
VOIP (Voice Over Internet Protocol)
Hacking-Fake Calling

Author: Avinash Singh
Co-Author: Akash Shukla

Avinash Singh

Corporate Trainer

(Virscent Technologies Pvt. Ltd.)

Appin Certified Ethical Hacker

(ACEH)

Email: avinash.singh@virscent.com
 avinash546@gmail.com

 SNL: https://facebook.com/avinash546

mailto:avinash.singh@virscent.com
mailto:avinash546@gmail.com
https://facebook.com/avinash546

Biography of Author:

Avinash Singh is an IT Security Researcher and Evangelist
currently working with Virscent Technologies Pvt. Ltd.
as a Research & Development Analyst CUM Corporate
Trainer, Appin Certified Ethical Hacker (ACEH) and
done his B.tech from CSE branch. He has also worked
with Kyrion Technologies Pvt. Ltd. for 8 months as a
Research and Development Analyst CUM Corporate
Trainer.

His expertise includes PC Hardware and Networking,
LINUX, Core Java, exploit research. He has also done
training in MCSE, LINUX, CCNA and basics of
Firewalls. He has done lot of research work on many
projects in which some of them are:
a) IDS: Snort & OSSIM
b) Firewall: Pfsense
c) Honeypot Technology (Honeyd)
d) Research and working of VOIP (Voice Over Internet
Protocol)

He has trained more than 2000+ students and having more
than 5 years' experience of IT Security field. He has
conducted lot of workshops around the nation. He is better
known for his work on VOIP hacking.

Akash Shukla

Corporate Trainer

(Virscent Technologies Pvt. Ltd.)

Certified Information Security

Expert (CISE)

Web: www.hackersreloaded.com

Email: akash@hackersreloaded.com
 akash@virscent.com
 aks.zooming@gmail.com

SNL: https://facebook.com/hybridakash
 https://twitter.com/akszooming

Biography of CO-Author:

http://www.hackersreloaded.com/
mailto:akash@hackersreloaded.com
mailto:akash@virscent.com
mailto:aks.zooming@gmail.com
https://facebook.com/hybridakash
https://twitter.com/akszooming

Akash Shukla is an IT Security researcher currently working
with Virscent Technologies Pvt. Ltd. as a corporate
Trainer. He is a Certified Information Security Expert
(CISE), Founder and Admin of Hackersreloaded.com,
Member of Computer Society of India (CSI) as well as
worked with Kyrion Technologies Pvt. Ltd. as a
Penetration Tester for Two months. His expertise
includes Research and Development in this domain,
Computer and Network Security, exploit research, C, PHP,
Perl, Core JAVA and website designing.

He has trained more than 1000+ students and having more
than 4 years’ experience of IT Security field. He has
conducted lots of workshops around the nation. He has also
found some big security loopholes in high rank websites of
cyber space like Facebook, Orkut, Ebay, Paisalive.

He has also made possible calling from OLD version of
Micromax modem MMX310G whose process video got
1000’s of hits on youtube. He has some videos on youtube

because he strictly share only new hack stuffs .He is also
running his own free-lance organization RMAR Dizi
Securities (Venture of Cyber Security Experts).

He has also helped in curing the vulnerability of Gautam
Budhh Technical University's website which was earlier
hacked by him and reported to the Vice Chancellor as well,

after which Vice Chancellor admired him for his sincere
efforts in reporting the vulnerability, the news was also in
Media. He has also worked on many projects in which
Snort-An Open Source Intrusion Detection System was
the project whose LOG problem on Windows 7 was
resolved by him and successfully patched. Earlier he worked
with various companies as a free-lancer.

Abstract:
What Is AsteriskNOW?

AsteriskNOW is an open source software appliance, a customized Linux distribution that includes
Asterisk, the Asterisk GUI, and all other software needed for an Asterisk system. The Asterisk GUI gives
you the ability to easily configure your Asterisk system without being a technical expert.

Before You Begin

AsteriskNOW installation is easy, because the appliance includes only those components necessary to
run, debug, and build Asterisk. You no longer have to worry about kernel versions and package
dependencies. AsteriskNOW is a custom Linux distribution for Asterisk based on rPath Linux.

What You Will Need

 A system on which you can install AsteriskNOW

 A CD writer and associated software

 Connection to the Internet

 Firefox browser

The Asterisk GUI currently requires the Firefox browser (available at http://www.mozilla.com/en-US/ for
optimum performance. Wider browser support will be available with future versions.

Installation

You should observe all normal precautions when preparing and installing a new distribution. Any
existing operating systems on your hard drive will be removed by the Express Installation

Accessing the GUI

Once you have completed your installation and rebooted your machine, you will be able to access the
Asterisk GUI. The URL used to access the Asterisk GUI is the IP address or hostname displayed after
rebooting your machine. Enter this IP address in your browser URL. You will be able to refine your
AsteriskNOW installation by accessing the Asterisk GUI.
The default username is admin and password is password.

Making and Receiving Calls

Specifically, we’ll:

 Register an account with a VoIP (voice over IP) provider.

 Configure Asterisk to connect to our VoIP provider.

 Create a SIP extension to make and receive calls from.

 Configure Asterisk rules for making calls.

 Configure Asterisk rules for receiving calls.

 Connect a softphone (software phone) to our Asterisk server as an extension and use it to make
real calls.

So let’s get started!

Getting a VoIP Account

The first thing we need to do is sign up with a VoIP (voice over IP) provider.

VoIP (voice over IP) is a relatively new way to connect to the PSTN using the Internet. VoIP is extremely
low-cost compared to other methods, and very easy to set up as it only requires an active Internet
connection to use. More and more businesses are switching over to VoIP for cost reasons.

There are two main types of VoIP protocols that people use with Asterisk. There is SIP (session initiation
protocol) and IAX (inter-asterisk exchange). While both of these protocols are still widely in use, SIP has
become the dominant VoIP protocol in today’s world. In fact, the term SIP has mostly replaced VoIP.
When speaking to people in the telephony industry, it is common to hear people say ‘I have so and so as
my SIP provider’. So from now on, we’ll use that terminology as well.

Picking a SIP provider is a very important task. If you Google for ‘SIP providers’ you’ll find thousands of
options. Here are few of them:

 Flowroute
 voip.ms
 Vitelity

http://www.flowroute.com/
http://voip.ms/
http://vitelity.com/

 Bandwidth
 Voicepulse

Flowroute is my favorite SIP provider because they have a great website, low prices, and business-class
reliability. So instead of walking through the set up for each of the above providers (that would take
forever) I’ll just cover Flowroute. If you choose to go with another provider, you can still follow along
with this article and get a sense of what to do.

Create an Account

To create an account with Flowroute, visit their sign up page and fill in your information. You don’t need
a credit card, and they’ll give you 25 cents of credit (enough to make approximately 30 minutes of calls).
If you want to be able to receive calls as well as make them, then you’ll have to deposit some money
into your account as you’ll need to own a DID (more commonly known as phone number) which costs a
bit more than 25 cents.

Once your account has been created, you’ll be directed to the account dashboard, where, if you want,
you can deposit some money via Amazon Payments.

Create a SIP Extension

Now that we’ve set up our SIP trunk, it’s time to create an extension. An extension is just another term
for ‘phone’. SIP extensions (IP phones) are the most common type of extensions in use on modern
phone systems. Sure, you can still hook up those old analog phones to your Asterisk PBX, but we’ll save
that for another day. Today we’ll create a simple SIP extension which we will later hook up a soft phone
to and use to make and receive calls.

To define a SIP extension, we need to pick several things:

 An extension number. This is typically a numeric number, several digits in length. I’ll be using
1000 in the following examples.

 A secret password. This is generally an alphanumeric password of any length used to ’secure’
your extension. Any device which wants to make or receive calls from your extension need to
know this password in order to authenticate. This password does not need to be remembered,
and should be globally unique.

Creating the Extension

Now that you’ve picked your extension number and secret, let’s create it!

Scroll down to the very bottom of your /etc/asterisk/sip.conf file, (below the SIP trunk we created in the
previous section), and insert the following (make sure you swap out my extension number for yours, and
my secret for yours):

[1000]

type=friend

nat=yes

canreinvite=no

http://bandwidth.com/
http://www.voicepulse.com/

secret=mysecretpassword

qualify=yes

mailbox=1000@default

host=dynamic

dtmfmode=rfc2833

dial=SIP/1000

context=outgoing

At this point we’ve fully configured a Flowroute SIP trunk and a SIP extension with Asterisk. The next
thing for us to do will be configuring our network so that our SIP trunk works.

Configure the Dial Plan

Since we have our SIP trunk working, we now need to program Asterisk, and teach it how to route calls
for us. There are two things that we need to teach Asterisk to do: how to route outgoing calls, and how
to route incoming calls. Each of these requires separate Asterisk configuration to work.

Our goal will be to write the following two rules:

1. When we dial an 11-digit US phone number from our soft phone, it should call that phone
number.

2. When someone calls our SIP DID (phone number), we should connect that call to our soft
phone so we can talk to the person who called us.

There are several ways to program Asterisk to handle call routing, but the simplest (and native) way to
do it is via ‘dial plan’. Dial plan is the name of Asterisk’s own scripting language. It is very simple, and
easy to understand (even for non-programmers).

In the next few sections, we’ll write dial plan code to route calls according to our rules above.

Start With a Clean Slate

Before we begin writing our code, let’s quickly create a nice clean extensions.conf file to work in.
Remove your current dial plan file (/etc/asterisk/extensions.conf) and replace it with the following:

[general]

static=yes

writeprotect=no

clearglobalvars=no

[globals]

TRUNK=flowroute

All I did here was remove all comments and clutter from the file, so that we can clearly see what we’re
doing. I also added a global variable called TRUNK which contains the name of our SIP trunk defined
earlier in the article. We’ll use this global variable later on to make outbound calls.

Configure Outbound Routing

The goal here is to allow our extension to dial an 11-digit US phone number, and connect it to the PSTN
via our Flowroute SIP trunk.

Remember when we configured our SIP extension? One of the keys we specified in the configuration file
was: context=outgoing. The context field of an extension determines what dial plan context the pattern
matching will start at. This is similar to the main() function in most programming languages.

The context specified in our SIP extension plays an important role in routing outbound calls. It says (in
human English):

When any extension who’s ‘context’ key is equal to ‘outgoing’ dials a number, send the number that was
dialed to the [outgoing] context to be processed. Let the [outgoing] context determine what to do at
this point.

So now that we know what context we need to create (the [outgoing] context), let’s make it!
Open your extensions.conf file and add the following code to it at the bottom:

[outgoing]

exten => _1NXXNXXXXXX,1,Dial(SIP/${EXTEN}@${GLOBAL(TRUNK)})

Let’s go through the code and analyze exactly what is happening.

The first bit: exten => is standard. All Asterisk dial plan code starts with this bit. The extension:
_1NXXNXXXXXX is a regular expression that Asterisk will use to pattern match the number dialed.
Remember above how we said that we’re going to route all 11-digit US telephone numbers outbound?
This pattern represents an 11-digit US telephone number. Since all 11-digit US telephone numbers begin
with the number 1, we hard-code that number. The variable N represents a number (2 through 9), and
the variable X represents a number (0 through 9). Therefore, the pattern _1NXXNXXXXXX will
match any 11-digit US telephone number.

After the extension (pattern), you’ll see a comma character followed by the number 1. The number 1 is
the priority. Asterisk dial plan code can contain more than a single line of instructions. In cases where
there are multiple lines of code that need to be executed, Asterisk relies on the priority number to
determine what to do first.

Imagine that we had code which looked like:

exten => _1NXXNXXXXXX,2,Dial(18002223333@flowroute)

exten => _1NXXNXXXXXX,1,Dial(19999999999@flowroute)

In this case, Asterisk would execute the code at priority number 1 first, then the code at priority number
2. So always check for priority numbers when looking at code as they will help determine what is going
on.

The last part of the code you see is the called application:
Dial(SIP/${EXTEN}@${GLOBAL(TRUNK)}). The application we’re using here is the Dial()
command. This application instructs Asterisk to dial the phone number out of our Flowroute SIP trunk
and connect the call to our extension (eg: make an outbound call)!

Everything inside of the ${} characters is a variable reference. Asterisk has several pre-defined ‘channel
variables’ which are always accessible. In our Dial() code, we reference the ${EXTEN} channel
variable, which contains the number that was dialed and pattern matched. If we dialed the number
18002223333, then ${EXTEN} would expand to 18002223333.

The ${GLOBAL(TRUNK)} code references the global variable TRUNK which we defined at the top of our
extensions.conf file. This code will expand to flowroute before executing the Dial() application.

So after all of the variable expansion is finished, Asterisk actually sees the following (assuming that we
dialed the number 18002223333): Dial(SIP/18002223333@flowroute), which is a lot easier to
understand! The first part of the line that says SIP/ tells Asterisk that the number we’re going to dial
should be sent out of our SIP trunk. The @flowroute part tells Asterisk to dial the number 18002223333
on the flowroute SIP trunk, specifically. Doing it this way gives us flexibility. Imagine if we had many SIP
trunks on our Asterisk system, and wanted to route certain calls through certain SIP trunks.

Outbound Routing, a Full Walk Through

Let’s quickly perform a full walk through of what happens when we dial the number 18002223333 on
our extension. (Don’t worry that we haven’t set up the soft phone yet, we’ll get to that later.)

1. Asterisk receives a SIP call from our extension (1000) which has dialed the number
18002223333.

2. Asterisk looks at the context key in our extension’s configuration settings, and sees that it is
set to outgoing.

3. Asterisk sends the number 18002223333 to the [outgoing] context, defined in
/etc/asterisk/extensions.conf to be pattern matched.

4. Once Asterisk finds a match for the number, it begins looking for the first application to
execute by looking for priority 1.

5. Asterisk finds priority 1, and then beings performing variable expansion in the application
field to prepare for execution.

6. Asterisk finishes variable expansion, then executes: Dial(SIP/18002223333@flowroute).
7. Asterisk then calls the number 18002223333 on the flowroute SIP trunk, and connects the

call to our extension so that both ends can talk to each other.

That’s it for outbound routing!

Configure Inbound Routing

In order to route calls inbound, you will need a DID (phone number) with your SIP provider. This way,
you can call your number, and it will direct to your Asterisk PBX system. A phone number is a lot like an
IP address, each one is unique, and routes to a specific location.

Unfortunately, DIDs cost money (just like you pay for cell phone service and house phone service, you
need to pay for VoIP service to rent a DID). If you would like to try out the code that follows, you’ll need

to deposit some money into your Flowroute account, and then purchase a DID from the web panel. At
this point in time, a single DID from Flowroute costs approximately $1.39 per month.
Once you’ve purchased a DID, write the number down somewhere. It will be an 11-digit phone number.
For the code that follows, simply substitute in your DID where necessary, as I will be using the ficticious
DID 18182223333.

Open your /etc/asterisk/extensions.conf file and add a new context called [inbound] to the bottom of
your file (it can go beneath the [outgoing] context we created in the last section). The context should
look like:

[inbound]

exten => 18182223333,1,Dial(SIP/1000)

The code here should look familiar to the code in the previous section. All we’re doing is dialing the SIP
extension 1000 (which is the extension we created earlier). You’ve probably noticed that there is no
@trunk syntax at the end of our Dial() application. If you look back at your SIP configuration file
(/etc/asterisk/sip.conf) you’ll notice that when we created our extension, one of the keys we defined
was: dial=SIP/1000, which tells Asterisk that in order to connect a call to that extension, we have to
dial SIP/1000.

Inbound Routing, a Full Walk Through

Let’s quickly perform a full walk through of what happens when someone calls our DID (18182223333)
from the PSTN.

1. First our SIP provider will receive the call, and check to see what customer the DID belongs
to.

2. The SIP provider will then check to see if we are registered to their SIP server.
3. Once they’ve confirmed our registration, they’ll forward the call to our Asterisk system.
4. Asterisk will receive the call from our Flowroute SIP trunk, and check to see what context it

should use to route the call.
5. Asterisk will see that our [flowroute] trunk is configured to use the context ‘inbound’, and

will send the DID number, 18182223333 to the [inbound] context for pattern matching.
6. Asterisk will match the pattern 18182223333 in our [inbound] context, and begin looking

for priority 1.
7. Asterisk will find priority 1, and then execute the Dial(SIP/1000) command.
8. Asterisk will connect the incoming call to our extension, so that both parties can talk.

Not too bad! We’ve set up the ability to receive incoming calls in only a single line of code!

At this point, we’ve created dial plan rules for both the outgoing and incoming call routing. Save your
extensions.conf file move on.

Apply Your New Dial Plan Rules

Now that we’ve finished writing our dial plan code, we need to reload Asterisk to have it re-scan our
extensions.conf file. To do this, simply type: asterisk -rx 'dialplan reload' from the command line.

The next section which will teach you how to hook up a soft phone to your Asterisk system so you can
actually test your system!

Set Up a Softphone

In this section, we’ll set up a soft phone to use to make calls. Soft phones are just SIP clients that can
connect to Asterisk and act as normal phones. Asterisk can work with normal analog telephones as well
as fancier (and more expensive) SIP phones, but SIP phones are much easier to set up, so we’ll be
configuring a soft phone today. If you want to hook up your analog phone to your Asterisk server–don’t
despair–that will be covered in another article in this series.

There are tons of soft phones to choose from, but I’ll be walking you through using X-Lite, as it is one of
the most popular and widely used.

First thing you’ll want to do is download and install X-Lite on your computer (it runs on all platforms).

Once you’ve got it installed, open it up. If you don’t have your extension information in front of you,
open up your SIP configuration file (/etc/asterisk/sip.conf) and look at your extension definition.

Right click on the main window display in X-Lite and click on ‘SIP Account Settings’. Now click ‘Add…’ to
add a SIP account.

Here are the values you should fill in:

 Display Name: Set this to anything you like. I prefer 1000 (the extension I’m using).
 User Name: Set this to your extension number (1000).
 Password: Set this to your secret.
 Authorization User Name: Set this to your extension number (1000).
 Domain: Set this to the IP address of your Asterisk server.
 Make sure the box next to ‘Register with domain and receive incoming calls’ is checked.

Once you’ve configured all those settings, press OK and then close out of the configuration menu.

If your network and SIP configuration files have been properly configured, your X-Lite phone will now
say ‘Registered’ at the top of the window! If it is not working, read back through the setup instructions
and make sure you didn’t miss anything. If you are using a virtual machine, also make sure your host
network settings have been configured to receive incoming traffic.

Making and Receiving Your First Call

Now that we’ve gotten everything set up, let’s actually make some calls!

On your X-Lite soft phone, go ahead and dial any 11-digit US telephone number (since this is the rule
that we configured for outbound routing). When you hit dial (the green button) you’ll make a call just
like you would on a normal phone, and you’ll be connected to the phone number you dialed!

If you want to receive a call, use your cell phone to call your DID, and Asterisk will route the call directly
to your X-Lite phone. You will see and hear you X-Lite phone ring, and you can pick up the call by clicking
the green button.

Conclusion

This was a very large article, and took a considerable amount of time to write. I hope that if you got this
far, you were able to clearly configure and understand the basic Asterisk setup required to make
outbound calls, and to receive inbound calls.

The material covered in this part of the series is bulky, but very important in understanding the way
Asterisk works. In future parts of the Transparent Telephony series, we’ll have significantly shorter,
more targeted articles, so following along should be easier.

Call Spoofing

Change the extension number that was given while creating the extension (Refer Page 9).
The call will go with the number specified by you.

Thanks

