
Low Level Exploits
Email: hughpearse@gmail.com
Twitter: https://twitter.com/hughpearse
LinkedIn: http://ie.linkedin.com/in/hughpearse

Table of Contents
 Creating Shellcode
Buffer Overflows On the Stack

Return to Stack
Format String Vulnerability
Return to LibC - Linux
Return to SEH - Windows
Return to Heap (Heap Spraying)

Heap Overflows (unlink macro)
Integer Overflows
Null Pointers
ROP Chains
Questions
References

Creating Shellcode

Creating Shellcode

Natively Compiled Code
does not normally run in
an interpreter such as a JVM.

#include<stdio.h>
main(){

printf("hello, world");
}

C++

Assembly

Op-codes

Compiler

Assembler

Creating Shellcode

The ELF file typically runs on a Linux/Apple/UNIX while the PE
file typically runs on Windows.

Elf Header

Program Header Table

Section 1

Section 2

...

Section n

Section Header Table
(Optional)

MZ-DOS Header

PE Signature

Image File Header

Section Table (Image
Section Headers)

Sections 1-n

COFF Debug Sections

Elf File Format PE File Format

Creating Shellcode

When a linux application executes
the integer 0x80 it causes a
software interrupt.

The kernel then takes over
by taking the values in the
general registers in the CPU
and launching the appropriate
system call based on the values
in the registers.

Applications

Kernel

Hardware

Syscalls Ordinary
Instructions

Creating Shellcode

Let us write an application to execute the exit syscall.

//exit.c
main(){

exit(0);
}

Compile the program using the following command:
gcc -static exit.c -o exit.out

This command creates a file called "exit.out".
Lets look at the contents of this file.

Creating Shellcode

objdump -d ./exit
08048f14 <main>:

8048f14: 55 push %ebp
 8048f15: 89 e5 mov %esp,%ebp
 8048f17: 83 e4 f0 and $0xfffffff0,%esp
 8048f1a: 83 ec 10 sub $0x10,%esp
 8048f1d: c7 04 24 00 00 00 00 movl $0x0,(%esp)
 8048f24: e8 77 08 00 00 call 80497a0 <exit>
 8048f29: 66 90 xchg %ax,%ax
 8048f2b: 66 90 xchg %ax,%ax
 8048f2d: 66 90 xchg %ax,%ax
 8048f2f: 90 nop

08053a0c <_exit>:

8053a0c: 8b 5c 24 04 mov 0x4(%esp),%ebx
 8053a10: b8 fc 00 00 00 mov $0xfc,%eax
 8053a15: ff 15 a4 f5 0e 08 call *0x80ef5a4
 8053a1b: b8 01 00 00 00 mov $0x1,%eax
 8053a20: cd 80 int $0x80
 8053a22: f4 hlt
 8053a23: 90 nop
 8053a24: 66 90 xchg %ax,%ax
 8053a26: 66 90 xchg %ax,%ax
 8053a28: 66 90 xchg %ax,%ax
 8053a2a: 66 90 xchg %ax,%ax
 8053a2c: 66 90 xchg %ax,%ax
 8053a2e: 66 90 xchg %ax,%ax

Creating Shellcode

The output of the "objdump" command has three columns.
Virtual addresses, Op-codes and Mnemonics.

We want the opcodes to create our payload.

We will be storing our shellcode inside a character array. This
means we cannot have null values.

Also sometimes endianness can be a problem.

Creating Shellcode

Virtual addresses, Op-codes, Mnemonics
08048f14 <main>:

8048f14: 55 push %ebp
 8048f15: 89 e5 mov %esp,%ebp
 8048f17: 83 e4 f0 and $0xfffffff0,%esp
 8048f1a: 83 ec 10 sub $0x10,%esp
 8048f1d: c7 04 24 00 00 00 00 movl $0x0,(%esp)
 8048f24: e8 77 08 00 00 call 80497a0 <exit>
 8048f29: 66 90 xchg %ax,%ax
 8048f2b: 66 90 xchg %ax,%ax
 8048f2d: 66 90 xchg %ax,%ax
 8048f2f: 90 nop

08053a0c <_exit>:

8053a0c: 8b 5c 24 04 mov 0x4(%esp),%ebx
 8053a10: b8 fc 00 00 00 mov $0xfc,%eax
 8053a15: ff 15 a4 f5 0e 08 call *0x80ef5a4
 8053a1b: b8 01 00 00 00 mov $0x1,%eax
 8053a20: cd 80 int $0x80
 8053a22: f4 hlt
 8053a23: 90 nop
 8053a24: 66 90 xchg %ax,%ax
 8053a26: 66 90 xchg %ax,%ax
 8053a28: 66 90 xchg %ax,%ax
 8053a2a: 66 90 xchg %ax,%ax
 8053a2c: 66 90 xchg %ax,%ax
 8053a2e: 66 90 xchg %ax,%ax

Creating Shellcode

Our op-codes should look like this:
8b 5c 24 04 b8 fc 00 00 00 ff 15 a4 f5 0e 08 b8 01 00 00 00 cd
80

Paste this text into a text editor and use the "find and replace"
feature to replace space with "\x" to make a hexadecimal
character array out of it. Don't forget to surround the text with
quotes.

"\x8b\x5c\x24\x04\xb8\xfc\x00\x00\x00\xff\x15\xa4\xf5\x0e\x08\
xb8\x01\x00\x00\x00\xcd\x80"

We now have a string containing machine instructions.
Notice the \x80 at the end of the string?

Creating Shellcode

Simply execute the character array to test it.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char* shellcode = "\x8b\x5c\x24....."
int main(){

void (*f)();
f = (void (*)())shellcode;
(void)(*f)();

}

Buffer Overflows On the
Stack

Buffer Overflows On the Stack

When an application is launched three import program sections
are created in memory. These sections contain different types
of information.

1. Text -> Stores machine instructions
2. Stack -> Stores automatic variables and return addresses
3. Heap -> Stores variables whose size is only known at

runtime by using the malloc() function.

For the moment we are interested in the Stack.

Buffer Overflows On the Stack

Stack Frames
The stack is divided up into contiguous pieces called frames. A
frame is created each time a function is called.

A frame contains:
1. the arguments to the function.
2. the function's local variables.
3. the address at which the function is executing.
4. the address at which to return to after executing.

Buffer Overflows On the Stack

When the program starts, the stack has only one frame for
main(). This is called the initial frame or the outermost frame.

Each time a function is called, a new frame is made.

Each time a function returns, the frame for that function is
eliminated.

If a function is recursive, there can be many frames for the
same function. The frame for the function in which execution is
actually occurring is called the innermost frame. This is the
most recently created of all the stack frames that still exist.

Buffer Overflows On the Stack

//example-functions.h
void e(int a1, int a2){

int local1=1;
int local2=2;
f(local1, local2);

}

void f(int a1, int a2){
int local1;
int local2;

}

Local Variables

Return Address

Parameters

Local Variables

Return Address

Parameters

Frame
for f()

Frame
for e()

Buffer Overflows On the Stack

Find the address of other functions
that were statically compiled into the
program by using the command:

gdb -q -ex "info functions" --batch
./hello-world | tr -s " " |
cut -d " " -f 2 | sort | uniq

[AAAA][AAAA][AAAA][AAAA]
[AAAA][function return address]

Function F does not return to E;
Function F returns to X.

[AAAA][AAAA]
[AAAA][AAAA]

[AAAA]
[function
return address]

Parameters

Local Variables

Return Address

Parameters

Frame
for f()

Frame
for e()

Return to Stack

Return to Stack

Return to Stack
A buffer overflow attack is a general definition for a class of
attacks to put more data in a buffer than it can hold thus
overwriting the return address.

Return to Stack is a specific stack buffer overflow attack where
the return address is the same as the address on the stack for
storing the variable information. Thus you are executing the
stack.

 [instructions][instructions][return address]

Return to Stack

As you can see in the diagram
the local variables of the
function have been overwritten.

The Return to Stack exploit
is also known as "Smashing The
Stack".

[instructions]
[instructions]

[stack return
address]

Parameters

Local Variables

Return Address

Parameters

Frame
for f()

Frame
for e()

Format String Vulnerabilities

Format String Vulnerabilities

What is a format string?
int x=3;
printf("%d", x);

How many formats exist in C/C++?
There are at least 17 basic ones, and lots of permutations.

%d Signed decimal integer
%s Character string
%x Unsigned hexadecimal integer
%u Unsigned decimal integer
%n The number of characters written so far

Format String Vulnerabilities

How do format string vulnerabilities occur?
They are usually lazy programmers who make mistakes.

This is correct:
printf("%s", argv[1]);

This is incorrect:
printf(argv[1]);

#include <stdio.h>
void main(int argc, char *argv[]){

printf("%s", argv[1]);
}

Format String Vulnerabilities

But they both seem to work?
Yes! It will work which makes it difficult to detect.

./correct "Hello123"
Output: Hello123

./incorrect "Hello123"
Output: Hello123

Format String Vulnerabilities

Lets try inputting format string specifiers

./correct "%x"
Output: %x

./incorrect "%x"
Output: 12ffb8

Format String Vulnerabilities

Lets take another look at what format string specifiers can do.

%x - Pop data off the stack and display it
%s - Dereference pointer seen above and read to null byte value
%n - Dereference counter location and write the functions
output count to address

%x - Read from stack
%s - Read from memory
%n - Write to memory

Format String Vulnerabilities

Exploiting the vulnerability

./incorrect "AAAA %x %x %x %x %x"
Output: AAAA 12ffb89a 12f376 77648426 41414141

Return to LibC

Return to LibC (Linux)

"Smash the stack" attacks have been made more difficult by a
technology called a non-executable stack.

NX stack can still be bypassed.

A buffer overflow is still required but the data on the stack is
not executable shellcode, it contains read-only arguments to a
function.

LibC is a dynamic library that is part of every userspace
application on a linux system. This library contains all sorts of
functions such as system() to launch an application.

Return to LibC (Linux)

Now we can
spawn a shell

system("/bin/bash wget ...");

[arguments]
[arguments]

[stack return
address]

Parameters

Local Variables

Return Address

Parameters

Frame
for f()

Frame
for e()

system()
in LibC

Return to Structured
Exception Handler (SEH)

Return to SEH (Windows)

Stack cookies are numbers that are placed before the return
address when a function begins, and checked before the
function returns. This prevents buffer overflow attacks.

[buffer][cookie][saved EBP][saved EIP]

If the overwritten cookie does not match with the original
cookie, the code checks to see if there is a developer defined
exception handler. If not, the OS exception handler will kick in.

[buffer][cookie][SEH record][saved ebp][saved eip]

(1.) - Overwrite an Exception Handler registration structure
(2.) - Trigger an exception before the cookie is checked
(3.) - Return to overwritten Exception Handler

Return to SEH (Windows)

Return to Heap

Heap spraying is an unreliable method of increasing the
chances of returning to executable instructions in a buffer
overflow attack.

Attackers create thousands of data structures in memory which
contain mostly null operations (the 0x90 instruction) with the
executable machine instructions at the end of the structure.

Statistically the chances of returning to a valid location on a
"NOP sled" are increased by increasing the size of the data
structures. Sometimes the chance can be up to 50%.

Return to Heap (Heap Spraying)

Heap Overflows

unlink() Technique by w00w00

The Bin structure in the .bss segment stores unused memory
chunks in a doubly linked list. The chunks contain forward
pointers and backward pointers.

16 24 32 ... 512 576 640

unlink() Technique by w00w00

When memory is allocated, the pointers of the previous and
next block are re-written using the unlink() function by de-
referencing the pointers in the middle block.

#define unlink(P, BK, FD) {
 BK = P->bk;
 FD = P->fd;
 FD->bk = BK;
 BK->fd = FD;
}

How a normal unlink() works.
Step 1:

unlink() Technique by w00w00

unlink() Technique by w00w00

How a normal unlink() works.
Step 2:

unlink() Technique by w00w00

When a heap management operation (such as free / malloc /
unlink) is made, pointers in the chunk headers are
dereferenced.

We want to target the unlink() macro (a deprecated version of
the Doug Lea memory allocator algorithm).

Heap overflows work by overflowing areas of heap memory and
overwriting the headers of the next area in memory.

If the first chunk contains a buffer, then we can overwrite the
headers in the next chunk which is unallocated.

unlink() Technique by w00w00

AAAAAA

AAAAAA

AAAAAA

unlink() Technique by w00w00

By altering these pointers we can write to arbitrary addresses
in memory. Dereferencing is confusing!

Unlink has 2 write operations. By overwriting the header of a
chunk, we can choose what we write to memory!

[fwd-ptr] = bk-ptr
 and
[bk-ptr] = fwd-ptr

Try overwriting pointers in the Global Offset Table.

We can force unlink() to write to the GOT, and write to the
shellcode chunk.

unlink() Technique by w00w00

Instructions

GOT i-ptr

instructions-pointer
is written

somewhere on the
Global Offset Table

 GOT

unlink() Technique by w00w00

The memory pointed to by fd+12 is overwritten with bk, then
the memory pointed to by bk+8 is overwritten with the value of
fd.

unlink() overwrites the GOT with the shellcode's address in the
first step. This was the primary goal of the exploit.

The second step writes a pointer just past the start of the
shellcode. This would normally render the shellcode
unrunnable, but the shellcode can be made to start with a
jump instruction, skipping over the part of the shellcode that is
overwritten during unlinking.

Integer Overflows

Integer Overflows

Primitive Data Types
8 bits: maximum representable value 2^8−1 = 255
16 bits: maximum representable value 2^16−1 = 65,535

In order to represent a negative value, a bit must be removed
from the byte and used as a flag to indicate whether the value
is positive or negative.

Integer Overflows

Signed 16 bit integer
−32,768 to 32,767

0111 1111 1111 1111 = 32,767
 +1
1000 0000 0000 0000 = -0 or 32,768
 +1
1000 0000 0000 0001 = -1 or 32,769
 +1
1000 0000 0000 0010 = -2 or 32,770

Integer Overflows

Some programs may make the assumption that a number always
contains a positive value. If the number has a signature bit at
the beginning, an overflow can cause its value to become
negative.

An overflow may violate the program's assumption and may
lead to unintended behavior.

Null Pointers

Null Pointers

Each application has its own address space, with which it is
free to do with it as it wants.

NULL can be a valid virtual address in your application using
mmap().

user land - uses virtual addresses
kernel land - uses physical addresses

Null Pointers

Address space switching expensive so the kernel just runs in the
address space of whichever process was last executing.

At any moment, the processor knows whether it is executing
code in user mode or in kernel mode.

Pages in virtual memory have flags on it that specifies whether
or not user code is allowed to access it.

Null Pointers

Find kernel code that is initialized to NULL
struct my_ops {
 ssize_t (*do_it)(void);
};
static struct my_ops *ops = NULL;

This structure must be executed by the kernel
return ops->do_it();

Null Pointers

Disable OS security
echo 0 > /proc/sys/vm/mmap_min_addr

In your userland application you must declare code that is to be
executed with kernel privileges

void get_root(void) {
 commit_creds(prepare_kernel_cred(0));
}

Map a page at zero virtual address
mmap(0, 4096, PROT_READ | PROT_WRITE , MAP_PRIVATE |
MAP_ANONYMOUS | MAP_FIXED , -1 , 0);

Null Pointers

Immediately Declare a pointer at null
void (**fn)(void) = NULL;

Set the address of our malicious userspace code as the value of
our pointer

*fn = get_root;

Finally trigger the vulnerable kernel function that executes the
structure. This is usually a syscall such as read(), write() etc...

Null Pointers

This works for 2 reasons:

(1.) - Since the kernel runs in the address space of a userspace
process, we can map a page at NULL and control what data a
NULL pointer dereference in the kernel sees, just like we could
for our own process!

(2.) - To get code executing in kernel mode, we don't need to
do any trickery to get at the kernel's data structures. They're
all there in our address space, protected only by the fact that
we're not normally able to run code in kernel mode.

Null Pointers

When the CPU is in user mode, translations are only effective
for the userspace region of memory, thus protecting the kernel
from user programs.

When in kernel mode, translations are effective for both
userspace and kernelspace regions, thus giving the kernel easy
access to userspace memory, it just uses the process' own
mappings.

Without any exploit, just triggering the syscall would cause a
crash.

Return Oriented
Programming Chains

(ROP)

ROP Chains

ROP chains are chains of short instruction sequences followed
by a return instruction. These short sequences are called
gadgets. Each gadget returns to the next gadget without ever
executing a single bit from our non-executable shellcode. ROP
chains enable attackers to bypass DEP and ASLR.

Since we cannot execute our own code on the stack, the only
thing we can do is call existing functions. To access these
existing functions using buffer overflow, we require at least
one non-ASLR module to be loaded.

ROP Chains

Scan executable memory regions of libraries using automated
tools to find useful instruction sequences followed by a return.

Existing functions will provide us with some options:
(1.) - execute commands (classic "ret-to-libc")
(2.) - mark memory as executable

A single gadget could look like this:
POP EAX
RET

ROP Chains

A single gadget would just
continue to follow a path of
execution that is being stored
in the stack.

This means we only control
the instruction pointer for 2
instructions.

We have to select a gadget
that can alter multiple frames.

[AAAA][AAAA]
[AAAA][AAAA]

[AAAA][stack
return address]

Parameters

Local Variables

Return Address

Parameters

Frame
for f()

Frame
for e()

ROP
Gadget

ROP Chains

Using a stack pivot, the ESP register (stack pointer) is loaded
with the address to our own data so that input data is re-
aligned and can be interpreted as return addresses and
arguments to the called functions. Pivots basically enables us
to use a forged stack.

Sample ROP exploit:
(1.) - Start the ROP chain
(2.) - Use a gadget pivot to the stack pointer to buffer
(3.) - Return to fake stack, and launch more gadgets
(4.) - Use gadgets to set up stack/registers
(5.) - Use gadgets to disable DEP/ASLR
(6.) - Return to shellcode and execute

Fin

Questions

Questions

References
SEH Exploit
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/

Heap Overflow
http://www.thehackerslibrary.com/?p=872
http://etutorials.org/Networking/network+security+assessment/Chapter+13.+Application-Level+Risks/13.5+Heap+Overflows/
http://geekscomputer.blogspot.com/2008/12/buffer-overflows.html
http://drdeath.myftp.org:881/books/Exploiting/Understanding.Heap.Overflow.Exploits.pdf
https://rstforums.com/forum/62318-run-time-detection-heap-based-overflows.rst
http://www.phrack.org/archives/57/p57_0x08_Vudo%20malloc%20tricks_by_MaXX.txt
http://www.cgsecurity.org/exploit/heaptut.txt
http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

Null Dereference Exploits
http://www.computerworld.com.au/article/212804/null_pointer_exploit_excites_researchers/
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1
http://blog.mobiledefense.com/2012/11/analysis-of-null-pointer-dereference-in-the-android-kernel/
http://lwn.net/Articles/342330/
http://lwn.net/Articles/75174/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://blog.mobiledefense.com/2012/11/analysis-of-null-pointer-dereference-in-the-android-kernel/

ROP Chains
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://www.exploit-monday.com/2011/11/man-vs-rop-overcoming-adversity-one.html
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://neilscomputerblog.blogspot.ie/2012/06/stack-pivoting.html

