

XXE Explanation and

Exploitation

Haboob Team

2018

1 | P a g e

 CONTENTS
 Introduction 2

1.1 Description .. 2

1.2 What’s XML? ... 3

What’s DTD? .. 4

1.3 Severity .. 4

1.4 Consequences .. 4

 Exploitation 5

basic – Login If You Can ... 5

GET parameter .. 8

JSON ... 9

Upload ... 10

PORT Scan .. 12

Out Of Band OOB ... 13

 Resources 15

2 | P a g e

 INTRODUCTION
XXE stands for XML External Entity and we are going to explain this vulnerability and its

consequences starting from the basics till the advanced exploitation in this paper.

1.1 DESCRIPTION
As OWASP describes XXE. "An XML External Entity attack is a type of attack against an application

that parses XML input. This attack occurs when XML input containing a reference to an external entity is

processed by a weakly configured XML parser. This attack may lead to the disclosure of confidential data,

denial of service, server side request forgery, port scanning from the perspective of the machine where the

parser is located, and other system impacts.

The XML 1.0 standard defines the structure of an XML document. The standard defines a concept called an

entity, which is a storage unit of some type. There are a few different types of entities, external

general/parameter parsed entity often shortened to external entity, that can access local or remote content

via a declared system identifier. The system identifier is assumed to be a URI that can be dereferenced

(accessed) by the XML processor when processing the entity. The XML processor then replaces occurrences

of the named external entity with the contents dereferenced by the system identifier. If the system

identifier contains tainted data and the XML processor dereferences this tainted data, the XML processor

may disclose confidential information normally not accessible by the application. Similar attack vectors

apply the usage of external DTDs, external stylesheets, external schemas, etc. which, when included, allow

similar external resource inclusion style attacks.

Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user

data, using file: schemes or relative paths in the system identifier. Since the attack occurs relative to the

application processing the XML document, an attacker may use this trusted application to pivot to other

internal systems, possibly disclosing other internal content via http(s) requests or launching a CSRF attack

to any unprotected internal services. In some situations, an XML processor library that is vulnerable to

client-side memory corruption issues may be exploited by dereferencing a malicious URI, possibly allowing

arbitrary code execution under the application account. Other attacks can access local resources that may

not stop returning data, possibly impacting application availability if too many threads or processes are not

released. "[1]

[5]

3 | P a g e

1.2 WHAT’S XML?
So before we go further we need first to answer what’s XML? “XML is the Extensible Markup

Language. It improves the functionality of the Web by letting you identify your information in a more

accurate, flexible, and adaptable way. It is extensible because it is not a fixed format like HTML (which is a

single, predefined markup language). Instead, XML is a metalanguage — a language for describing other

languages — which lets you design your own markup languages for limitless different types of documents.

XML can do this because it's written in SGML, the international standard metalanguage for text document

markup (ISO 8879).” [2]

1. <?xml version="1.0" encoding="UTF-8"?>
2. <bookstore>
3. <book category="cooking">
4. <title lang="en">Everyday Italian</title>
5. <author>Giada De Laurentiis</author>
6. <year>2005</year>
7. <price>30.00</price>
8. </book>
9. <book category="children">
10. <title lang="en">Harry Potter</title>
11. <author>J K. Rowling</author>
12. <year>2005</year>
13. <price>29.99</price>
14. </book>
15. <book category="web">
16. <title lang="en">Learning XML</title>
17. <author>Erik T. Ray</author>
18. <year>2003</year>
19. <price>39.95</price>
20. </book>
21. </bookstore>

XML Example

4 | P a g e

WHAT’S DTD?
“The XML Document Type Declaration, commonly known as DTD, is a way to describe XML

language precisely. DTDs check vocabulary and validity of the structure of XML documents against

grammatical rules of appropriate XML language. An XML DTD can be either specified inside the document,

or it can be kept in a separate document and then liked separately.” [3]

1. <?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>
2. <!DOCTYPE address [
3. <!ELEMENT address (name,company,phone)>
4. <!ELEMENT name (#PCDATA)>
5. <!ELEMENT company (#PCDATA)>
6. <!ELEMENT phone (#PCDATA)>
7.]>
8.
9. <address>
10. <name>Tanmay Patil</name>
11. <company>TutorialsPoint</company>
12. <phone>(011) 123-4567</phone>
13. </address>

1.3 SEVERITY
As the vulnerability violates the Confidentiality or Integrity it’s severity is HIGH.

1.4 CONSEQUENCES
1. File Disclosure

2. Remote Command Execution

3. Server Side Request Forgery

4. Client Side Request Forgery

5. Local Port Scanning

6. Internal Network Hosts Scan

5 | P a g e

 EXPLOITATION

BASIC – LOGIN IF YOU CAN
consider this basic example where the PHP file loads the XML file we provide and prints out the

username with no input validation.

1. <?php
2. libxml_disable_entity_loader (false);
3. $xmlfile = file_get_contents('php://input');
4. $dom = new DOMDocument();
5. $dom->loadXML($xmlfile, LIBXML_NOENT | LIBXML_DTDLOAD);
6. $info = simplexml_import_dom($dom);
7. $name = $info->name;
8. $password = $info->password;
9. echo "Sorry, this $name not available!";
10. ?>

6 | P a g e

So we have the control of the input username and password which to use? it’s an advantage to use the

username as the output of our parsed XML input can be printed out in the hold of the tag <name>. How

would this help? Please consider that we can provide an external entity with the purpose of reading a file

but how?

And we were able to disclose the file /etc/passwd. But what if we want to disclose a PHP file? Let’s try to

disclose the index.php

No luck . let’s get around this. What if you can use the PHP wrappers? Let’s give it a shot.

7 | P a g e

As we know “if you really do” that there is a PHP wrapper to read a file and returns its content encoded

to base64.

Success .

And here is the content decoded

8 | P a g e

GET PARAMETER
Consider this example where inputs are entered through the GET parameter name

1. <?php
2.
3. if (isset($_GET['name'])) {
4.
5. libxml_use_internal_errors(true);
6. libxml_disable_entity_loader(false);
7.
8. $xml = '<?xml version="1.0" encoding="UTF-8" standalone="no" ?>' . $_GET['name'];
9.
10. $parsed = simplexml_load_string($xml, 'SimpleXMLElement', LIBXML_NOENT);
11.
12. if (!$parsed) {
13.
14. foreach(libxml_get_errors() as $error)
15. echo $error->message . "\n";
16.
17. } else {
18.
19. echo 'Hello ' . $parsed . "\n";
20. }
21.
22. }
23. ?>

same as the previous example except that you control a whole XML content

9 | P a g e

JSON
In some cases, your input gets encoded to JSON before it gets sent.

In this case, we can provide an External Entity to trigger the file we want to disclose

10 | P a g e

UPLOAD
Another example of XXE exploitation is by uploading and parsing XML files.

1. <?php
2. if(isset($_POST["submit"])) {
3. $target_file = getcwd()."/upload/".md5($_FILES["file"]["tmp_name"]);
4. if (move_uploaded_file($_FILES["file"]["tmp_name"], $target_file)) {
5. try {
6. $result = @file_get_contents("zip://".$target_file."#docProps/core.xml");
7. $xml = new SimpleXMLElement($result, LIBXML_NOENT);
8. $xml->registerXPathNamespace("dc", "http://purl.org/dc/elements/1.1/");
9. foreach($xml->xpath('//dc:title') as $title){
10. echo "Title '".$title . "' has been added.
";
11. }
12. } catch (Exception $e){
13. echo "The file you uploaded is not a valid xml or docx file.";
14. }
15. } else {
16. echo "Sorry, there was an error uploading your file.";
17. }
18. }

We are getting asked to upload XML or DOCX file.

[6]

11 | P a g e

So we try to upload a non-malicious XML file with the title “this is a test file” and this is how it handles XML files.

Please notice that the title has been printed on the page. So we can customize our payload so the file we want to

disclose is getting out on the screen. So we crafted the following payload.

And the file got disclosed

12 | P a g e

PORT SCAN
We can determine whether a port is opened or closed on the localhost of the vulnerable web application. Please

consider that this is heuristically is getting done and cannot be a confident information. In our case we have port

5355 is opened and 8080 is not so if a request is trying to reach localhost on a port that is open we get a longer

time compared to trying to connect to a closed port.

Testing port 8080 “closed” 1 milis

Testing port 5355 “opened” 10 milis

13 | P a g e

OUT OF BAND OOB

The main idea in this exploitation is that the output of the requested file is not getting disclosed so we

need to figure out a way to extract the output. In the below figure the idea is an attacker hosts a DTD file

on a domain he owns. The content of the DTD file is an entity that requests the attacker domain with the

content of the file we want to disclose and we can read the content of that file in our logs.

We used xxeserve.rb[4] because it runs a web server, creates a DTD file and prints out the logs.

[7]

14 | P a g e

trying to read /etc/passwd

trying to read xxe.php

15 | P a g e

 RESOURCES

1. https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing

2. http://xml.silmaril.ie/whatisxml.html

3. https://www.w3schools.com/xml/xml_tree.asp

4. https://github.com/joernchen/xxeserve

5. http://4.bp.blogspot.com/-

FBSO5Sdrmus/U_SBRi_I_oI/AAAAAAAAAJ8/W6M9x_K9LOI/s1600/XXEA.png

6. https://blogs.sans.org/pen-testing/files/2017/12/xxe1.png

7. https://krbtgt.pw/content/images/2018/03/7.PNG

https://github.com/joernchen/xxeserve
http://4.bp.blogspot.com/-FBSO5Sdrmus/U_SBRi_I_oI/AAAAAAAAAJ8/W6M9x_K9LOI/s1600/XXEA.png
http://4.bp.blogspot.com/-FBSO5Sdrmus/U_SBRi_I_oI/AAAAAAAAAJ8/W6M9x_K9LOI/s1600/XXEA.png
https://blogs.sans.org/pen-testing/files/2017/12/xxe1.png

