
Reverse Engineering “Microsoft F#”.
Author:Aodrulez.

 F# is another programming language added to the al ready
crowded .NET Framework.F# is promising though! It i s said to
encompass functional programming as well as imperat ive
object-oriented programming disciplines.
 So far so good.... but the question that I have is ...
Why mix it with .NET? Yeah...maybe .NET apps are ea sy to code
..maybe they are GUI-wise amazing.... Portable, sin ce its again
similar to Java...all you need is .NET framework to run them...
& so on n on... but dear M$... portability comes wi th a price!

 There can be tonnes that I'd like to mention..but lemme
concentrate on only one such price that one has to pay if they
are tryin to achieve portability the Java way! And what am
talking about is "Reverse Engineering"..or rather.. I should
put it as "Ease in Reverse Engineering".First, lets analyze the
"Portability Technique" thats being used here.

Portability Technique:
 The basic idea here is to have three major compone nts..
1] Programming Language
2] Intermediate Form of Code.
3] Framework.

 Now how this works is simple.The Programming Langu age
is designed in such a way that when you compile it. . Machine
Code is not generated unlike rest of the programmin g Languages
out there... instead... its converted to an Interme diate Form
(ByteCode in case of Java & IL in case of .NET).Now a computer
can understand what to do only if its in Machine La nguage...
so its understood that this Intermediate Form is co mpletely
"Crap" to the computer.This is where the FrameWork comes into
play... Each time you run such an application, some thing called
as J-I-T... Just in Time Compiler..is called in.Thi s is a part
of the Framework & the sole purpose of this app is to compile
the Intermediate Form into Machine specific code & then execute
it.Benefit of this technique?.. u guessed it!... Po rtability.

 Okies, that was a pathetic way to describe the who le thing
but the sum-n-substance of it is correct.How is Pro tability
achieved? See... each time you compile an app in th is Programming
Language... you always endup with Intermediate Form .This is
common for all platforms... Now its the job of the Framework to
make it work on a particular platform.So the only t hing that has
to be done is to code a Platform-Specific Framework ...n thats it!
All applications you code using this Programming La nguage can
run on all Platforms....for which the Framework has been
developed.

Downside?
 Each application that you code & compile is in the
Intermediate-Form.And what you distribute as an app is actually
this Intermediate Form of your code.The problem wit h this is...

Decompilation!
 Usually the applications coded in C/C++,Delphi etc contain
Machine Language Code.So we run a Disassembler on t hese & ultimately
end-up with the code of this applicaiton in Assembl y Language Form.
Since goin through lots n lots of assembler code is really a
Head-Ache.. ripping out parts of your code & then c onverting them
into C/C++ equivalent code is a really tedious thin g to be doing.
 Now the problem with our Portable Programming Lang uage is
that...the Intermediate Language has got its own Op Code & since
this is not Machine specific..u cannot Disassemble this code.
What I mean by this is.. if you put it through a Di sassembler,
most of the Assembly Listing that you'll get will b e bogus...
But thats a Blessing in Disguise! since this Interm ediate Form
has got its own OpCodes, if we have detailed info a bout the
structure of this Intermediate Form, we can code De compilers for
it!

Decompiler?
 A decompiler is a Tool that can go through a Progr amming
Languages' Intermediate form & produce the actual " Source-Code".
Yeah...u read it right...Source-Code! Most of the t imes, even
Variable & Function names are preserved!Its just li ke a
Disassembler..but also different in a lot of ways.F or starters...
its "Programming Language" Specific.That means you can't use a Java
Decompiler for an app coded in .NET .

 So,if a Programming Language uses this "Portabilit y Technique",
technically, a Decompiler can be written no matter how cryptic the
Intermediate Form might be.That sounds grave does'n t it? So whats all
this got to do with F#?? Everything!.....

 As i said in the Beginning itself, F# has been mad e .NET
Compliant.. that means...once compiled.. it'll be i n the IL form.
And there are tools already out there that can Deco mpile .NET Apps.
One of my Favourites is ".NET Reflector".Its free, powerful, &
has got plugins too!

Lets Reverse an F# App....

 Since this is just a PoC Paper... lets code an App in F#
& try to break (crack!) it.Quick search over intern et shows that
Visual Studio (.NET one) is needed to code apps in F# easily.
A little more tinkering around showed me that all y ou really need
to code an F# app is its compiler.you really don't need to install
the overbloated Visual Studio to make our small PoC application.
Just Download the compiler, install it & you are re ady to have some
fun.

Here is the Code for our PoC App:
(Save as Aodrulez.fs)

#light

open System
open System.Windows.Forms

let form = new Form()
form.Width <- 170
form.Height <- 130
form.Visible <- true
form.Text <- "Aodrulez"

// Menu bar, menus
let mMain = form.Menu <- new MainMenu()
let mFile = form.Menu.MenuItems.Add("&File")

let mabout = form.Menu.MenuItems.Add("&About")
let miQuit = new MenuItem("&Quit")
mFile.MenuItems.Add(miQuit)

let btn1 = new Button()
do btn1.Text <- "Register"
do btn1.Location <- new System.Drawing.Point(42,40)
do form.Controls.Add(btn1)

// TextBox
let textB = new TextBox()
//textB.Dock <- DockStyle.Fill
textB.Text <- " Enter Code Here."
do textB.Location <- new System.Drawing.Point(30,10)
form.Controls.Add(textB)

// callbacks
mabout.Click.Add(fun _ ->
System.Windows.Forms.MessageBox.Show("Aodrulez's F# Crackme V1.0\nHappy
Cracking!","Aodrulez");())
miQuit.Click.Add(fun _ -> form.Close())
btn1.Click.Add(fun _ -> (if textB.Text=" Awesome" then
System.Windows.Forms.MessageBox.Show(" Correct!\n :) ","Aodrulez");()
else System.Windows.Forms.MessageBox.Show(" Wrong :(. Try
again! ","Aodrulez");()))

#if COMPILED
// Run the main code. The attribute marks the start up application
thread as "Single
// Thread Apartment" mode, which is necessary for G UI applications.
[<STAThread>]
do Application.Run(form)
#endif

To compile it... save this as Batch file & run it:
--- --------------------
@setlocal
@REM 1. Configure the sample, i.e. where to find th e F# compiler and
TLBIMP tool.

@if "%FSHARP_HOME%"=="" (set FSHARP_HOME=..\..\..)
@set FSC=%FSHARP_HOME%\bin\fsc.exe

@REM 2. Build the sample

%FSC% --target-winexe -g Aodrulez.fs
@if ERRORLEVEL 1 goto Exit

:Exit

@endlocal
@exit /b %ERRORLEVEL%
--- --------------------

Reversing F#:

 Okies..now that we have the Test Application ready .. lets see how
it works!

As you can see above...we've designed a GUI based a pplication that
needs some Code to be entered.It sure is'nt the one currently entered
:) .If you have a look at the Applications’ F# sour ce-code above...
you'll see that the actual code that the App is loo king for is
"Awesome".So lets try that one....

 Yeah!..that was the Code our small little F# app w as looking for.
Now this was no big deal! Anyone can reverse an App if you have its
Source-Code.So lets "Reverse Engineer" it the actua l way....

Time For Some Reverse Engineering………………

.NET Reflector:

 Am using .NET Reflector since I know that F# is al ready .NET
Compatible.So heres how .NET Reflector looks like:

Now am opening my "Aodrulez.exe" which is our Compi led F# App in
Reflector.Heres how it looks like then:

Oops! thats an Error saying it can't find some file thats required
by F#. So just manually Browse & Select "FSharp.Cor e.dll" & Reflector
is all happy! So now we are all set to reverse F# u sing .NET Reflector.

 The above picture shows the Decompiled Listing of our App in C#
code... ".NET Reflector" simply works fine with F# too :)
Lets look for some more interesting code in our app 's Decompilation!

Are you seeing what am seeing too???? Thats my Code in all its Glory!
Its intact.. & I believe, even a 2yr old can unders tand that!

Patching F# App???

 Yeah..u read it right too... Lets try to patch thi s small app
of ours to accept any String as Valid code.. :). Fo r that we'll use
one of Reflector's Plugins called as "Reflexil".

Reflexil Shows IL Disassembly as shown below which we can Modify as we
wish.

Lets modify that "brfalse.s" to "brtrue.s". What wi ll that do?
As you can see in the above pic, thats the conditio nal jump. So
what we are tryin to do is to make it jump to the " Correct! :)"
MessageBox no matter what Text we enter.(Note that here, the actual
code..ie Awesome will give me the "Wrong :(" Messag eBox!)
So lets patch it!

And now lets save this Executable!

I've saved my patched exe as "Aodrulez_patched.exe" . Now lets try
if our patch works or not :)

It sure does! Thats how simple it is to Crack an F# Application :)

Moral of the Story:
 As of now, F# is in its infancy I believe.But if i ts
.NET Framework Compatibility is continued, I don't think it'll
last for long.Why? Think of it this way....
 Suppose you own some Software Company thats develo ping
a new Algorithm... something that you just don't wa nt to disclose.
As long as you code your apps using this Algo in tr aditional
programming languages...its very tedious to rip you r algorithm
& to reverse them.But lets say...you chose one of t hose .NET
Languages.Lets say F#.... when you compile your App lication &
Sell/Distribute it as a Product, its as good as say ing you are
distributing Pamphlets of your Secret Algoritm's So urce-code!
 As a Software company thats the last thing you wan t to
happen to you..is'nt it?
 So...Microsoft...Please! I think F# has a long way to go.Its
a really beautiful Idea in itself.Don't mix this Pr ogramming Language
with your .NET Framework.

Disclaimer:
 This paper was solely put together for Information al Purpose & to
pointout the weaker aspects of .NET Framework & the recently introduced
F# language.The author shall in no way be responsib le for any damage
caused by misuse of the information provided here.

Greetz Fly out to:
Amforked() :My Mentor.
www.OrchidSeven.com :For givin me this Opportunity.
The Blue Genius : :) .

