
Shell Code For Beginners

Beenu Arora
Site: www.BeenuArora.com
Email: beenudel1986@gmail.com

.___ __ _______ .___ #
__| _/____ _______| | __ ____ \ _ \ __| _/____ #
/ __ |__ _ __ \ |/ // ___\/ /_\ \ / __ |/ __ \ #
/ /_/ | / __ \| | \/ <\ ___\ _/ \/ /_/ \ ___/ #
____ |(______/__| |__|_ _____>_____ /_____|____\ #
\/ \/ \/ #
___________ ______ _ __ #
_/ ____ __ _/ __ \ \/ \/ / #
\ ___| | \/\ ___/\ / #
___ >__| ___ >\/_/ #
est.2007 \/ \/ forum.darkc0de.com #

What is a shell Code?

Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
functionality of a exploited program. We can of course write shell codes in
the high level language but would let you know later why they might not
work for some cases, so assembly language is preferred for this. I would take
an clean example of the exit() syscall used for exiting from a program. Many
of you might be wondered to see why this being used is, the reason is the
newer kernel don’t allow anymore the code execution from the stack so we
have to use some C library wrapper or libc (responsible for providing us the
malloc function).

Usage at darker site:

We write shellcode because we want the target program to function in a
manner other than what was intended by the designer. One way to
manipulate the program is to force it to make a system call or syscall.
System calls in Linux are accomplished via software interrupts and are
called with the int 0x80 instruction. When int 0x80 is executed by a user
mode program, the CPU switches into kernel mode and executes the syscall
function.

Then process followed as:

1. The specific syscall number is loaded into EAX. This is the linux kernel
command number which we given inside the EAX register (system call).

Ex: movl $1, %eax (used for the exit system call)

2. Arguments to the syscall function are placed in other registers. For
information status number inside the ebx register.

Ex: movl $1, %ebx

3. The instruction int 0x80 is executed. To wake up the kernel to run the
command.
4. The CPU switches to kernel mode.
5. The syscall function is executed.

The most basic syscall is exit ()

main()
{

exit(0);
}

In assembly tt can be written as

Section .text

global _start

_start:
mov $0x0,%ebx
mov $0x1,%eax
int 0x80

Now disassemble the object file created from this using objdump to see the
opcode.

Opcode Instruction

bb 00 00 00 00 mov $0x0,%ebx
b8 01 00 00 00 mov $0x1,%eax
cd 80 int $0x80

To the left is our opcode. We need to do is place the opcode into a character
array.

It would look like:

Char exitshell[] = “\xbb\x00\x00\x00\x00\xb8\x01\x00\x00\x00\xcd\x80”;
int main()
{

int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)exitshell;

}

The most likely place you will be placing shellcode is into a buffer allocated
for user input. Even more likely, this buffer will be a character array. If you
see the exit shell above :
\xbb\x00\x00\x00\x00\xb8\x01\x00\x00\x00\xcd\x80.we will notice that
there are some nulls (\x00) present. These nulls will cause shellcode to fail
when injected into a character array because the null character is used to
terminate strings. To resolve this again there are many ways but again I
would suggest most simple is to avoid the opcode which have the such null
strings.

Now if we again look at the asm codes for the exit ()

The first statement is:

mov $0x0,%ebx : Corresponding debugged opcode : bb 00 00 00 00
The same thing can be implemented using the XOR since if the two registers
have same value ten corresponding result is 0.

Newer one would be : xor %ebx,%ebx (This would store same 0 in ebx
register)

The second one was
Mov $0x1,%eax : Corresponding debugged opcode : b8 01 00 00 00

Newer one would be: mov al, 1 (since the 1 is just 8 byte and we use the
lower 8 bits of the 16 bit AX register (AL register))

The newer asm code for the exit() would be :

Section .text
global _start

_start:
xor ebx,ebx
mov al,1
int 0x80

The corresponding debugged opcode would be

Opcode Instruction

31 db xor %ebx,%ebx
b0 01 mov $0x1,%al
cd 80 int $0x80

So the first compact shell is now ready to be executed:

Char exitshell[] = “\x31\xdb\xb0\x01\xcd\x80”;
int main()
{

int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)exitshell;

}

One thing we must keep in mind that shell codes has to be simple and
compact since in real time condition where we have limited space in the
buffer where we have to insert our shell as we as the return address to it .

