multitude of Web sites.

Attacks on custom code normally use manual techniques such as
SQL Injection, parameter tampering, forceful browsing, etc to exploit
vulnerabilities that are unique to each web application. For example,
the SQL injection may be used to manually exploit a vulnerability that
exposes credit card numbers in Acme Corp.’s ecommerce
application. SQL injection may also be used to manually exploit a
completely different vulnerability that exposes account balances in
BankX’s online banking application. Although general SQL Injection
process is the same in each case, the specific vulnerability and the
steps required to build the exploit are completely unique. Hence the
following convictions are common among IT decision makers.

• Identifying custom application vulnerabilities within a site requires
“personal attention”.

• Web application vulnerabilities from one custom web application
cannot be reproduced to another

• Finding vulnerabilities in custom Web application code and writing
successful exploits is difficult and requires advanced hacking
skills. Hence the number of actual hackers that can practice
application hacking is small.

As a consequence, most organizations conclude that unless they
own a very high profile application with very high potential profit for

3

hackers, the chances to be hit by custom code attacks are very slim.
Since those organizations face a daily battle with infrastructure
worms such as Slammer, Blaster and others, they tend to focus their
attention and resources on security solutions that can stop this type
of mass attack.

The next section discusses automated, self-propagating attacks on
custom Web application code. It shows that the technology required
for creating such an attack is highly accessible, that the skills
required are common, and that the potential proliferation rate among
valuable targets is higher then that of commercial infrastructure
worms. It also shows that is does not matter whether you are a
prominent American bank or a small e-vendor in Poland, you have
the same chance of being hit by such an attack. A feasibility study
conducted by the Imperva ADC demonstrates the validity of these
facts.

Anatomy of an Automated Application Worm

For the purpose of our discussion we will describe an imaginary
application level worm called Niddhog1. In order to be a healthy and
prosperous worm Niddhog must have the following capabilities.

1. An efficient method of finding its prey. Since Niddhog is an Web
application worm the prey must be an identified web site rather
than an IP address.

2. A method for identifying vulnerabilities in potential prey. These
must be specific URLs or even specific parameters within URLs.

3. A method for exploiting such vulnerabilities in a way that allows
Niddhog to deploy its Trojan horse (copying the payload and
Niddhog code to the victim site).

4. A method for activating the attack and the new copy of the code.
Since this is an application level worm we would expect the
Niddhog to activate the new copy by simply making an HTTP
request to a URL on the exploited server.

Conventional worms use random address generation for the first
task, the law of large numbers regarding a specific known
vulnerability for the second, and hard-coded exploit code for the third.
Niddhog will instead use a special technique that efficiently finds
vulnerable sites and specific vulnerabilities in a single step. This
technique, that we call “War Searching”, will be explained in the next
section. Using this technique Niddhog is assured of having far less
failed attack attempts than conventional worms, leaving a much

1 In northern mythology a worm that gnaws the roots of the world-tree.

4

smaller footprint in network traffic, and taking much less time to
achieve massive proliferation. This, in turn, assures that it can
achieve more damage prior to any mass protection schemes are
deployed to stop it.

Creating an exploit is usually a straight forward task once
vulnerability has been discovered. However, some special tricks may
be required for application level attacks. These tricks are explained in
the Advanced War Searching section of this paper. Finally
launching the exploit code or activating it can be achieved through a
technique we call “Search of Death” in the final section of this paper.
Using this technique the attacker can almost perfectly cover his or
her tracks.

War Searching

Search Engines

The ideal place for an application level worm to look for potential
victims and their vulnerabilities would of course be a directory that
lists all applications (by name) and their vulnerabilities (preferably by
type). It turns out that such a directory exists. Those are the search
engines and Web directories such as Google, Yahoo, Altavista,
MetaCrawler, etc.

Search engines use a network of computers to continuously map the
contents of Internet Web servers using a species of software
program that has earned the nickname WebBots. WebBots
repeatedly and methodically crawl the Internet link, to link, to link.
Once a link is followed the contents of the reply are indexed by the
search engine and the robot follows any links found within that reply.

A search engine may start mapping a given Web site either per an
explicit request (See http://www.google.com/addurl.html for an
example of such a request) or by following links to the site from other
sites traversed by the WebBot. However once a WebBot starts
mapping a site, it cannot be stopped. GoogleBot (Google’s WebBot)
has become so thorough that it can even trace links created through
JavaScript code in HTML forms. As a consequence, once a site has
been “discovered” by a search engine, the WebBot operating on
behalf of that search engine will discover all publicly available URLs
at the site including URLs that were not intentionally exposed to the
public. After the WebBot has indexed a site, the indexed URLs are
publicly available and can be retrieved using keywords from both
URL and content of the reply.

Reconnaissance

5

Enter the “War Searching”, which we define as an automated
compilation of vulnerable sites with specific vulnerabilities by using
an Internet search engine. The basic idea supporting this method to
exploit an individual site has been discussed in various public forums
since 1991. However, it has not yet been noted that these same
ideas can be used as the basis of an automated attack against
numerous sites. Let’s examine some simple examples of War
Searching and the results they yield.

A common example among early War Searchers is the search for the
term “Select a database to view” which currently yields approximately
600 results. Some of them link to pages where a list of FileMaker
WebCompanion files can be found and accessed directly. Adding the
term “FileMaker” to the search narrows result to 450 entries of which
the vast majority are actual links to sites that expose FileMaker
companion files (the others discuss this possibility). Such files may
contain sensitive raw data that is unintentionally exposed to direct
access. Another example the search for the terms “index of /etc” and
passwd. This yields 270 results - most of which are links to pages
that link directly to an unprotected password file.

So the idea is to come up with the right combination of terms that
would yield the appropriate results regarding some vulnerability. Our ,
Niddhog worm, for example, might search for the term +“index of”
+service.pwd yielding a result set of approximately 650 links for
FrontPage extension password files (an ancient vulnerability). One
may argue that this is a small amount of servers not worthy of a
mighty worm like Niddhog, but we must remember that almost every
result yields an vulnerable site. Traditional application infrastructure
worms, on the other hand take the approach of generating addresses
at random, validating their existence, and then hoping that they host
a server of the right type with the right vulnerability. To match
Niddhog’s results of 650 vulnerable sites, this traditional worm would
require an average of 6.5 million failed attempts to find the first
vulnerable site. A more prominent vulnerability that is found in
100,000 Internet sites (an incredibly large number) would still take
approximately 15,000 failed attempts by a traditional infrastructure
worm to find the first vulnerable site.

Since search engines return the result set as an HTML document, it
is easy to write code that would extract the vulnerable URLs from the
reply. In fact, Google now exposes a Web Service interface that
makes such a task even easier. Hence the attacker has a simple
piece of code that uses HTTP requests to retrieve vulnerable URLs
from a search engine. By making small changes to the code,
Niddhog can use a different search engine or look for a different
vulnerability. It is important to note that this discovery stage does not
require any direct interaction with the target site. Hence, no
protection mechanism at the site could set off an alarm.

6

Attack

The next step for Niddhog would be to traverse the list of potential
targets and extract the actual password file from each of them. It’s
follows that since the WebBot can access the URLs in the result set
(or else they would not be indexed) so can Niddhog. No protection
mechanism stands in the way of such access. After retrieving the
password files, Niddhog uses freely available password cracking
software (e.g. John the Ripper, L0phtCrack, etc.) to extract a list of
clear text passwords. Numerous studies have shown that the
success rates of these tools are extremely high requiring a relatively
short amount of time.

To complete the attack Niddhog would create a FrontPage http
request to each of the sites in the results set, using the appropriate
credentials and uploading the Niddhog code to the site. A simple
ASP page is uploaded that, (when accessed) invokes Niddhog on the
remote computer. A more sophisticated attack would make the ASP
page a bit more stealth (e.g. return HTTP code 404 unless a
password is given) and the Niddhog code configurable in a way that
each exploited server searches only a predefined portion of the result
set. It should be noted that the HTTP requests used by Niddhog to
actually attack the site are well-formed, legitimate requests and that
the URLs used by Niddhog are legitimate URLs (or else they would
not be indexed). Hence, no existing Intrusion Prevention System
(IPS) or firewall would be aware of the attack.

Advanced War Searching

The previous section showed a very simple example of War
Searching. Our research also demonstrated the viability of
application level worms that have a potentially high yield but require
more advanced War Searching techniques

Narrowing the Search Space

Assume that an attacker wants to exploit a vulnerability in a content
delivery package (lets call it BeContent for this discussion) that
relates to exposing a password file called “password.txt”. The
location of such a file would depend on the tree structure of each site
deploying the content delivery package. Searching for “password.txt”
would yield an immense result set, most of which is irrelevant to the
exploit. However, the attacker knows that a site deploying the
BeContent package will expose URLs of the form
/<somepath>/BCCDeliver/<somefile>. They would then create a
worm to search for the term BCCDeliver and then search again using
the “site:” option to obtain the location of password.txt file for each
site obtained from the first search.

7

Finding SQL Injection Vulnerabilities in Custom Code

Assume that the attacker would like to create a worm that exploits
SQL injection vulnerabilities in custom code to inflict denial-of-service
on a site. Creating such an attack would require identifying specific
points in the business logic of that Web application that are
susceptible to SQL injection attacks.

The attacker can use a search engine to search for the term
[Microsoft][ODBC SQL Server Driver][SQL Server] which yields
approximately 130,000 results, a large portion of which are pages
that suffered a database access error when visited by the WebBot.
The attacker can make the search request focus further on each site
by repeating the same query but with the “site:” option and collecting
all potential vulnerabilities within a site.

Discovering the vulnerable URLs is not enough for successful SQL
injection. The attacker must further find the parameters that are
susceptible to SQL injection. This is achieved by again using the
“site:” option, this time using the vulnerable URL as the search term.
The result set includes references to the vulnerable URL from which
we can extract the parameters. No special hacking or programming
skills are required.

To complete the attack, the hacker must invoke one of many tools
that can be obtained from the Internet that is capable of efficiently
achieving actual SQL injection given a URL and its parameters. It
should be noticed that this last step may leave an apparent footprint
in the attacked server logs, since a substantial number of attempts is
usually required by the automated tools to achieve SQL injection.
The attack code can cover its track and evade being traced back to
its source by using the “Search of Death” technique described in the
final section of this paper.

Using Internal Site Search Capabilities

Some resources may not be available for external indexing either
because the webmaster bothered to create a robots.txt file or
because they were not properly linked to the rest of the site. In some
sites, such resources, as well as other internal resource may have
been indexed by an internal indexing tool such as MS Indexing
Service. Such services index the site by traversing the directory tree
through the operating system to yield interesting results. An attacker
can use a search engine to find the internal search form of sites (e.g.
by looking for the term search.asp) and recognizing the parameters it
requires (see above). They can then use this internal search engine
much the same way as they could use a public search engine.

8

The Search of Death

Most attackers with malicious intent prefer to remain anonymous.
The author of Niddhog would be no exception. One obvious way to
launch Niddhog anonymously would be to manipulate the WebBot
into attacking vulnerable sites.

At some point the attack must directly access the victim’s site. This
could be the final stage of the attack in which the Niddhog code is
uploaded to the attacked server and activated, or it could be an
earlier stage in which SQL injection strings are being constructed. In
order to avoid detection and tracing of the attack source, an attacker
would usually break into an intermediary computer and launch the
attack from it. However, Web application attacks may take advantage
of another option that does not involve the hacking skills required for
breaking into an intermediary server. If the attack can be reduced into
a single URL, (and most application attacks can be), then the
attacker can use a technique that we call the Search of Death (SoD).

The SoD is defined as the use of a search engine as a proxy of the
real hacker to launch an application attack against a chosen target.
Implementing SoD is straightforward. The hackers creates their own
anonymous Web site, using one of many available free hosting
services. They then submit the site to a search engine for indexing.
When they observe that the search engine paid them a visit (e.g. by
inserting rare terms within the content of the site and searching for
them in the search engine) they create a new page which contains
the attack URLs. The next time the WebBot pays a visit it will follow
the links in the new page and index the results. Following the links in
the malicious page means that the WebBot will launch the attack
URL against the target site. If this URL is the final attack then the
hacker’s job is done. If they are using the attack URL for further
information gathering, then they need to search using the “site:”
option to read the reply to their attack URLs. If an attacked site
detects the malicious request, all tracks lead back to the WebBot.

Conclusion

Application level vulnerabilities in commercial infrastructure software
and custom Web application code are common in today’s Internet
infrastructure. Using the War Searching techniques defined herein,
an attacker can efficiently identify a multitude of such vulnerabilities

9

in a way that guarantees a very high attack success rate. This
success rate is 4 to 7 orders of magnitude larger than that of
application infrastructure worms guessing their way across the Web.
Moreover, throughout most of the discovery stage, the victims are
completely unaware of the attacker’s activity.

Using War Searching to identify vulnerable sites guarantees that
even if the attacker seeks to exploit a long ago published vulnerability
(such as our legendary Niddhog worm) for which countermeasures
have long been available, a multitude of servers remain vulnerable.

Once the attack is launched, its proliferation rate is guaranteed to be
very high. In fact, by the time anybody identifies such an attack, most
vulnerable servers connected to the Internet would have already
been compromised regardless of how well their traditional protection
devices are configured.

Finally, we have shown that the initial introduction of the worm to the
Web as well as further attacks by contaminated victims can be
achieved through the search engine’s WebBot. Using this technique
makes the source of such a worm virtually untraceable.

We therefore conclude that the accepted notion that application
vulnerabilities in custom code are a tertiary risk due to the allegedly
manual nature of application attacks on custom code is faulty.

10

Bibliography

• "Watching the Watchers: Hacking with Google", 2002
http://johnny.ihackstuff.com

• “Google not ‘hackers’ best friend”, James Middleton, VNUnet.com, 2001
http://www.vnunet.com/News/1127162

• Google: Net Hacker Tool du Jour, Christopher Null, wired.com, 2003
http://www.wired.com/news/infostructure/0,1377,57897,00.html

• “Watch out, Google”, Sebastian Wolfgarten, 2003,
www.wolfgarten.com/downloads/Watch_out_google.pdf

• Google: A dream come true, Comsec, 2003,
www.governmentsecurity.org/comsec/googletut1.txt

11

Imperva, the Imperva Logo, and SecureSphere are trademarks of Imperva Inc. Products mentioned
herein are for identification purposes only and may be registered trademarks of their respective
companies. Specification subject to change without notice.

©2004 Imperva Inc., All Rights Reserved.
12

Imperva, Inc.
12 Hachilazon st. Ramat-Gan 52522, Israel
Tel: +972 3 6120133 | Fax: +972 3 7511133
U.S. Toll Free: 1-866-592-1289

1065 East Hillsdale Blvd., Suite 109
Foster City, CA 94404, USA
Tel: (650) 345-9000 | Fax: (650) 345-9004 TM

