

 Start Secure. Stay Secure.™

By SPI Labs

SPI Labs Research Brief

Stealing Search Engine Queries
with JavaScript

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 2

Stealing Search Engine Queries with JavaScript

Overview
SPI Labs has expanded on existing techniques and discovered a practical

method of using JavaScript to detect the search queries a user has entered

into arbitrary search engines. As seen with the recent leakage of 36 million

search queries made by half a million American Online subscribers, there are

enormous privacy concerns when a user’s search queries are made public. All

the code needed to steal a user’s search queries is written in JavaScript and

uses Cascading Style Sheets (CSS). This code could be embedded into any

website either by the website owner or by a malicious third party through a

Cross-site Scripting (XSS) attack. There it would harvest information about

every visitor to that site. For example, an HMO’s website could check if a

visitor has been searching other sites about cancer, cancer treatments, or

drug rehab centers. Advertising networks could gather information about

which topics someone is interested based on their search history and use

that to echance their customer databases. Government websites could see if

a visitor has been searching for bomb-making instructions.

JavaScript URL Detection
As originally presented by Jeremiah Grossman at Black Hat USA 2006 [1],

JavaScript can be used with CSS to detect if someone has visited an arbitrary

URL. This works because CSS can define the styles for visited and non-visited

hyperlinks. Since JavaScript can access the style of any element, it can see

which style the browser has applied and determine whether a user has

visited the link. It is interesting to note that the CSS standard warns that a

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 3

Stealing Search Engine Queries with JavaScript

malicious website could abuse CSS to see which sites a user has visited [2].

Also important is that URL detection technique cannot be used to enumerate

through a user’s browsing history. JavaScript and CSS can only be used to

see if a user visited a specific URL. This means JavaScript would not know

that someone had visited spidynamics.com unless the script explicitly checks

for that domain. As long as someone knows which specific URLs to check for,

URL detection can be extended to steal more private information than just a

user’s browser history.

Search Engine Results Pages
Typical search engines have a web form that users type their search queries

into. When the user submits this form, an HTTP GET request is made to the

search engine and a page containing the search results for the supplied

query is returned. It is important to note that there is nothing special about

the search engine’s web form, and simply calling the search engine’s results

page directly with a search query will return the same results. The URL for

various search results pages tends to be nearly identical regardless of the

search query. As you can see in Figure 1, the only difference is the query a

user was searching for.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 4

Stealing Search Engine Queries with JavaScript

Figure 1: URLs of Google’s results page for different search queries

JavaScript can be used to determine whether a user has visited the URL of

the results page for a given query and thus determine if a user has searched

for that query.

Dynamic Nature of Search Engine URLs
There are numerous issues with the above approach that has led some

people to believe that it is not practical for an attacker to steal search queries

using JavaScript. First, the query string of the URL for a search engine’s

results page can change based on how the user performed a search. For

example, if a user typed “web security” into Google’s main page and pressed

the enter key inside the text box to submit the query, the URL of search

results page would be /search?hl=en&q=web+security. However, if a user

instead clicked the “Google Search” button to submit the query, the URL of

the search results page would be

/search?hl=en&q=web+security&btnG=Google+Search. If a user were to

enter a search query into the web form that is at the top of Google’s results

page as opposed to the web form on Google’s main page the query string of

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 5

Stealing Search Engine Queries with JavaScript

the results page’s URL would be different yet again. Figure 2 illustrates the

differences among these URLs.

Figure 2: The differences in the query strings (underlined in blue) of the URLs for Google’s

results pages using the same search query (highlighted in red).

Second, the letter case of a search query also matters. As Figure 3 shows,

queries with the same words that use different letter casing will result in two

different URLs for the results page. For queries consisting of multiple words,

each distinct ordering of these words also results in different URLs for the

results page as shown in Figure 4.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 6

Stealing Search Engine Queries with JavaScript

Figure 3: Different URLs for different letter casing

Figure 4: Different URLs resulting from different word orderings

Overcoming Dynamic URLS for Results
Since many factors can cause different URLs for very similar search queries,

it is helpful to see how these factors affect the practicality of detecting a

user’s search engine queries using JavaScript URL detection. Consider using

JavaScript to see if a user has searched Google for some variation of “Diffie

Hellman key exchange.” Given x words, there are 2x possible combinations

where the first letter of each word is upper or lowercased. There are also x!

possible ways to order x words. Each possible search query must be checked

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 7

Stealing Search Engine Queries with JavaScript

against the different URLs for the results page that varies on how the user

performed the search. With Google, we will only check the 3 URLs associated

with searches from the main page or from a search results page. Using these

figures, there are (24 * 4!) * 3 = 1152 different URLs that return results for

some variation of “Diffie Hellman key exchange.”

Remember, JavaScript can be used to determine if a user visited a link very

quickly, allowing for thousands of links to be checked a second. Generating

all the possible combinations for a multiple word search query in an

interpreted language like JavaScript is also viable. In tests on a 3Ghz

desktop, SPI Labs was able to generate the 384 (24 * 4!) variations of a 4

word search query in half a second. All variations of a 6 word search query,

some 46,080 combinations, were generated in 5 seconds. This means that

using JavaScript to generate all possible mutations of a given query string

and check each one is practical given the power of modern computers.

“What Do You Want for Christmas?”
The concepts behind URL detection and the code to generate all possible

search query mutations are easy to grasp and implement. However, this

merely provides the infrastructure to detect whether a user has searched for

some variation of a given query. It does help someone decide which search

queries to look for.

An entity may already know which queries to detect. For example, fbi.gov

could push JavaScript to see if a visitor to its site has searched for keywords

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 8

Stealing Search Engine Queries with JavaScript

associated with child pornography. JavaScript could be used to automatically

submit a post to the FBI tips page with the visitor’s internal and external IP

addresses as well as the terms used in the search. Consider a fictitious online

books store, spibooks.com. When a user searches spibooks.com for books on

web security, spibooks.com could push down JavaScript to see if that user

has already looked for similar titles on amazon.com or another online

bookstore. spibooks.com could also determine whether the user has searched

another online bookstore for terms similar to the search terms they

submitted to spibooks.com to learn more about that user.

There are applications for these techniques in online advertising as well. An

advertiser could leverage URL detection techniques to determine whether a

user has visited certain bell weather sites for a given topic, such as Ars

Technica, Slashdot, or Microsoft’s MSDN. Then JavaScript could use on-

demand scripting to receive a list of specific queries based on which topics

the user seems to enjoy. All of this information could be aggregated using

web analytics software to provide information on the types of products

people researched before purchasing, ratio of informed customers to

uninformed customers, how informed a customer is that does make a

purchase, and so on.

Finally, there are some interesting problems in how to effectively generate

queries on the fly instead of using a precompiled list. JavaScript could be

supplied a list of popular adjectives, nouns, verbs, and topical proper nouns.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 9

Stealing Search Engine Queries with JavaScript

Queries could be assembled from this list of words like Mad LibsTM. JavaScript

could randomly select from the appropriate list and fill in format strings such

as “[adjective] [adjective] [noun]” or “[proper noun] [verb] [noun]” to try to

guess search queries.

Proof of Concept Code
SPI Labs has created SearchTheft as a proof of concept of the above

techniques. It is written in JavaScript and has been tested against both

Mozilla/Firefox and Internet Explorer. SearchTheft automatically generates all

letter casing and word order permutations of a given search query and

checks if the user has searched for some variation of that query on a wide

variety of search engines. Adding support for a new search engine is as

simple as entering a few URLs into the SearchTheft’s loadEngines() function.

SearchTheft will only check the search engines that the user actually visits so

there is no downside to adding multiple search engines.

A demonstration of using SearchTheft in a web page is available to the

public, and can be found at http://www.spidynamics.com/spilabs/js-search/.

SearchTheft does not report any of its findings back to SPI Dynamics.

Instructions are included on the Web page.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 10

Stealing Search Engine Queries with JavaScript

Disclosure of Information
The ability to steal a user’s private search engine queries and expose them to

third parties drastically increases the damage XSS can do. SPI Labs is

releasing this information to publicly demonstrate just how damaging

JavaScript can be and to ensure that as many people as possible are aware

of this increased danger from XSS vulnerabilities.

Recommendations

To protect themselves from this threat end users should routinely clear their

browser’s history.

• For Internet Explorer: Go to Tools->Internet Options->General and

click the “Clear History” button. Users can also configure Internet

Explorer to automatically clear its browsing history.

• For FireFox: Go to Tools->Options->Privacy and click the “Clear

Browsing History Now” button. Users can also click the “Settings”

button here and configure Firefox to clear its browsing history every

time Firefox is closed.

Developers can reduce the risk of exposing the privacy of their users by

securing their websites against XSS using the following recommendations:

• Ensure that all input is validated before being processed.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 11

Stealing Search Engine Queries with JavaScript

• Use whitelisting rather than blacklisting for input validation.

Whitelisting involves only accepting what you know to be good data,

while blacklisting uses a list of data not to allow. Looking for known,

valid, and safe input is much easier than looking for potentially

unknown dangerous input. For example, you know that a zip code

should always be five numbers; whitelisting a zip code input means

accepting only five numbers and nothing else.

• Have your applications assessed for security vulnerabilities throughout

the software development lifecycle.

A general rule of thumb is: “Never trust user.” In most cases, attempting to

remove dangerous meta-characters from the input stream leaves a number

of risks unaddressed. Developers should restrict variables used in the

construction of pages to those characters that are explicitly allowed (similar

to firewall rules where you begin with “deny all” and then open only certain

ports).

Additional Information
Additional information on possible Cross-Site Scripting attacks can be found

at the following locations:

Cross-Site Scripting: Are your Web applications vulnerable?

http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

 12

Stealing Search Engine Queries with JavaScript

The Cross-Site Scripting FAQ

http://www.cgisecurity.com/articles/xss-faq.shtml

References
1. http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-

Grossman.pdf

2. http://www.w3.org/TR/CSS21/selector.html#link-pseudo-classes)

