
Wireshark
Deep packet inspection with Wireshark

Wireshark is a free and open-source packet analyzer. It is commonly used to troubleshoot
network issues and analysis. Originally named Ethereal, in May 2006 the project was renamed
Wireshark due to trademark issues.

This article attempts to give some detail into how to search through packet dump files or pcap
files using Wireshark. I give some useful information on using wireshark & tshark to do deep
packet analysis.

Intrusion detection devices such as Snort use the libpcap C/C++ library for network traffic
capture. It is this capture file that we will be using wireshark on.

Wireshark is included in many Linux distros, if it is not; it is available in the package
repositories. Wireshark formally known as ethereal is available for download through the project
website, which has a number of tutorial and resources.

tshark

The tshark utility allows you to filter the contents of a pcap file from the command line. To view
the most significant activity, I use the following command (see Figure #1):

$ tshark –nr attack3.log.gz –qz “io,phs”

Figure 1: Tshark statictics output

The –n switch disables network object name resolution, -r indicates that packet data is to be read
from the input file, in this case attack3.log.gz. The –z allows for statistics to display after it is

finished reading the capture file, the –q flag specifies that only the statistics are printed. See
Figure 1 for the output of this information. To view a list of help commands used with tshark,
type:

$ tshark –h

For a list of arguments type –z:

$ tshark –z help

If you are looking for a particular IP address [205.177.13.231] that you think may appear in a
packet dump and the associated port it is connecting on and the number of times it connected use
the following command (See Figure #2):

$ tshark –V –nr attack3.log.gz ip.src == 205.177.13.231 | grep “Source port” | awk {‘print $3’}
| sort –n | uniq –c

Figure 2: List of ports communicating with 205.177.13.231 and the number of times it occurred

The –V causes tshark to print a view of the packet details rather than a one-line summary of the
packet. The grep command looks for the text string Source port in the packet dump, and awk {
‘print $3’} looks for the third field in the text resulting from the grep and prints it; sort –n will
sort the results according to string numerical value, and uniq –c will take matching lines and
merge to the first occurrence and list the number of times that it occurred.

The resulting output shows 205.177.13.231 having connections on ports (21, 22, 23, 25, 53, 80,
110 and 113) along with the number of times each of these occurred.

Let’s look to find possible IRC traffic in the packet capture. What are the ports used by IRC
traffic? We can issue the following command:

$ grep irc /usr/share/nmap/nmap-services | grep tcp

Figure #3 shows the results of this command.

Figure 3: Locating IRC port numbers with grep

When we search the packet dump looking for evidence of IRC traffic to and from IP address
206.252.192.195 we would use the following command (see Figure #4):

$ tshark –nr attack1.log.gz ‘ip.addr==206.252.192.195 and tcp.port >= 6665 and tcp.port >=
6670 and irc; | awk {‘print $3,$4,$5,$6’} | sort –n | uniq –c

Figure 4: IRC connections found in the packet dump

Here is the following breakdown of the above command.

-nr switch disables network name resolution and packet to be read
‘ip.addr==206.252.192.195 This is the IP address that I am looking for
 and tcp.port >=6665 Start of the port range
 and tcp.port <=6670 End of the port range
 and irc’ Search for IRC traffic only
awk {‘print $3,$4,$5,$6’} Prints the third through sixth patterns from each matching line
 sort –n Sorts according to string numerical value
 uniq –c Only prints the number of matches that are unique

Wireshark the GUI

The Wireshark GUI application can be started from the Application menu or from the terminal.
To load a capture file from the terminal simply type wireshark filename at the command prompt
< $ wireshark alert1.log.gz>

The graphical front-end has some integrated sorting and filtering options available. One of them
is the Filter box at the top that allows you to enter criteria for the search. To search for all the
Canonical Name records within the capture file, type the following filter (see Figure #5):

dns.resp.type == CNAME

Figure 5: Searching for CNAME records in Wireshark

After you enter a filter, remember to clear it out before starting a new search.

Now if we wanted to know how long a client resolver cached the IP address associated with the
name download.microsoft2.akadns.net (Figure #6), enter the following in the filter:

Dns.resp.name == “download.microsoft2.akadns.net”

Figure 6: Length of time client resolved address cache

If we wanted to find the user name and password for an FTP account that someone was
accessing and we knew that there was a connection somewhere in the packet dump, how would
we find it? The information we have is the source and destination [62.211.66.16 &
192.168.100.22]. We would enter in the filter field the following (see Figure #7):

ip.dst == 62.211.66.16 && ip.src == 192.168.100.22 && ftp contains “PASS”

Figure 7: Locating the user name and password for FTP account

To locate and find the conversation someone had on an IRC chan between source IP
192.168.100.28 and IP destination 163.162.170.173 use the following filter (see Figure #8):

ip.dst == 192.168.100.28 && ip.src == 163.162.170.173 && irc.response

Figure 8: IRC communication between 192.168.100.28 & 163.162.170.173

Now pick one of the packets and right click and Follow TCPStream and this will produce the
conversation (see Figure #9).

Figure 9: IRC conversation between 192.168.100.28 & 163.162.170.173

Conclusion

Wireshark is a powerful tool used to search through packet dumps to locate clues about nefarious
activity.

