
[How To Creat Your Own ShellCode On Arch Linux]

#How To Create Your Own Shellcode On Arch Linux ?

#Author : N3td3v!l

#Contact-mail : 4nonymouse@usa.com

#Website : Nopotm.ir

#Spcial tnx to : C0nn3ct0r And All Honest Hackerz and Security Managers

I - Presentation Of The Shellcode

A shellcode is a string that represents an executable binary code capable of launching any application

on the machine. Most of the time shellcode opens a shell to have full access to the machine. Generally,

the shellcode is injected into the memory of the machine via the exploitation of a buffer overflow flaw

type (buffer overflow).

II - Understanding the basics

1 - System calls

A system call (in English, system call, syscall abbreviated) is a function provided by the kernel an operating

system. According to our syscall Os will be called differently.Example of commonly used system call:

 open, write, read, close, chmod, chown ...

On most operating systems, system calls can be used as simple functions written in C. For example for the

chown system call:

 extern int chown (__const char *__file, __uid_t __owner, __gid_t __group)

Each system call to an address that is assigned by the operating system and which is own. For example Linux

kernel 2.6.31 with the address of syscall chown is 0xb6.

How do I know this address? A simple command like below allows for address the syscall. The addresses are in

decimal unistd_x.h.

For a 32-bit

For a 64-bit system

 N3td3v!l@archlinux [shellcode]# cat /usr/include/asm/unistd_32.h | grep chown

 #define __NR_lchown 16

 #define __NR_fchown 95

 #define __NR_chown 182

 #define __NR_lchown32 198

 #define __NR_fchown32 207

 #define __NR_chown32 212

 #define __NR_fchownat 298

mailto:4nonymouse@usa.com

[How To Creat Your Own ShellCode On Arch Linux]

As you can see, if the bone is under 32 or 64 bits, the address of syscalls change.

III - Write the first shellcode

First we will create a simple shellcode, which will allow us to pause. Why we call the function whose

address is _pause 29 resulting in hexadecimal 0x1d (in 32 bits).

Once you know the address of the syscall, it remains for us to know what to put on the books. For this refer to this page

=>http://www.potomacparent.com/cache/syscalls.html

We can see that to break we do not need to complete records, just a call away, which is going to be very short schedule.

 N3td3v!l@archlinux [shellcode]# cat /usr/include/asm/unistd_64.h | grep chown

 #define __NR_chown 92

 __SYSCALL(__NR_chown, sys_chown)

 #define __NR_fchown 93

 __SYSCALL(__NR_fchown, sys_fchown)

 #define __NR_lchown 94

 __SYSCALL(__NR_lchown, sys_lchown)

 #define __NR_fchownat 260

 __SYSCALL(__NR_fchownat, sys_fchownat)

N3td3v!l@archlinux [~]$ cat /usr/include/asm/unistd_32.h | grep

pause #define __NR_pause 29

 N3td3v!l@archlinux [shellcode]$ cat pause.s

 xor %eax,%eax

 mov $29,%al

 int $0x80

 N3td3v!l@archlinux [shellcode]$ as -o pause.o pause.s

 N3td3v!l@archlinux [shellcode]$ ld -o pause pause.o

 ld: warning: cannot find entry symbol _start; defaulting to 08048054

 N3td3v!l@archlinux [shellcode]$./pause

 ^C

 N3td3v!l@archlinux [shellcode]$

[How To Creat Your Own ShellCode On Arch Linux]

Explanation :
#xor %eax,%eax <= We put the register eax to 0 to avoid segmentation faults

#mov $29,%al <= Placed 29 (the address of the syscall) in the register al

#int $0x80 <= executed

 Now we will write C For this we need to know the value of work in hexadecimal asm what will eventually

be our shellcode.

How have the hexadecimal equivalent?

It's simple, we simply use the objdump tool, which gives:

And now, so the code is in C:

 N3td3v!l@archlinux [shellcode]$ objdump -d ./pause

 pause: file format elf32-i386

 Disassembly of section .text:

 08048054 <.text>:

 8048054: 31 c0 xor %eax,%eax

 8048056: b0 1d mov $0x1d,%al

 8048058: cd 80 int $0x80

 N3td3v!l@archlinux [shellcode]$

N3td3v!l@archlinux [shellcode]$ cat pause_c.c

 #include <stdio.h>

 void main(void)

 {

 char shellcode[] = "\x31\xc0\xb0\x1d\xcd\x80";

 (*(void(*)()) shellcode)();

 }

 N3td3v!l@archlinux [shellcode]$ gcc -o pause_c pause_c.c

 N3td3v!l@archlinux [shellcode]$./pause_c

 ^C

 N3td3v!l@archlinux [shellcode]$

[How To Creat Your Own ShellCode On Arch Linux]

Your first shellcode working properly.

Now we will study the write function. We still refer to the site that I submitted earlier.

 Info Register:

#%eax = 4

#%ebx = unsigned int

#%ecx = const char *

#%edx = size

We will simply write N3td3v!l, look at what gives the sources:

Compile and run our program:

 N3td3v!l@ArchLinux [shellcode]$ as -o write.o write.s

 N3td3v!l@ArchLinux [shellcode]$ ld -o write write.o

 ld: warning: cannot find entry symbol _start; defaulting to 08048054

 N3td3v!l@ArchLinux [shellcode]$./write

 N3td3v!l

 N3td3v!l@ArchLinux [shellcode]$

 N3td3v!l@ArchLinux [shellcode]$ cat write.s

 ;_write

 xor %eax,%eax <= To avoid segmentation faults

 xor %ebx,%ebx <= // //

 xor %ecx,%ecx <= // //

 xor %edx,%edx <= // //

 movb $0x9,%dl <= placed the size of our word in dl (edx) so N3td3v! l + \ n | = 1 8 9

 pushl $0x0a <= we begin to stack our line feed (\ n) = 0x0a

 push $0x6e616874 <= seam

 push $0x616e6f6a <= // //

 movl %esp,%ecx <= % esp is sent to% ecx register that contains the constant tank _write

 movb $0x1,%bl <= here for 1% ebx,

 movb $0x4,%al <= and by the syscall so _write 4

 int $0x80 <= executed

 ;_exit

 xor %ebx,%ebx <= %ebx = 0

 movb $0x1,%al <= %eax = 1 (_exit syscall)

 int $0x80 <= executed

[How To Creat Your Own ShellCode On Arch Linux]

Let's write our shellcode in C for this, objdump will help a little.

 N3td3v!l@ArchLinux [shellcode]$ objdump -d write

 write: file format elf32-i386

 Disassembly of section .text:

 08048054 <.text>:

 8048054: 31 c0 xor %eax,%eax

 8048056: 31 db xor %ebx,%ebx

 8048058: 31 c9 xor %ecx,%ecx

 804805a: 31 d2 xor %edx,%edx

 804805c: b2 09 mov $0x9,%dl

 804805e: 6a 0a push $0xa

 8048060: 68 74 68 61 6e push $0x6e616874

 8048065: 68 6a 6f 6e 61 push $0x616e6f6a

 804806a: 89 e1 mov %esp,%ecx

 804806c: b3 01 mov $0x1,%bl

 804806e: b0 04 mov $0x4,%al

 8048070: cd 80 int $0x80

 8048072: 31 db xor %ebx,%ebx

 8048074: b0 01 mov $0x1,%al

 8048076: cd 80 int $0x80

 N3td3v!l@ArchLinux [shellcode]$

[How To Creat Your Own ShellCode On Arch Linux]

There are many sources right in our asm code and then the equivalence of instructions in hexadecimal.

 N3td3v!l@ArchLinux [shellcode]$ cat write_c.c

 #include <stdio.h>

 void main(void)

 {

 char shellcode[] = "\x31\xc0\x31\xdb\x31\xc9"

 "\x31\xd2\xb2\x09\x6a\x0a"

 "\x68\x74\x68\x61\x6e\x68"

 "\x6a\x6f\x6e\x61\x89\xe1"

 "\xb3\x01\xb0\x04\xcd\x80"

 "\x31\xdb\xb0\x01\xcd\x80";

 fprintf(stdout,"Lenght: %d\n",strlen(shellcode));

 (*(void(*)()) shellcode)();

 }

Compile and execute our shellcode:

 N3td3v!l@ArchLinux [shellcode]$ gcc -o write_c write_c.c

 N3td3v!l@ArchLinux [shellcode]$./write_c

 Lenght: 36

 N3td3v!l

 N3td3v!l@ArchLinux [shellcode]$

And here it works perfectly. Shellcode _write (1, "N3td3v!l S \ n", 9) + _exit (0) to a size of 36 bytes.

[How To Creat Your Own ShellCode On Arch Linux]

IV - References

[x] - http://wikipedia.org/wiki/Shellcode

[1] - /usr/include/asm/unistd_32.h

[2] – and etc...

==================================== Signature ===================================

