DEVOX<{-¢

the java™ community conference

\— O — O —O— 0O
PS8 -0 —

00O~ B s E=8 =80~
Ow .MU-'OO-'-'O..'O .1%11010101

OO O r—r—
OO ™
oO— 000
O—00O
—
-252595

oLo R Uﬂ..ﬂuﬂr..ﬂmr
ocRBRBDI-—O-
o =B =+

o 0O

-~ -5 88R3¥F T
O——— QOO0 —
O——— 0O 0000 — 10

O o= e ™—r—0

O S BTG = — v

—O—O0O —0O—000
©— O R
O r— O — O+roC
—_ O -

Security Vulnerabilities in Java SE

4
2
security

enplorations

Adam Gowdiak

Founder & CEO
Security Explorations

o)
Q
=
®
—
®
LY -
C
=)
&
P
=
=
E
O
&
E
O
>
=)
=
)
=
4+

X
0
>
fl
0

INTRODUCTION security

“

explorations

About Security Explorations

Security start-up company from Poland

Provides various services In the area of security and vulnerability
research

Commercial and Pro Bono research projects

Came to life in a result of a true passion of its founder for breaking
security of things and analyzing software for security defects

Our ambition Is to conduct quality, unbiased, vendor-free and
Independent security and vulnerabllity research

“

INTRODUCTION security

explorations

Presentation Goal

m Disclosure of the detalls of our SE-2012-01 security research project
m Pro Bono work as part of our contribution to the field

m Educate about security risks associated with certain Java APIs

m Show that breaking Java security is both challenging and demanding

m Show that Java security can be very tricky

“

INTRODUCTION security

explorations

Disclaimer

m In 2005, 20+ security vulnerabilities were reported to Sun
Microsystems that demonstrated how certain Java VM design /
Implementation choices can influence its security

m Multiple full sandbox bypass exploits for Java SE 5

m As a courtesy to Sun Microsystems, no information / Proof of
Concept codes have been ever published about them

m This work builds on the work from 2005 and extends it with respect
to new features of Java SE 7, new vulnerabilities and exploitation
techniqgues

“

PROJ ECT SE'ZOlZ'Ol Secug;i’rq

explorations

Motivation

m One of the missions of our company Is to increase general
awareness of users and vendors In the area of computer and
Internet security

m Java has been within our interest for nearly a decade
m We've been breaking it with successes since 2002

m It's hard to ignore Java when it comes to the security of PC
computers these days

m Java runs on 1.1 billion desktops
m 930 million Java Runtime Environment downloads each year

“

PROJECT SE-2012-01 f

security

explorations

T e

Basic Data

m Pro Bono security research project verifying security of Java SE
m Project conducted for 3 months

m Multiple security vulnerabilities found in Java SE implementations
coming from Oracle, IBM and Apple

VENDOR # ISSUES REPORTED # FULL SANDBOX BYPASS EXPLOITS
ORACLE 31 17
IBM 17

10

APPLE 2 1

“

JAVA SECURITY ARCHITECTURE ety

explorations

Designed 20+ years ago, but with a security in mind!
m Access control at classes, methods and fields level
m private, protected, public, default (package)
m Strict type checking
m Type safety
m Garbage collection
m NO memory pointers
m No free() operation
m Immutable, safe strings representation
m Runtime checks for arrays

“

JAVA SECURITY ARCHITECTURE sty

explorations

T e

Components
m Class Loaders
m Bytecode Verifier
m Security Manager
m JVM Runtime
m EXxecution engine
m Classes definition (Java / native code)
m OSR compller
m Garbage Collector

L/

JAVA SECURITY ARCHITECTURE ..c%,

exnplorations

=l R

Is this cached method

Components (cont.)
type compatible with the Is generated code

confusing our return
Are these objects sharing Java VM one we are to call ? address ?
memory 7

GARBAGE . . EXECUTION J . .
Is it safe to do a cast
between these types ? .
BYTECODE SECURITY
VERIFIER CLASSES MANAGER I
Is it safe to call this Is access to file system
method inside doPrivileged checked ?
block ?
CLASS LOADER
Is access to classes from
restricted packages A BUG IN ANY COMPONENT CAN BREAK
checked 7 SECURITY OF JVM

10

“

JAVA SECURITY ARCHITECTURE ity

explorations

Bytecode Verifier
m The primary gatekeeper of Java VM security
m Verification of Class file format
m Integrity and safety of bytecode instruction streams
m Complex operation, thus very challenging implementation

m All constraints defined in Java Virtual Machine specification need
to be verified

m Rewritten Bytecode Verifier in Java SE 6 and above

m Split bytecode verification upon Eva Rose’s Lightweight Bytecode
Verification thesis

11

“

JAVA SECURITY ARCHITECTURE ity

explorations

Class Loaders (CLs)
m Instances of java.lang.ClassLoader class or its subclass
m Provide class definitions to the VM

m findClass (), loadClass (), defineClass () methods

m Assign permissions to loaded classes
m Dynamically resolve unknown classes
m Theirrole in JVM is similar to dynamic linkers role in Unix
m Load native libraries
m NULL CL value designates a trusted, bootstrap class loader

m All system classes are defined in this namespace (rt. jar)

12

“

JAVA SECURITY ARCHITECTURE ity

explorations

Class Loaders namespaces

m Classes defined by a given class loader instance denote Its
namespace

m Multiple class loader instances can coexist in one Java VM
m Multiple namespaces

m Class Loader constraints to detect conflicts (spoofed classes)
between classes defined In two different namespaces

m Package (default) based access to classes, fields and methods
guarded at the class loader namespace level

m Strong protection (compromise through CL / CL constraints)

13

“

JAVA SECURITY ARCHITECTURE ity

explorations

Protection Domains

m Each class loaded into VM is defined in a specific Protection Domain
(instance of java.security.ProtectionDomain class)

m Same Protection Domain (PD) Is assigned to classes that come from
the same location (CodeSource) and that share:

m Class loader

m Permissions set (permissions assigned to classes by this PD)
m NULL PD value usually designates a privileged, system code

14

JAVA SECURITY ARCHITECTURE

Protection Domains (sample)

i

ProtectionDomain (http://10.0.0.2/javatest/ <no signer certificates>)

sun.plugin2.applet.Applet2ClasslLoader@21d7ceb3

<no principals>

java.security.Permissions@183e6d4 (
("java.net.SocketPermission” "10.0.0.2" "connect,accept,resolve”)
("Java.net.SocketPermission” "localhost:1024-" “listen,resolve”™)
("Java.lang.RuntimePermission” "accessClassinPackage.sun.audio")
("Java.lang.RuntimePermission"” "stopThread")
("java.util.PropertyPermission” “java.vm.version” "read")
("java.util.PropertyPermission” "java.vendor.url” "read")
("jJava.util.PropertyPermission™ "java.vim.name" "read")

(“java.util.PropertyPermission™ "java.specification.version” "read")

4
v,
security

enplorations

15

[/

JAVA SECURITY ARCHITECTURE ity

explorations

Permissions

m Denote, which security sensitive operations a class can conduct
m AllPermission permission is a synonym of ROOT in Java VM

m Dedicated permissions for specific operations

m Network access, file system access, native library loading,
specific AP| access, restricted package access, program
execution, ...

m Many permissions can be easily elevated to A11Permission

B createClassLoader, accessClassInPackage. sun,
setSecurityManager, suppressAccessChecks, ...

16

JAVA SECURITY ARCHITECTURE ..o%i

“

explorations

T —— =

Security Manager

An Instance of java.lang.SecurityManager class or its
subclass

Implements security checks verifying for the permissions required
prior to conducting a security sensitive operation

securityManager securitymanager = System.getSecurityManager();
If (securitymanager = nulil)

securitymanager.checkPermission(new RuntimePermission("setContextClassLoader"));

17

“

JAVA SECURITY ARCHITECTURE cditg

explorations

T e

Security Manager (cont.)

m One Security Manager for the whole Java VM environment

m Reference stored in a private static field of java.lang.System
class (security)

m NULL value denotes no Security Manager (no security checks)

m java.security.AccessController class implementing actual
security model

public void checkPermission(Permission permission) {
AccessControlier.checkPermission(permission);

}

18

“

JAVA SECURITY ARCHITECTURE ...%i

explorations

Privileged operations

m Granted permissions are not in effect till proper construct is used that
actually enables them

B AccessController.doPrivileged()

m The call takes one argument implementing PrivilegedAction Or
PrivilegedExceptionAction Interface

public static class PA implements PrivilegedAction { Privileged nperatinn has
public Object run() { a form of run() method

return System.getProperty("user.dir");

)) .
)

\ String dir=(String)AccessController.doPrivileged(new PA());

19

“

JAVA SECURITY MODEL Secug;i’rq

explorations

Stack inspection

m A mechanism that allows for
m Enabling of granted permissions only for a given code scope
m Verification of the permissions held

m The goal of the mechanism Is to make It impossible to abuse target
system’s security by the means of an untrusted code seguence
Injection inside a privileged code block (scope)

m Its first Implementation was introduced in Netscape 4.0

m Although Netscape code was completely broken, the idea still
deserves a credit as being extremely clever and powerful

20

[/

JAVA SECURITY MODEL Secug;i’rq

explorations

Stack inspection (the algorithm)

m Implementation requires that during runtime, it Is possible to identify
permissions of a given stack frame

m Class object and its permissions set
m Special stack frame denotes a start of the privileged code scope

m AccessController.doPrivileged()

m Security Manager’s check methods verify permissions of all the
classes from a current scope (call stack)

m Stack frames are inspected until either the end of a call stack or
a special (privileged) frame Is reached

21

JAVA SECURITY MODEL 2

enplorations

T =

Stack inspection in action

java.security.AccessControlException: access denied
("jJava.util.PropertyPermission”" "user.dir" "read")
at java.security.AccessControlContext.checkPermission (Unknown Source)
at java.security.AccessController.checkPermission (Unknown Source)
at java.lang.SecurityManager.checkPermission (Unknown Source)
at java.lang.SecurityManager.checkPropertyAccess (Unknown Source)
at java.lang.System.getProperty (Unknown Source)

at java.security.AccessController.doPrivileged (Native Method)
at Exploit.run (Exploit.java:162)
at BlackBox.<init>(BlackBox.java:41)

at java.awt.EventDispatchThread.pumpEvents (Unknown So
at java.awt.EventDispatchThread.run (Unknown Source) UNPRIVILEGED STACK FRAME

Target permission needs to be granted to all
classes from a given scope

22

[/

JAVA SECURITY MODEL security

explorations

Package access restrictions
m Access to certain Java SE packages requires proper privileges

m They contain security sensitive classes (reflection, deployment,
instrumentation, ...)

m The list of restricted packages defined in java.security file

B package.access=sun.,com.sun.xml.internal.ws.,com.s
un.xml.lnternal.bind.,com.sun.i1mageilo.,

m Many of these entries were added as a result of our research

23

“

REFLECTION API security

explorations

Core API

m Implemented by java.lang.Class and java.lang.reflect.*
package

m Allows to examine or modify the runtime behavior of applications
running in Java VM

m Obtaining Class objects

m Examining properties of a class (fields, methods, constructors)
m Setting and getting field values

m Invoking methods

m Creating new Instances of objects

24

"o

REFLECTION API

securl’rq

enplorations

T =

Core API (2)

m Allows to perform operations on Class members regardless of their
Java security protections (access)

-

public transient Object invoke(Object obj, Object aob]j[]) throws lllegalAccessException,
lllegalArgumentException, InvocationTargetException {

if (Iﬂverrldej&& IReflection.quickCheckMemberAccess(clazz, modifiers)) {
Clages class1 = Reflection. getcalleﬂ.‘:lass{ﬂ,
chegkAccess(class1, clazz, ob), modjfigks

}

IF OVERRIDE IS SET TO TRUE
MethodAccessor methodaccessor=m|] SECURITY CHECK IS SKIPPED
if (methodaccessor == null)

methodaccessor = acquireMethodAc
return methodaccessor.invoke(obj, aobj);

25

REFLECTION API

Core API (3)

m Reflection API provides means for easy breaklng of Java type /

memory safety

Class

java.lang.reflect.Field

v i

Class
java.lang.reflect.Field

type

java.lang.Object

Y §

name v_h

type int

Class Helper

public int v_i

public Helper v_h

private static Field f_h;

private static Field f_i;

—

private static Helper h;

public static int readmem(int addr) {

int val=-1;

try {

f_h.setint(h,addr-8);

val=h.v_h.v_i;
f_h.setint(h,0);

} catch(Throwable t) {§

return val;

}

Yo

v
security

explorations

T —— =

26

L/

exnplorations

REFLECTION AP socdity

e,

Implementation

m All Reflection API calls take the immediate caller’s class loader into
account prior to dispatching a given call

i '

public Method|[] getMethods() throws SecurityException {
checkMemberAccess(0 ,[ﬂlass Lna:lnr.ga'lcallarﬂIassLnar.lnr[D;
return copyMethods(privateGetPublicMgthods());

static ClassLoader getCallerClassLoader() {
Class clazz = Reflection.getCallerClass(3);

if (clazz == null) return null;
else return clazz.getClassLoader0();

27

REFLECTION API

Implementation (cont.)

m Security check verifying if a caller’s class loader comes from a

permitted class loader namespace

-

private void checkMemberAccess(int i, ClassLoader callerClassLoader) {
SecurityManager securitymanager = System.getSecurityManager();

if (securitymanager != null) {
securitymanager.checkMemberAccess(this, i);
ClasslLoader thisClassLoader = getClassLoader0();
if (callarﬂlassLnadar I= null]&& callerClassLoader !I= thisClassLoader & & (thisClassLoader == null ||
IthisClassLgfader.isAncestor(callerClasslLoader))) {

String s = getName();

int] = s.lasjindexOf('.");

if(j 1= -1)

securitynjanager.checkPackageAccess(s.substring(0, }));

FOR CALLS MADE FROM A SYSTEM CLASS
LOADER NAMESPACE SECURITY CHECK IS
SKIPPED

L/

v

security

enplorations

=l R

“

REFLECTION API ABUSES security

explorations

The problem
m Many Reflection API invocations implemented in Java SE classes
m trusted caller by default (NULL CL)

m [t's risky to assume that a caller class of the Reflection API call would
be always trusted

m Direct user input

m Indirect user input by the means of Java trickery (inheritance /
overloading)

m Indirection through...Reflection API calls (Method. invoke)

29

“

REFLECTION API ABUSES security

explorations

The idea

m By controlling the arguments to Reflection API calls used by system
classes, one can actually impersonate the caller (system class) of
these invocations

m Access to restricted classes, fields and methods can be gained
m Restricted objects can be created
m Restricted methods can be invoked
m [he requirement
m The result of a target API call needs to be available in some way
m A leak without extra type cast

30

L/

REFLECTION API ABUSES secrit

explorations

T —— =

The idea (cont.)

User classes (Applet CL) System classes (NULL CL)

- il
Exploit class Vulnerable class

1. Functionality call 2 Reflection API

call

sun.misc.Unsafe
Class / Method ref

Restricted classes (NULL CL)

-

java.lang.Class

i "'I
Security sensitive object

3. forName() method
getMethod() method

sun.misc.Unsafe
Class /| Method ref

31

[/

REFLECTION API ABUSES security

explorations

Obtaining class objects

B Class.forName (String)

m The most desired form, direct access to restricted classes
m Class.forName (String,boolean,ClassLoader)
m Class Loader usually designates current Thread’s context CL
m [he call can be still abused
m ClassLoader argument is NULL

m ClassLoader is not NULL, but it does not verify for package
access In its 1oadClass method

32

[/

REFLECTION API ABUSES sectiity

explorations

Obtaining class objects (2)
m Class.getSuperclass() / Object.getClass|()

m Some objects available to untrusted Java code are already
iInstances of or inherit from restricted classes

Issue #12

i !

Toolkit toolkit=Toolkit.getDefaultT oolKit();
BlackBox.class_SunToolkit=toolkit.getClass().getSuperclass();

33

[/

REFLECTION APl ABUSES secrity

explorations

Obtaining class objects (3)
B Field.getType ()

m Some field objects Iin use by system classes are instances of
restricted classes such as sun.misc.Unsafe

B java.nio.Bits

B java.util.concurrent.atomic.AtomicBoolean

-

Field f=getField("java.nio.Bits","unsafe");
Class class Unsafe=f.getTypel();

34

[/

REFLECTION APl ABUSES secrity

explorations

T e

Obtaining class objects (4)
m Class.getComponentType ()

m Past Class Loader implementations didn’t take into account
iInternal, Java VM representation of class names and the
possibility to request loading of an array of classes

ClassLoader cl=getClass().getClassLoader();
Class class_Unsafe=cl.loadClass| |Lsun.misc.Unsafe;).getComponentliype();

35

[/

REFLECTION API ABUSES security

explorations

Accessing fields
m Obtaining references to public fields only
B getField (), getFields|()

m Interesting public fields can be found in...restricted classes

B com.sun.xml.lnternal.bind.vZ2.model.nav.Navigator

m Obtaining references to protected fields
B getDeclaredFi1eld (), getDeclaredFields ()
m Protected fields can be accessed only with a combination of
some other issue

B AccesslibleObject.setAccessible(true)

36

[/

REFLECTION API ABUSES security

explorations

Invoking methods

m The creme of the creme when it comes to Reflection API bugs
m Method.lnvoke (target, args)

m Arbitrary method invocation from a system class allows virtually
anything
m No security check prior to the invocation for public methods
m Restricted method object sufficient to actually invoke it
m Unsafe getMethod () call can be a security risk

m The assumption is that proper security check had been already
made at the time of acquiring the method object

37

L/

exnplorations

REFLECTION API ABUSES sty

e,

Invoking methods (2)
m If target object is not under control, static invocations still possible

java.lang.reflect.Method

public transient Object invoke(Object target, Object argsl])

INVOKESTATIC PRIMITIVE
« TARGET ARGUMENT SHOULD
BE NULL

« IT CAN BE ANYTHING (NULL,
ANY OBJECT INSTANCE)

INCONSISTENCY WITH INVOKESTATIC
BYTECODE INSTRUCTION

38

[/

REFLECTION API ABUSES security

explorations

T e

Invoking methods (3)

m Private methods can be accessed only with a combination of some
other issue

B AccessibleObject.setAccessible(true)

m Interesting virtual methods
m Class.getFilelds (), Class.getMethods (), elC.

m Interesting static methods
m Class.forName ()

39

“

REFLECTION API ABUSES security

explorations

Creating object instances
m Combination of two Issues
m Class.forName () /[Class.getConstructor ()
m Class.forName () /[Class.getDeclaredConstructor ()
m Class.forName () /Class.newInstance ()
m One argument (String) constructor still useful!
m PrivilegedAction objects

m In some circumstances, single Class.newInstance () can
facilitate the attack

m Security checks in class initializer (<clinit> method)

40

“

NEW REFLECTION API security

explorations

Java 7 features

m Support for dynamic code execution / scripting was added to Java 7
m New invokedynamic Java VM bytecode Instruction
m MethodHandle class for method invocation and field access

m MethodType class for generic type descriptor

m All reflective accesses done with respect to the special lookup object
m By default, a caller of MethodHandles.Lookup ()

m Less security by design than in the old Reflection API ?

m ,Method handles do not perform access checks when they are
called, but rather when they are created”

41

NEW REFLECTION API 2

enplorations

APl comparison — Class. forName ()

NEW API

OLD API ")
p . private static MethodHandles.Lookup plookup=MethodHandles.lookup();

static Class load_class(String name) throws Throwable {

Class c=Class.forName("java.lang.Class™); static Class load_class(String name) throws Throwable {

Class c=Class.forName("java.lang.Class");

Class ctab[]=new Class[1];

ctab[0]=Class.forName("java.lang.String"); Class ctab[l=new Class[1];

ctab[0]=Class.forName("java.lang.String");

Method forName_m=c.getMethod("forName",ctab); MethodType desc=MethodType.methodType(c,ctab);

Object args[J=new Object[1]; MethodHandle forName_mh=plookup.findStatic(c,"forName",desc);

args[0]=name; Object args[]=new Object[1];

‘return (Class)forName_m.invoke(null,args); args[0]=name;
} ‘return (Class)forName_mh.invoke(args);
h, e }

42

e

“

NEW REFLECTION API secyit

explorations

T —— =

Possible abuses

m The idea behind a lookup object is to have it act as the class on
behalf of which reflective access is made

m System class used as a lookup class is sufficient for reflective
access to restricted classes (same class loader namespace)

LOOKUP WITH A SYSTEM CLASS
A CALL TO FIND METHOD ALLOWED
FOR RESTRICTED CLASS

MethodHandle getField mh=@Ia:kﬂnx.lmkup}@indStati@EIackﬂux.cIass SunToolkit,"getField",desc);

Class ctabl]=new Class|[2)];
ctabJ0]=Class.forName("java.lang.Class');
ctabf1]=Class.forName("java.lang.Stringf);

Class c=Class.forName(java.lang.reflecj.Field™);

MethodType desc=MethodType.methodType(c,ctab);

43

L/

exnplorations

NEW REFLECTION API socdity

e,

Possible abuses (cont.)

m All one needs to do Is to create a MethodHandles . Lookup object
with a system lookup class via Method. invoke ()

public static void get_lookup() throws Throwable {
Class c=Class.forName(java.lang.invoke.MethodHandles");

Method m=c.getMethod("lookup”,new Class[0]);

BlackBux.lﬂnkupqMethudHandles.Luukupﬂnvukaﬁtatlcjﬁm,new Object[0]);

INVOKESTATIC EXPLOITS
BUGGY METHOD INVOCATION

44

“

EXPLOITATION TECHNIQUES security

explorations

Generic approach
m Use existing Reflection API calls in system code for

m Loading of restricted classes

m Obtaining references to constructors, methods or fields of a
restricted class

m Creation of new object instances, methods invocation, getting or
setting field values of a restricted class
m The goal

m Access security sensitive objects / functionality in a way that
would compromise VM security

45

“

EXPLOITATION TECHNIQUES secydl

explorations

—

Full sandbox bypass attack scenario #1

m The precondition is a combination of vulnerabilities that allow to
obtain restricted classes and their methods

m The goal is to use reflective access to define a custom class in a
privileged class loader namespace

public class HelperClass implements PrivilegedAction {
public HelperClass() {
AccessController.doPrivileged((PrivilegedAction)this); CIuSE-nEWIHEtﬂHCEO

} called for HelperClass defined in

public Object run() { .
System.setSecurityManager(null); NULL CL nﬂmESPﬂCE dlSﬂbIES

}"*‘“"“ null; Security Manager!

1

46

[/

EXPLOITATION TECHNIQUES security

explorations

Full sandbox bypass attack scenario #2

m The precondition is a vulnerabllity allowing to change the accessible
state of a private Method object

m Insecure call to AccessibleObject.setAccessible (true)

m The goalis to use the accessible (usually private) methods in a way
that would result in scenario #1

m Class.forNameO ()
B Class.privateGetPublicMethods ()

a7

“

EXPLOITATION TECHNIQUES security

explorations

Partial sandbox bypass attack scenario

m The precondition is a vulnerabllity allowing to create instances of
PrivilegedAction/ PrivilegedExceptionAction classes

from a restricted sun.security.action.* package
m OpenFilelInputStreamAction and GetPropertyAction

m The goalis to use a valid system action object as an argument to
AccessController.doPrivilegedWithCombiner () method

m [he call asserts one extra trusted stack frame on a call stack
m LoadlLibraryAction useless

m Library name cannot denote a path (such as UNC share)

48

“

EXPLOITATION TECHNIQUES security

explorations

An attack scenario to keep in mind

m Reflection API risks are not only about accessing classes and
objects from restricted packages (sun. *, etc.)

m Many implementations of PrivilegedAction Interface in
unrestricted packages

m The default (package) access of PrivilegedAction class/
constructor

m One can abuse reflection API to create instances of such objects
m Acombination of getConstructor () / newInstance ()

m We found one instance of this attack in the past

49

EXPLOITATION TECHNIQUES 2

enplorations

T =

An attack scenario to keep in mind (cont.)

REFLECTION API CAN BE ABUSED TO ACCESS OBJECTS
MEANS PACKAGE ACCESS WITH A PACKAGE SCOPE

« newlinstance() OK

FOR INNER CLASES PRIVATE

javax.swing.JOptionPane$SModalPrivilegedAction javax.swing.UlDefaults$ProxylLazyValue

. ™

-

(private)static class ModalPrivilegedAction implements public Object createValue(UlDefaults uidefaults) {
PrivilegedAction {

ClassbLoader cl = Thread.currentThread().getContextClassLoader();

private Class clazz; if (cl == null) cl = ClassLoader.getSystemClassLoader();
private String methodName;

Class clazz =(Class.forName(className, true, cl)}

(public ModalPrivilegedAction(Class class1, String s) {

azz = class1; Class aclass[] = getClassArray(args);
ethodName = s; Constructor con = clazz.getConstructor(aglass);

return con.newlinstance(args);
} CANNOT LOAD RESTRICTED, BUT

STILL CAN ACCESS CLASSES IN
THE SAME PACKAGE

PUBLIC OPENS REFLECTIVE
ACCESS
« getConstructor() OK

50

“

EXPLOITATION TECHNIQUES sectit

explorations

T e

Countermeasure #1

m Helper classes from sun.reflect.misc.* package as a secure
replacement of standard Reflection API calls

API CALL REPLACEMENT

Class.forName(String s) ReflectUtil. forName(String s)

Class.newlnstance() ReflectUtil. newlInstance(Class clazz)
Method.invoke(Object obj, Object argsi]) MethotUtil.invoke(Method m, Object obj, Object args[])
Class.getMethod(String s, Class aclass|]) MethotUtil.getMethod(Class clazz, String s, Class aclass|])
Class.getMethods() MethotUtil.getMethods(Class clazz)

Class.getField(String s) FieldUtil. getField(Class clazz, String s)

Class.getFields() FieldUtil. getFields(Class clazz)

Class.getDeclaredFields() FieldUtil. getDeclaredFields(Class clazz)

Class.getConstructor(Class aclassl]) ConstructorUtil.getConstructor(Class clazz, Class aclass|])

51

Countermeasure #1 (operation)

public final class MethodUtil extends SecureClassLoader {
public static Object invoke(Method method, Object obj, Object args[]) {

return bounce.invoke(null, new Object[] {
method, obj, args
}
)s

private static Class getTrampolineClass() {
return Class.forName(TRAMPOLINE, true,new MethodUtil());

}

private static Method bounce = getTrampoline();

L/
I’O

EXPLOITATION TECHNIQUES securit

enplorations

METHODUTIL.INVOKE ASSERTS ONE

EXTRA STACK FRAME PRIOR TO ANY

METHOD INVOCATION

« METHODUTIL CL NAMESPACE

« SEPARATION FROM SYSTEM (NULL) CL
NAMESPACE ENFORCES SECURITY .
CHECKS FOR REFLECTION API CALLS

TRAMPOLINE CLASS DEFINED IN

A SEPARATE CLASS LOADER
NAMESPACE

52

[—

“

EXPLOITATION TECHNIQUES security

explorations

Countermeasure #2

m Reflection API Filter guarding access to security sensitive members
m sun.reflect.Reflection class

m Integrated with Reflection APl Field and Method lookup
operations

m The goal was to address certain popular exploitation vectors
B getUnsafe () method of sun.misc.Unsafe class

m security field of java.lang.System class

53

“

EXPLOITATION TECHNIQUES security

explorations

Countermeasure #2 (deficiencies)

m Reflection API filter can be easily bypassed

m Access to sun.misc.Unsafe Instance by the means of
reflective field access (theUnsafe field)

m Disabling SM by the means of setSecurityManager method
Invocation

m Many other exploit vectors not taken into account
m No filtering implemented for new Reflection API

54

EXPLOIT VECTORS security

“

explorations

sun.plugin.liveconnect.Securelnvocation

The Initial exploit vector from 2004 / 2005

CallMethod provided a functionality to invoke arbitrary methods
INside AccessController.doPrivileged () block

Exploit vector calling into System. setSecurityManager () with a
NULL argument

Not working anymore

m Fix changed access of this and other SecureInvocation
methods to private

55

[/

EXPLOIT VECTORS security

explorations

sun.misc.Unsafe

m The ,official backdoor” class with a functionality to break Java
memory safety

B 1nt getInt (long memAddr)
B vold putInt (long memAddr,int wval)

m Native defineClass () method that allows to inject arbitrary, fully
privileged class into a system class loader namespace

m private static field holding Unsafe object instance
m Probably difficult for Oracle to get rid of
m Some big SW vendors use it in their code (!)

56

“

EXPLOIT VECTORS security

explorations

sun.awt.SunToolkit

m Two exploit vectors, one used by the 0-day code from Aug 2012

m Public static methods to obtain privileged instances of declared class
members

m getMethod () for method access
m getField () for field access

m Java 7 specific exploit vector

m Access to methods was private in Java 6, why make it public In
Java 7 ?

m Fixed by the out-of-band patch from Aug 30, 2012

57

“

EXPLOIT VECTORS security

explorations

Java.lang.invoke.MethodHandles.Lookup

m One insecure static Method.invoke () sufficient to create a lookup
object with a system class

m No check for access to members from restricted packages prior to
method handle lookup and invocation

m Same class loader namespace
m Members lookup and access on behalf of the lookup class

58

[/

EXPLOIT VECTORS security

explorations

sun.org.mozilla. javascript.internal .DefiningClassLoader
m Relatively good replacement for sun.misc.Unsafe exploit vector
m Two step exploitation process

m Obtaining DefiningClassLoader (DCL) Instance

1. Getting Context instance with the use of enter () method of
sun.org.mozilla.javascript.internal.Context
class

2. Calling createClassLoader () method on Context instance
m Privilege elevation via defineClass () method of DCL instance

59

L/

exnplorations

EXPLOIT VECTORS sty

e,

com.ibm.oti.util.PriviAction (IBM Java)
m PrivilegeAction object enabling access to fields and methods

public class PriviAction implements PrivilegedAction {

public PriviAction(AccessibleObject object) {
action = 3;
accessible = object;

}

public Object run() {
switch(action) {

case 3:
(accessible.setAccessible(true);)
return null;

}

return null; OVERRIDING ACCESS TO FIELD
: OR METHOD

}

60

“

EXPLOIT VECTORS security

explorations

Remote, server-side code execution
m RMI protocol supports the concept of user provided codebases

m URL value where remote server should look for classes
(Codebase can be provided by the client as part of the RMI call)

m RMI server creates RMIClassLoader With user provided URL
m MarshalInputStream/MarshallOutputStream work

m RMI implementation does not verify whether a deserialized object is
type compatible with a target argument for a call

m RMI server reads and instantiates object provided as an
argument to the remote call from a user provided source

61

“

EXPLOIT VECTORS security

explorations

Remote, server-side code execution (cont.)

m RMI issue Is less known vector for exploiting Java SE vulnerabilities
m Originally found in Aug 2005
m Metasploit added it to its exploit database in 2011

m Last time we checked, the following servers were still affected:
m RMIRegistry from JDK version 1.7.0_06-b24

m GlassFish Server Open Source Edition 3.1.2 (build 23) (with
security manager enabled)

m Notvulnerable If java.rmi.server.useCodebaseOnly property
IS setto true

62

L/

EXPLOIT VECTORS socdrity

exnplorations

e,

Potential remote, server-side code execution ?

XML Message breaking Java 7 security sandbox (java.beans . XMLDecoder)

i o

<?xml version="1.0" encoding="UTF-8" ?>

<java version="1.4.0" class="java.beans.XMLDecoder">

<void id="context_class" class="java.lang.Class"

method="forName"><string>sun.org.mozilla.javascript.internal.Context</string></void>

<void idref="context_class"><void id="ctx" method="enter"></void></void>

<void idref="ctx""><void id="defcl" method="createClassLoader"><null></null></void></void>

<void idref="defcl"><void id="clazz" method="defineClass">
<string>HelperClass</string>
<array class="byte">
<byte>-54</byte>

<byte>-2</byte> DEFINITION OF EXPLOIT CLASS
<byte>-70</byte> IN NULL CL NAMESPACE
<byte>-66</byte>
<byte>14</byte>
</array>
</void>
</void>
<void idref="clazz"><void id="ob|" method="newlnstance"></void></void><var idref="0bj">
</var>
</java>

63

“

VULNERABILITES security

explorations

Bug hunting methodology
m Old school, manual code analysis
m Working with decompiled class files, not source code
m Easier pattern matching
m Tools only for bigger, more complex projects
m Primary focus on Reflection API
m Additional focus on Class Loaders
m [he value of Thread’'s context class loader

64

VULNERABILITES 2

enplorations

T =

Es

Issues #1-7
m Multiple insecure Method. invoke () In glassfish related package

com.sun.org.glassfish.external.statistics.impl.AverageRangeStatisticimpl

i T

public Object invoke(Object proxy, Method method, Object args[]) throws Throwable {
Object result;

try {
res=method (Iinvoke|this] args);
} catch(Exceptioge) {

}...

FOR STATIC CALLS TARGET OBJECT
DOES NOT MATTER
INVOKE CALLED FROM A SYSTEM
CLASS (NULL CL)

return result;

}

65

L/

VU LNERABILITES secgri’rq

enplorations

=l R

ISsue #38
m Exploitfor Class.forName () instance relying on current Thread's
context Class Loader value

javax.management.remote.rmi.RMiIConnectionimpl

-

private static Object unwrap(MarshalledObject marshalledobject, ClassLoader cl, Class clazz) {
ClassLoader current_cl = {CIassLoader}AccESSCnntrnller.duPrivileged{@ew SEtCGI[GID;

Object obj = null;
SET THREAD’S CONTEXT CLASS
try { LOADER TO PRIVILEGED LOADER

ob] = clazz.cast(marshalledobject.get());
} catch(ClassNotFoundExc
throw new UnmarshalEx

}

ncces,s(:antruller.daPrivileged(naw Sethl[currnn'l_cI)]);

tion classnotfoundexception) {
ption(classnotfoundexception.toString(), classnotfoundexception);

DESERIALIZE USER PROVIDED
OBJECT WITH A PRIVILEGED CL
SET AS THREAD'’S CCL

return obj;

RESTORE THREAD’S CONTEXT
LCLH.SS LOADER TO USER LOADER

CODE WINDOW WITH A PRIVILEGED CLASS LOADER (ORDERCLASSLOADER)
AVAILABLE TO USER CLASS 66

“

VULNERABILITES #

security

explorations

Issue #10

m New Bytecode Verifier violates key Java VM constraint

m Instance initialization method must call a method in the current
class or a method in a superclass of the current class

.class public MyClI
.Super java/lang/ClassLoader

.method public <init>()V
dimit stack 2
limit locals 2

aload 0

invokespecial (Javallang/Object/<init>()V

return
INVOKESPECIAL ALLOWED FOR
ANY SUPERCLASS

.end method
BYPASS OF SECURITY CHECKS IN CLASS INITIALIZERS

67

4

VULNERABILITES security

explorations

Issues #11, #16, #17 and #28
m Issues in Beans decoder support classes

m ClassFinder
B MethodFinder
m ConstructorFinder
m FFleldFinder
m 0-day attack from Aug 2012 relied on two first issues
m New, buggy implementation of Beans decoder introduced in Java 7
m Java 6 not vulnerable (different implementation)

68

[/

VULNERABILITES security

explorations

Issues #13, #21 and #26
m New Reflection API Issues
m No security check in the in () method
m Free to set lookup object to any system class
m public lookup based on a system class available to any caller
B MethodHandles.publicLookup ()

m access to inner classes to which a caller of the lookup object has
NO access

m Everything indicates that new Reflection API from Java 7 didn't go
through a security review...

69

VULNERABILITES

ISsue #32
m Found shortly after Oracle’s out-of-band patch was released on Aug
30, 2012

Blocked SunToolkit exploitation vector triggered yet another
look Into Java to see If remaining bugs still important

java.lang.invoke.MethodHandle

}

public transient Object invokeWithArguments(Object args[]) throws Throwable {

inti = args != null ? args.length : 0;
MethodType methodtype = type();

if (methodtype.parameterCount() I= i || isVarargsCollector()) {
return asType(MethodType.genericMethodType(i)).invokeWithArguments(args);

} else {
MethodHandle methodhandle = methodtype.invokers().varargsinvoker();

return(methodhandle.invokeExact(this, args))
}

rIHUﬂKEEKhCT CALLED FROM A
SYSTEM CLASS (NULL CL)

S

y .
security

explorations

T —— =

ISSUE #32 SUFFICIENT ALONE
TO BREAK JVM SECURITY

70

L/

VU LNERABILITES sechi’ru

exnplorations

T

Issue #33 and #34 (IBM Java)

m Arbitrary method invocation inside AccessController's
doPrivileged block

m Most of IBM Java issues are simple instances of Reflection API flaws

Exploit code for Issue #33

Class c=Class.forName("java.lang.System");

Class ctab[]=new Class|[1];
ctab[0]=Class.forName("java.lang.SecurityManager");
Method m=c.getMethod("setSecurityManager”,ctab);

Object args[]=new Object[1];
args[0]=null;

com.ibm.rmi.util.ProxyUtil.invokeWithPrivilege(null,m,args,null);

71

“

VULNERABILITES secyit

explorations

T —— =

Issue #15 and QuickTime for Java

m Access to security sensitive classes guarded by a security check In
static class initializer

m <clinit> called only once, during class loading / linking

« ATTACKER PROVIDED "quicktime.vr.QTVRANngleRange"
« IT TRIGGERS A CALL TO <CLINIT> OF QTSession CLASS

java.util.logging.LogManager {] quicktime.QTSession

private void loadLoggerHandlers(Logger loggdr, String nhame, String handlersPropertyName) {
AccessController.doPrivileged(new PrivilkgedAction() {
public Object run() {

static {

if (hasSecurityRestrictions())
throw newjSecurityException("Applets that utilize

String as[] = parseCIassNamesﬂ'laﬂdlersl’roperlyﬂame);
for(int i = 0; | < as.length;) {
String s = as[i];
try {
Class clazz = ClassLoader.getSystemClassLoader().loadClass(s); }
Handler handler = -:Handler(clazz.newlnstance{}}

) CHECK FOR ALL PERMISSION WILL
}}’ SUCCEED INSIDE A PRIVILEGED
} (SCOPE —
—
ACALL TO STATIC INITIALIZER

l INSIDE A PRIVILEGED SCOPE

QuickTime for Java must be signed.”);

ORACLE’S ISSUE 15 IS ABOUT LOADCLASS /| NEW INSTANCE INSIDE DOPRIVILEGED
BLOCK (BYPASS OF <CLINIT> SECURITY CHECKS) 2

“

VULNERABILITES security

explorations

Issue #22 (QuickTime for Java)
m Problems with guicktime.util.QTByteObject
m R/W access to process heap memory
m Security check preventing instantiation by unprivileged code

m Two past bugs not addressed correctly by Apple
m Instantiation with the use of finalize ()

m Instantiation by the means of readObject ()

m FiIx not taking into account the possibility to combine the bugs
together

m http://www.security-explorations.com/materials/se-2012-01-22.pdf

73

“

VULNERABILITES security

explorations

Issue #50

m Not-yet patched vulnerabllity affecting all Java SE versions released
over the last 10 years

m We empirically verified that a fix can be implemented in < 30 minutes
m 25 characters In total, no need for integration tests

m ,We’'ll respond as soon as possible” response never received
from Oracle

m The existence of Issue #50 tells a lot about the quality of Oracle’s
vulnerability evaluation / patch testing processes

m ADbug in the code addressed not so long ago

74

L/

VULNERABILITES socdity

exnplorations

=l R

Overview (complete sandbox bypass Oracle issues)

i A (N
#8 RMIConnectionimpl #11 ClassFinder

#1 AverageRangeStatisticimpl

hod #19
#16 Mot Finder ManagedObjectManagerFactory

INSECURE INVOKE

#2 BoundaryStatisticimpl

\
#9 RMIConnectionimpl #12 getClass()
v

#17 ConstructorFinder #13 MethodTypes
#3 BoundedRangeStatisticimpl

CLASS ACCESS

’
\.

METHOD ACCESS

#4 CountStatisticimpl COMPLETE SANDBOX BYPASS
#21 MethodHandles

] #20 MethodElementHandler
Security Manager == NULL CONSTRUCTOR ACCESS

#27 JNLP2ClassLoader

o N
#32 MethodHandle #28 FieldFinder
b)

#5 RangeStatisticimpl
FIELD ACCESS

#6 StringStatisticimpl

IJ LIJ

.J
N

#10 Bytecode Verifier

#50 NOT PATCHED
. .

#29 NOT PATCHED SYSTEM LOOKUP ACCESS

#18 GenericConstructor

\
[#7 TimeStatisticimpl

75

“

SUMMARY security

explorations

Security implications of Reflection API
m Reflection API should be perceived in terms of a security risk
m potential violation of Java security constraints
m Member access override
m Type safety attack
m Insecure implementation can easily break Java security model
m Vulnerabilities nature make it hard to detect by AV / IDS systems
m Theissues can be combined in a different way
m Actually that’s true for all Java bugs (the power of invoke)

76

“

SUMMARY security

explorations

Vulnerabilities impact
m Most serious vulnerabillities specific to Java 7 environment

m Issue 50 for Java 1.4.x, 5, 6, 7 and 8 affecting estimate number of
1.1 billion users (java.com data)

m Multiple complete Java security sandbox bypass issues

m remote code execution with the privileges of a logged-on user
m Java level vulnerablilities mean reliable, multiplatform exploit codes
m Users of web browsers with Java Plugin enabled at most risk

m RMI/ XML based deserialization creates some potential for server
side code execution

1

“

SUMMARY security

explorations

Vendors response (Oracle)
m Fixed 29 out of 31 reported Issues
m 2-6 months time from report to fix

m Started to act faster when POC for two issues (#11 and #16) was
discovered in the wild

m Out-of-band Java Update from Aug 30, 2012
m Decided to leave critical security Issue #50 unpatched till Feb 2013

m Security Alerts / OOB patches only in case of urgent (i.e. publicly
disclosed) issues

m Monthly status update reports

78

“

SUMMARY security

explorations

Vendors response (Apple)
m Addressed all 2 reported issues

m 2-5 months time from report to fix
m ,Silent fix / no credit” approach

m HT5319 with no vulnerabillity info / credit section, HT5473 bulletin
had both added a month after its initial release

m Treats issues that need to be combined / rely on other vendors bugs
as ,security hardening” issues rather than security bugs in their code

m Removed Java from all MacOS web browsers
m No status update information (needed to be queried for it)

79

“

SUMMARY security

explorations

Vendors response (IBM)
m Addressed all 17 reported issues
m 2 months time from report to fix
m Somewhat strange Initial contact
m lots of legal language in a response (resolved)
m Status update information
m Fulfilled the initial plan to address all reported issues in Nov 2012
m IBM Java 7 SR3 and IBM Java 6 SR12 from Nov 8, 2012

80

“

SUMMARY security

explorations

What other software vendors think (quotes from the Inbox)
m It looks software vendors do not have an easy life with Oracle

m They are no help (even when "alleged security vulnerabilities"” are
being exploited by malware kits/etc.)

m We'd like to be able to protect our customers...You're the only
guys that can help on this (Oracle certainly won't)

m There's alot of politics. Hint: "Oracle unbreakable Linux"
m | know others have pushed Oracle, nothing has or will happened

81

“

SUMMARY security

explorations

Final Words

m Java secure by design, but not necessarily by implementation
m Implementation inherently complex to make it secure

m Java security can be extremely tricky

m Overloading, inheritance, reflection, stack inspection, bytecode
verification, members access, serialization, class loaders, etc.

m Certain design / implementation choices can affect security of a
technology for years and lead to dozens of bugs

m 50+ security fixes related to Reflection APl in Java SE so far
m Small, potentially unimportant security bugs do matter in Java

82

“

SUMMARY security

explorations

Final Words (cont.)
m Not much knowledge about the tricks/techniques used to attack Java

m In longer term, publication of vulnerabillities / attack techniques
details can make the technology more secure

m Breaking technologies such as Java should focus on advantages /
specifics of the technology in the first place

m Memory corruption vulnerabilities only If everything else falls

m Vendors not following their own Secure Coding Guidelines / not
learning from past mistakes do not give a bright prospect for the
future

83

the java™ community conference

<
o3

THANK YOU

contact@security-explorations.com

O r—r—) —

—P T =0

OC—T R &
000~ TIPS EL —

CRD TS =

CO OO —rm—Or—

n — O — O — O —0O
PO =8 0o —

—_—rS P8 8o~
-1%\11010101

o)

.MU OnUOnUO.I.I.dIa..

O LCTLDROETR

ORDPEDIX_O-
o =S+
Or—r— OO0 O00r—r—Or
Or—r—r—— O 0000 ——0O —
O O S =—r— O —
O =0
O S BB = —
— O —O0O—0—000

S~ QR

O r— O r— OroGc
— O —

