
alin-adrian anton

S E C U R E S M T P P R O X Y F O R P R O T E C T I N G
M A I L T R A N S F E R A G E N T S

Scientific Coordinator
Prof.Dr.Eng.Creţu Vladimir-Ioan

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

S E C U R E S M T P P R O X Y F O R
P R O T E C T I N G M A I L T R A N S F E R

A G E N T S

alin-adrian anton

University Degree Diploma

Department of Computers
Faculty of Computer Engineering

Polytechnic University of Timişoara

June 2007

[May 22, 2007 at 8:07]

Alin-Adrian Anton: Secure SMTP Proxy for Protecting Mail
Transfer Agents, University Degree Diploma, © June 2007

[May 22, 2007 at 8:07]

These airplanes we have today are no more than a perfection of a
child’s toy made of paper.

— Henri Coandă

Dedicated to humans.

To all the medics who assist birth.

To all the families who assist them.

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

A B S T R A C T

Security solutions are usually generic and exhaustive.
Only classic attacks and a small set of vulnerabilities can be
covered by generic approaches. More, the electronic mail
system is the oldest of the services provided by the Inter-
net.Research has been seriously approached only around
lower-level threats like viruses and unsolicited commer-
cials.Serious threats like network penetration simply lack the
proper investigation which may take the service’s pecu-
liarities into account and develop a particularized solu-
tion.Heterogenous protection schemes can do better, but
still the situation is not satisfactory.

I am trying to raise the flag and show that the oldest and
most important Internet service deserves better attention
and can be better protected due to it’s particular nature and
mechanisms.

D E S C R I E R E A C O N Ţ I N U T U L U I

Soluţiile curente de securitate sunt preponderent generice
şi exhaustive. Doar atacurile comune pot fi abordate prin
soluţii generale. Deşi poşta electronică este unul din primele
servicii oferite de Internet, cercetarea în domeniul securităţii
acesteia este orientată spre vulnerabilităţi cu risc mai redus,
precum reclamele nesolicitate şi viruşii. Ameninţările se-
rioase - precum accesul neautorizat - duc lipsă de o cercetare
elaborioasă care să pună accent pe mecanismele interne ale
sistemului de poştă electronică.

Voi încerca să ridic ştafeta şi să demonstrez că cel mai
vechi şi mai important serviciu Internet poate fi protejat
mult mai bine dacă sunt studiate particularităţile sale in-
time.

vii

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

Nothing is more difficult, and therefore more precious, than to be
able to decide.

— Napoleon Bonaparte

A C K N O W L E D G E M E N T S

I wish to acknowledge my scientific coordinator, Prof. Dr.
Eng. Creţu Vladimir for the patience and efforts granted
towards my passion.

Without your encouragements and open support my jour-
ney would have not been possible. Thank you for support-
ing my opensource quests.

Many thanks to everybody who manages to stay around
me, or doesn’t have a choice!

ix

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

C O N T E N T S

part i theoretical sketch 1

1 introduction 3

1.1 Current state 3

1.1.1 General Overview 4

1.1.2 StackGuard 5

1.1.3 ProPolice 6

1.1.4 Randomized Stack Space 7

1.1.5 Randomized Heap Space 8

1.1.6 Boundary check patch for GCC 8

1.1.7 Non-executable stack space 9

1.1.8 Intrusion Detection Systems 10

1.1.9 Conclusion 10

1.2 Content description 11

part ii the showcase 13

2 basic knowledge 15

2.1 Store and Forward Systems 15

2.2 The SMTP Protocol 16

2.2.1 HELO Command 16

2.2.2 MAIL Command 17

2.2.3 RCPT Command 17

2.2.4 DATA Command 17

2.2.5 RSET Command 18

2.2.6 NOOP Command 18

2.2.7 QUIT Command 19

2.2.8 Error codes 19

2.3 Extensions to the protocol 21

2.3.1 The EXPN Command 21

2.3.2 The VRFY Command 22

2.4 Type of threats 22

2.4.1 Structure of the e-mail system 22

2.4.2 Unsolicited commercials 24

2.4.3 Viral worms 24

2.4.4 Backdoor threats 24

2.4.5 Denial of Service 25

2.4.6 Intrusion 25

xi

[May 22, 2007 at 8:07]

xii contents

3 problem specification 27

3.1 SMTP Syntax Verifier 28

3.2 Realtime Shellcode Disassembler 28

4 design concepts 31

4.1 General Design Criteria 31

4.2 Modular structure 31

4.2.1 Security 32

4.2.2 Stability 33

4.3 Expandability 33

4.4 Ergonomy 33

4.5 Performance 34

5 implementation 35

5.1 How it Works 35

5.2 Modularity 37

5.2.1 config.h 37

5.2.2 cmdline.c 38

5.2.3 daemon.c 39

5.2.4 modules.c 42

5.2.5 mylog.c 44

5.2.6 packet.h 45

5.2.7 registry.c 46

5.2.8 rxp.c 47

5.2.9 subnet.c 48

5.3 Security 50

5.4 Expandability 51

5.5 Ergonomy 52

5.6 Sample Filter Modules 52

5.6.1 SMTP Syntax Verifier 52

5.6.2 Realtime Shellcode Disassembler 54

6 evaluation 61

6.1 Benchmarking 61

6.2 System requirements 63

6.3 Source code complexity 64

7 conclusion 67

7.1 Future work 67

bibliography 69

[May 22, 2007 at 8:07]

L I S T O F F I G U R E S

Figure 1 Store and Forward System 15

Figure 2 Mail Transfer Agent Logic Blocks 22

Figure 3 The proxy guards the network bor-
der 35

Figure 4 Internal multi-threaded operations de-
tail 36

Figure 5 Plug and Go Technology - unlimited
filter modules 52

Figure 6 Throughput comparison 63

Figure 7 Performance penalty variation 63

L I S T O F TA B L E S

Table 1 SMTP Error Codes 20

Table 2 Source Code Organization 37

Table 3 Benchmark with proxy 61

Table 4 Benchmark without proxy 62

Table 5 Proxy complexity metrics 64

Table 6 Syntax module complexity metrics 64

Table 7 Disassembler module complexity met-
rics 65

A C R O N Y M S

ASCII American Standard Code for Information
Interchange

BLIP Basic Loop Integer Protection

BNF Backus-Naur Form

xiii

[May 22, 2007 at 8:07]

xiv List of Tables

CVE Common Vulnerabilities and Exposures

ESMTP Extended Simple Mail Transfer Protocol

IDS Intrusion Detection System

LMTP Local Mail Transport Protocol

MDA Mail Delivery Agent

MTA Mail Transfer Agent

MTP Mail Transfer Protocol

RFC Request For Comments

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

[May 22, 2007 at 8:07]

Part I

T H E O R E T I C A L S K E T C H

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

1
I N T R O D U C T I O N

1.1 current state

A new era was born when humans started to use comput-
ers as communication tools. Geographic borders vanished,
in spite of the fact that the telegraph and international
phone lines existed long before.

Evolving fast, the electronic mail system is one of the
oldest service of the Internet.Simply put, it is probably the
first concrete digital encapsulation of the meaning and the
goal: humans sharing information.

Some trace e-mail
origins back to
1965, in form of
the MAILBOX
system used at
MIT. . .

A few decades ago, in 1972
1, Ray Tomlinson2 first used

the @ symbol to separate the username from the hostname,
and thus established the syntax of the e-mail address. Great
ideas like that last in time, and Internet pioneer Jon Postel
is credited to calling it a "nice hack" - it certainly has lasted
to this day.

Originally published in August 1982 the Simple Mail
Transfer Protocol (SMTP) standard as defined by RFC821

3 is
still in use today - though certain extensions were attached,
to resolve the new needs.

Ongoing research needs to be done in order to elaborate
on the new challenges that evolution provides, developing
the system and preserving the principles that governed it’s
birth: openness and freedom of speech.

1 http://www.livinginternet.com
2 http://www.nethistory.info
3 ftp://ftp.rfc-editor.org

3

[May 22, 2007 at 8:07]

http://www.livinginternet.com
http://www.nethistory.info
ftp://ftp.rfc-editor.org

4 introduction

1.1.1 General Overview

Reaching maturity fast, there are plenty of protection
solutions surrounding Mail Transfer Agent (MTA) systems;
most of them deal with viruses, worms or unsolicited com-
mercials.

Genuinely the oldest Internet service, the e-mail system
also tends to be the most popular. A simple web site may
be backed up by multiple MTA servers, some for incoming,
and some for outgoing messages.

None of these merits help mail servers benefit from the
same level of intrusion protection as other services.Security
in conjunction with e-mails usually implies client-side pro-
tection from Internet malware.

Half of the vulnerabilities related to MTA can be remotely
abused. At the Common Vulnerabilities and Exposures
(CVE) center 57

4 out of 136 MTA programming bugs provide
possible vectors for a remote system compromise.No specific

solution for MTA
intrusion
protection is
available. . .

Dates go back to 1999, from the time of this writing. Ar-
gumentably the most complete database of vulnerabilities,
it just lists the well known and commonly met issues.

Flaws are difficult to analyze because international cor-
porations still tend to minimize the impact of bad publicity
when it comes to severe bug exposures. Information may
so be less accurate, and in many cases a proof of concept
scenario is unavailable.

Greatly inspired by the product of TrustWall HTTP Proxy5,
the current work tries to re-implement the idea and adapt
it to MTA technology.At best there are

generic solutions
which apply to
operating system
scale and work for
any userland
service. . .

Having this said, following there are major technologies
with individual approaches to the problem of intrusion
prevention.They are generally applicable from mail servers

4 Almost half of them can be remotely triggered
5 http://freshmeat.net/projects/twhttpd/

[May 22, 2007 at 8:07]

http://freshmeat.net/projects/twhttpd/

1.1 current state 5

to any other kind of service one can imagine, so they are
not MTA specific but can be used to protect MTA servers.

1.1.2 StackGuard

As described by Wagle and Cowan [8], StackGuard is a
technology which does not literally prevent stack overflows;
it attempts to detect them before they become dangerous.

Limited to preventing the execution flow of being redi-
rected to user controlled memory adresses, StackGuard
claims no guarantee that memory corruption is detected all
the time. Linear adjacent locations can still be overwritten
and depending on their original contents and how they
are interpreted by the conditional branches in the code,
takeovers can still take place.

With StackGuard, canary values are inserted inside the
stack frames of function calls, so that when the saved return
address is corrupted they are destroyed - this provides a
mechanism to prove that a stack overflow took place and
the real function will no longer return at the user supplied
address. A special mechanism is triggered and the normal
execution flow is blocked from it’s course (the process is
terminated).

Normally execution flow hijacking is achieved by over-
writing the saved return address in a stack activation frame
with user supplied values, so when the function returns it
will execute the code from a user supplied location which,
by all means, may contain foreign instructions.

There are variations of the same idea which may include
the randomization of canary values, read-only canaries and
other improvements. Each converges to the same point:
when the function returns from the call, the very first thing
which needs to be done is to check the authenticity of the
canary value.

Directed to classic stack overflows as introduced by the
notorious Levy [5] article, StackGuard is just a part of a

[May 22, 2007 at 8:07]

6 introduction

large puzzle and cannot guarantee immunity - it’s just an
improvement.

The problem is that if an opponent knows, is able to
precompute or even guesses the canary values, the whole
mechanism is rendered useless.

1.1.3 ProPolice

Originally known as SSP from Etoh and Yoda [2], ProPo-
lice is an improvement of StackGuard. By using random
canary values and it complementing stack integrity checks
with variables relocation[4] it enhances the safety in the
stack overflow domain.

Expanding the addressed problem set, the two IBM re-
searchers came in with the idea of re-arranging the stack
frame so that it will converge to an "ideal" model. Brilliantly,
the array variables are always located at the highest part of
the stack frame, such that when they become overflowed
no local variables are affected.

Organizing function arguments in respect to the C calling
convention implies that they are stored "above" the local
regions of the stack frame. So in order to achieve protection,
they are copied into locally assigned variables - safe from
the growing side of any possible buffer.

Safety-model functions do not always work.Both a pointer
to a function and a character array encapsulated into a C
structure will still expose the pointer when the array is
overflowed.Random changes of the order of elements in-
side a structure is prohibited and should not be part of the
conversion.

Again, dynamic arrays cannot be protected by compiler
conversions and optimizations. Instant changes can appear
during run-time execution.Normally, MTAs mostly use dy-
namic allocations for storing user-supplied arrays.

[May 22, 2007 at 8:07]

1.1 current state 7

1.1.4 Randomized Stack Space

Stack space is organized by the kernel. A subroutine
loads the executable process into memory, and prepares
the required resources. In order to randomize the stack
space addresses a compiler patch is not enough. Dynami-
cally loadable kernel modules or even kernel patches are
required.

It’s tight dependency with the operating system makes
this method difficult to port.Ruling out different hardware
architectures, it is even hard to port across similar operating
systems running on the same hardware platform.

Ultimately, once implemented and activated, any process
running on the host will benefit of the protection with a
simple restart. Lately even the kernel itself becomes pro-
tected by the patch.

Twinkle, twinkle
little star. . .Execve() system call is usually modified to allocate more

space than it is necessary, then place the stack anywhere in
the wasteful gap.

Again, this doesn’t prevent stack overflows at all. Notably
it becomes considerably difficult for someone to overflow a
certain desired address in the stack, bearing in mind that
the beginning of the stack is unknown. Yet, the smaller the
gap, the likely the guess.

Within 32-bit or smaller size systems, as Shacham et al. [6]
showed, stack space randomization is anything but magic.
A determined opponent will manage to "guess" whatever
is needed and get over it.

Years have to pass before hardware developers will pro-
vide serious mechanisms for address space randomization
- if they ever will. Limitations like high production costs
or the necessary waste of system resources may prove this
idea to be unfeasable on real world scenarios - especially
where performance is a demand.

[May 22, 2007 at 8:07]

8 introduction

Unlike office-styled workstations, heavy loaded servers
will never afford to dump memory and execution cycles to
the recycle bin.

1.1.5 Randomized Heap Space

Not very different than the previous idea, the same prin-
ciple is applied to malloc(). Generally, the same issues and
debates can be brought into discussion against heap ad-
dress randomization.Sadly, however, the penalties may be
more substantial as the heap is far larger than the stack
and is dynamically modified at higher rates, especially on
server machines.. . . how I wonder

where you are. . .
A server constantly forces the heap to grow and de-

crease.It is even difficult to prevent the heap space from
address fragmentation and performance must be traded
with storage capacity.

Daemons, and especially MTA may allocate and deallocate
large chunks of data during long runtime sessions - as long
as decent e-mail attachments are allowed.

In a truly randomized version of the heap space, allocat-
ing and deallocating 10 Megabytes of data is very problem-
atic. Hereby fragmentation of memory appears in a blink
of an eye, and the whole system becomes unusable for any
real purpose.

1.1.6 Boundary check patch for GCC

A completely different approach then those already dis-
cussed, the Basic Loop Integer Protection (BLIP) patch intro-
duced by Horovitz [3] adresses the issue of integer bugs.

Very often the patch is simply inefficient regarding over-
flows, unless integers are used in some algebraic computa-
tion to determine the size or position in a buffer.

Everyday use may imply a combined solution of compiler

[May 22, 2007 at 8:07]

1.1 current state 9

patches and operating system extensions, a mixed colabora-
tion of technologies able to prevent most of the bugs and
scenarios.

Anyhow, some doors will remain opened and some so-
lutions may not fit the production enviroment, so there is
still room for the danger to come in.

Irresponsibly mixing all of the possible compiler patches
and enhancements will not suffice. Remaining there are
still bugs inside the protected perimeter, and the deceiving
feeling of safety may appear.

1.1.7 Non-executable stack space

Hardware platforms treat executable accesses differently.
Each code execution cycle will generate a memory read ac-
cess and the architectural details may vary from vendor to
vendor.Alpha and SPARC processors separate[7] memory
reads from code fetching cycles so there is full hardware sup-
port for implementing non-executable stack space.

Rudimentary support is also offered by the x86 architec-
ture, and NetBSD6 (which is probably the most portable
operating system at the date of this writing) has a working
implementation already tested on production servers.

The trick is that wherever the hardware allows it, the
mmap() system call provides a PROTEXEC permission bit
which denotes if the memory zone is executable or not.
Stack zones can be marked as read/write only and even if
someone tries to execute processor instructions from it, a
system trap will be triggered and the code will fail to run.

Adjacent buffers can still be overflowed, and if they con-
tain sensitive information - like passwords and other type of
credentials - it is still possible to circumvent authentication
mechanisms.

6 http://www.netbsd.org/

[May 22, 2007 at 8:07]

http://www.netbsd.org/

10 introduction

1.1.8 Intrusion Detection Systems

Intrusion detection systems are passive; they cannot pre-
vent intrusion. Detecting intrusion allows for extensive in-
formation logging and deploying certain configurable ac-
tions, but it may provide a subtle weakness in the whole
defensive system: like fire alarms, they ring when smoke
is detected. It is impossible to detect real smoke without
having sources of fire - so the alarm rings when something
inside the protected perimeter is already burning.

Probably a bad alarm is better then no alarm; this usually
translates into sending an e-mail and adding the offend-
ing IP address to the firewall blacklist.Unsuspecting targets
may be completely disabled if the "missile" is intelligent
enough to take out the protection mechanisms surrounding
the impact zone.

Many Intrusion Detection System (IDS)s just monitor and
scan the traffic searching for specific signatures, exactly as
antiviruses inspect a file.Protection can only be partially
achieved, and it is very easy to fall into a false sense of secu-
rity. Because of that, Snort7 (the most popular opensource
IDS) can be interconnected with various complementary
software modules and it is designed for interoperability.

1.1.9 Conclusion

Linux and other unix-like operating systems provide
generic and exhaustive protection schemes in the form of
security patches or addons. Ordinary attacks can be blocked
and detected, but that is far from enough.

On the other hand, MTA systems require performance, ro-
bustness and scalability, all of which are very prohibitive for
most of the current solutions. Developers should concen-
trate efforts in order to find a specific solution.Current solutions

are generic and
insufficient. . .

7 http://www.snort.org

[May 22, 2007 at 8:07]

http://www.snort.org

1.2 content description 11

1.2 content description

Security solutions are usually generic and exhaustive.
Only classic attacks and a small set of vulnerabilities can be
covered by generic approaches. More, the electronic mail
system is the oldest of the services provided by the Inter-
net.Research has been seriously approached only around
lower-level threats like viruses and unsolicited commer-
cials.Serious threats like network penetration simply lack the
proper investigation which may take the service’s pecu-
liarities into account and develop a particularized solu-
tion.Heterogenous protection schemes can do better, but
still the situation is not satisfactory.

I am trying to raise the flag and show that the oldest and
most important Internet service deserves better attention
and can be better protected due to it’s particular nature and
mechanisms.

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

Part II

T H E S H O W C A S E

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

2
B A S I C K N O W L E D G E

2.1 store and forward systems

There are plenty of events which may interrupt the mail
transportation process or force it to fail. Whatever node
inside the followed path encounters a reboot, a hardware
failure or a power outage, the system should be able to
adapt.

A store and forward system is a way to implement fault
tolerance regarding mail transportation. No message should
be lost, even if the errors are permanent.

Figure 1. Store and Forward System

The problematic message is queued in a local deposit for
later retries, or until another route can be planned for the
final destination. Everytime unnecessary delays occur, the
sender recipient can be informed. Delivery really fails only
after a few days on most unix servers.

The message still gets deposited and delayed for a small
amount of time (usually a matter of seconds) even if the
destination is streightforward ready. Oftenly this allows for
process and privilege separation inside the MTA implemen-
tation. One process can do queue management, another
one route planning and different levels can be used for the

15

[May 22, 2007 at 8:07]

16 basic knowledge

transportation problem. All this shall be detailed later.

Last but not least, how does the system know when the
remote failure is permanent or temporary? Looking at the
SMTP protocol and it’s error code compression algorithm
should be self-explanatory.

2.2 the smtp protocol

September 1980 - the Mail Transfer Protocol (MTP) was
first formalized by RFC772

1. Almost one year later, in May
1981 the author2 updates it by RFC780.It was a mixture of
telnet3 and ftp4 commands so not very ellegant.

Derived from MTP, the Simple Mail Transport Protocol was
first published in RFC788

5 and updated by RFC821 one
year later. Notably, this milestone version lasted for two
decades and it’s going to be reffered by this document.

Only 7 commands are demanded for a minimalistic RFC
compliant implementation, and they should be understood
by any receiver. Syntaxes are extracted in Backus-Naur
Form (BNF) notation from the original publication:

2.2.1 HELO Command

Opening of a transmission channel implies that the caller
advertises it’s domain name:

HELO <SPACE> <domain> <CR> <LF>

Hostnames usually comply to the following regular ex-
pression, tested and designed during production use:

1 http://www.ietf.org
2 Jonathan B. Postel
3 RFC764

4 RFC765

5 November 1981

[May 22, 2007 at 8:07]

http://www.ietf.org

2.2 the smtp protocol 17

#define RXP_DOMAIN:

(([[:alnum:]]+)|((([[:alnum:]]+)|
([[:alnum:]]+\-[[:alnum:]]+))\.)+[[:alpha:]]+)

Example:

HELO basement.localdomain
250 mail.yahu.com

2.2.2 MAIL Command

MAIL <SPACE> FROM: <address> <CR> <LF>

Sender and recipient addresses conform to the following
regular expression (again, this was polished from trial and
errors during production used):

#define ADDRESS:

([[:alnum:]]+(@RXP_DOMAIN))

There can be only one sender per message. A RXP_DOMAIN
should translate into the previous definition.

2.2.3 RCPT Command

Yet, the RCPT command may be invoked multiple times,
as one sender can transmit for an unlimited number of
recipients during one single session:

RCPT <SPACE> TO: <address> <CR> <LF>
whereas address conforms to the previously defined syntax.

2.2.4 DATA Command

DATA <CR> <LF>

Each body section begins with a DATA command. Data
buffers are converted to printable American Standard Code

[May 22, 2007 at 8:07]

18 basic knowledge

for Information Interchange (ASCII) codes (where applicable)
and sent on the wire just as they are (including white spaces
from the message) until the terminating empty line signal.
It is not obvious but the terminating line may take different
forms:

<CR> <LF> <DOT> <CR> <LF>

if the line is not also the first, or:

<DOT> <CR> <LF> if the message body is empty.

Nevertheless a MTA cannot differentiate between valid or
invalid mail buffers; as long as the protocol is not violated,
the real contents of a message are out of it’s scope. Later the
contents can be forwarded to specialized scanners which
may determine if it’s potentially dangerous or invalid.

2.2.5 RSET Command

RSET <CR> <LF>

A reset clears out the state machine in the remote server,
provoking instant amnesia for everything that was learned
in the current incomplete transmission6.

2.2.6 NOOP Command

NOOP <CR> <LF>

Transmitting dummy no-operation commands keeps the
network link open by refreshing delay counters on both
sides. Eventually usefull on long transmissions over low
quality7 links.

6 An incomplete transmission is when the end of message DOT was not
yet transmitted.

7 With bandwidth bottlenecks or packet loss.

[May 22, 2007 at 8:07]

2.2 the smtp protocol 19

2.2.7 QUIT Command

QUIT <CR> <LF>

Rude and unconforming client implementations simply
omit this "goodbye" procedure, by closing the transmission
channel and thus breaking the rules.

Postfix8 attempts to reply with a funny error message
whenever it has the chance to "punish" rule breakers:

telnet somedomain.com 25

Trying 193.X.X.X...
Connected to somedomain.com.
Escape character is ’^]’.
220 somedomain.com ESMTP Postfix
GET / 1.1
221 Error: I can break rules too. Goodbye.
Connection closed by remote host.

instead of:

QUIT

221 Bye.

2.2.8 Error codes

An error code is composed from three digits.Important
digits have higher decimal ranks, while less significant
digits are the rightmost.Numerical values for each digit
represent an index in an imaginary error table - so the
rightmost digits encode the details while the leftmost signal
major general states.

Critical errors start with the major digit set to 5. Others
decrease in value in proportion with their severity. Normal
situations begin with a major of 2, temporary errors with 4.

8 http://www.postfix.org/

[May 22, 2007 at 8:07]

http://www.postfix.org/

20 basic knowledge

211 System status, or system help reply
214 Help message
220 Service ready
221 Service closing transmission channel
250 Requested mail action okay, completed
251 User not local; will forward to o3@some.net
354 Start mail input; end with . (a dot)
421 Service shutting down NOW
450 Requested mail action not taken: mailbox full (try later)
451 Requested action aborted: local error in processing (try later)
452 Requested action not taken: insufficient system storage
500 Syntax error, command not understood
501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented
550 Requested action not taken: no such user here
551 User not local; please try root@upt.ro
552 Requested mail action aborted: /tmp full?
553 Requested action not taken: mailbox name not allowed
554 Transaction failed

Table 1. SMTP Error Codes

Very practical and elegant, the second digit converges the
problem to a more specific issue and the last digit, where
not null, points to an exact match in the virtual error table.

It is so very easy to translate the error messages into any
human readable language whenever new definitions are
added. No additional source code needs to be developed.

Critical errors are considered permanent. Everything else
is temporary and due to it’s fault tolerant design the client
system can try again later.

[May 22, 2007 at 8:07]

2.3 extensions to the protocol 21

2.3 extensions to the protocol

Due to the evolution of the Internet and new communication
needs, in 2001

9 the standard was updated with RFC2821.

Simple SMTP is enough for the transmission of messages.
It can handle any kind of e-mail message.Nothing has been
changed in the new version, only some extensions have
been incrementally added.

Compatibility is retained by the HELO/EHLO version
handshake. Extended transmission channels are opened by
the EHLO command while normal channels continue to use
the HELO version. They both share the same syntax as it
was described before.

2.3.1 The EXPN Command

EXPN <SPACE> <address>

Having this extension enabled on the mail server may
pose a security threat. Expandation of local user names may
be a policy violation or may even provide sensitive details
to an outside peeker.

Normally the expandation is only allowed to specific
private networks, most of the times located in the same
geographical area - like different buildings and local offices.

A network where usernames take the form of:

aa37553@cs.utt.ro

defenately needs such an extension enabled.

9 April 2001

[May 22, 2007 at 8:07]

22 basic knowledge

2.3.2 The VRFY Command

VRFY <SPACE> <address>

Not very useful in the current context - and possibly
unsafe - the command only verifies if an address is known
by the remote server party.Yet it is present on most distributions
at the date of this writing, and sometimes it’s even abused
by unsolicited commercial senders to harvest new addresses
for their database.

2.4 type of threats

2.4.1 Structure of the e-mail system

Figure 2. Mail Transfer Agent Logic Blocks

SMTP Receiver

Main interface and impact zone between the MTA and
the Internet. Receives and handles incoming transmission
channels in parallel.

[May 22, 2007 at 8:07]

2.4 type of threats 23

Local Queue Injector

Sends local mail messages into the spool database.Handy
for debugging or web scripting.

The Route Planner

Inspects the recipients for the messages passing through
the temporary deposit, and determines one or more routes
to be taken so that destination is reached.

Queue Manager / Spool Manager

The reliability of the queue manager makes the system
fault tolerant and robust. Carries an interface to the local
deposit of e-mails.

SMTP Sender

A simple and internal SMTP client which delivers mail
to the next network hop - only used when the local queue
injector is not appropiate.

Local Mail Transport Protocol (LMTP) is a simplification of
the SMTP protocol, and is sometimes used for local delivery
of the messages - for example through an AntiVirus scanner
which resides on the same machine.

Local Mailbox

New messages are stored (in an atomic manner) into the
local user’s mailbox file. Because there are many disputed
file formats and sometimes complex databases are implied,
the actual delivery is performed by a Mail Delivery Agent
(MDA) component which guarantees for atomic operations.

Exposure to attacks is concentrated around the receiver
interface and thus my efforts try to isolate a solution for
protecting that component of any generic MTA system.

[May 22, 2007 at 8:07]

24 basic knowledge

2.4.2 Unsolicited commercials

Best known as "spam", it is probably the most commonly
met and damaging attack to what used to be the first free
service of a free Internet. Our days programmers are easly
destroying the concepts and principles of the mail service
by taking radical measures against this type of threat.

Some popular DNS blacklists will help you not receive
mail from about 40% of the Internet. Some call this a
solution - and some will ask you to pay for it as a service.

Most threats do
not target the
system itself, but
the reader’s
client. . .

Eventually the real epicentre is located on the client side,
and unconsenting users get their Inbox full of garbage
or even so hard to search that they constantly need to
use a new address. Once on target, the address remains
permanently listed on the offender’s database.

2.4.3 Viral worms

Freedom is never free, and computer viruses are just a
notorious sample price. Worms are the new evolution of
computer viruses, aimed with the ability to propagate and
infect remote machines over the Internet. There are a lot
of commercial cat-and-mouse races for this issue and the
current solutions mostly manage to do the job.

However a lot of expensive network bandwidth is wasted
and mail system administration increases in complexity
and price.

This attack is also targeted against the e-mail client side,
having no major impact against the MTA level.

2.4.4 Backdoor threats

Backdoors are customized computer worms which are
ment to take over the client side one way or the other, when
the mail is opened.

[May 22, 2007 at 8:07]

2.4 type of threats 25

Some even exploit the ignorance and computer illiteracy
of the users, and thus bring the client side computers into
illegal activities such as sending commercials without prior
subscribtion.

2.4.5 Denial of Service

Anyone anywhere is vulnerable to bandwidth exhaustion.
This is unrelated to the services or the size of the network
in question. MTAs are not an exception to this.

Currently there is no better solution then the close colaboration
between major Internet service providers.

2.4.6 Intrusion

Injecting binary code into a foreign process is clearly
demonstrated by Levy[5] in his now notorious PHRACK
Magazine10 article.

Intrusion always
has a clearly
defined target and
scenario. . .

In short, computer programs use the stack. Mostly for
depositing function arguments and variables. But the compiler
uses the stack too, when it translates the sources into
executable code.

There is no real delimiter between the stack used by
the compiler, and the stack used by the program. That
makes collision possible. Software errors may produce stack
space overlaps between the compiler and the program, and
when the overlap is carefully controlled by a user of the
application, it can result in a total takeover of the target.

There are many advanced techniques for injecting machine
code into the program’s execution flow. Some are applicable
to the stack, some use the heap[7], and methodologies may
vary with the target architecture and operating system.

10 http://www.phrack.org/

[May 22, 2007 at 8:07]

http://www.phrack.org/

26 basic knowledge

However it is certain that for execution to take place, the
binary object code needs to be passed to the program via
one or more of it’s arguments. Thus a working solution
has to detect and block the binary object code before it
reaches the target, and this must be done by inspecting the
program’s arguments.

[May 22, 2007 at 8:07]

3
P R O B L E M S P E C I F I C AT I O N

Intrusion seems to be the most devastating scenario from
all above. Giving that, how can it be stopped?

Not many Internet services are store-and-forward systems.
Only a few can really benefit from the peculiarity that they
don’t need to be instant!

Rather than being time-dependant, the e-mail system was
not designed to be realtime or blazingly fast. A user will
expect the mail to travel the World instantly (i.e. in a matter
of seconds) - however, e-mails may take up to a few days to
arrive at the final destination, just like real world postcards.

Nevertheless, why wait so much if it’s already possible
to have real-time communication services, like voice over
ip, text chats, video conferences etc. ?

Classic post office mail works like this. Every snail mail
implies that you go to the post office, send a postcard, the
agency makes sure it travels the right paths so that it will
reach destination - and then, when your recipient is at home
and has the time, will check the Inbox and find the message.

It’s the way real mail works, and it has been exploited
in the electronic system in a way that provides fault and
defect tolerance. Services are able to find a path across the
"world" even if there are temporary power line outages or
even permanent defects to intermediary networks - this is
what the store and forward system is all about.

Before anyone ever had the idea, anti-virus software
already took advantage of this system particularity. Later
"anti-spam"1 filters learned to exploit it even more ingeniously,
by introducing intentional adaptive delays inside the SMTP

1 The "spam" term is really borrowed from an old Monty Python sketch.

27

[May 22, 2007 at 8:07]

28 problem specification

protocol.

It could be exploited by intrustion protection filters too,
and if it’s going to work it should open fertile horizonts for
defeating MTA level intrusion.

Such a dangerous approach may put the whole theory at
stake, but the benefits are certanly worth the challenge.Sample
software is attached and tested on real world scenarios, with
two proof of concept modules.

3.1 smtp syntax verifier

The first one guards against violation of SMTP syntax. It
is based on regular expressions and attempts to be much
more restrictive than the internal code of the MTA, without
breaking the Request For Comments (RFC).

For instance, most MTAs won’t check if there are unprintable
character sets inside the input traffic. This is because programming
a mature syntax checker is not trivial and takes time. The
syntax checker provided by this proxy was long tested on
production servers and it can be considered very mature
and stable.

Almost all common attack scenarios make use of unprintable
character sets inside the program’s arguments, or at least
break the strict RFC syntax in one way. These scenarios can
be easely detected and solved by the syntax checker module.

The implementation will be detailed later.

3.2 realtime shellcode disassembler

The beauty of the "beast" is the approach of detecting
dangerous executable operands inside the mail traffic.

The shellcode term is a shortcut from "executable operand
code which provides shell terminal access". That is, operands
which translate into correct system calls like execve(/̈bin/sh)̈

[May 22, 2007 at 8:07]

3.2 realtime shellcode disassembler 29

and if interpreted by the target processor are able to grant
system access to an unauthorized person.

Not all shellcodes do that, but most of them do. So
shellcode is a generic term for a stream of foreign processor
instructions which are injected into the application’s execution
flow.

Most detectors around the world, key-mechanisms inside
any decent IDS, are just string comparison functions with
relatively large signature sets.

They are all vulnerable to new, unknown and possibly
complex shellcodes which may try hard to circumvent the
detection. In the wild, there are samples of pure alphanumeric
attacks for different processor architectures (some time ago,
they were just a myth).

What this proxy does is attempting to check, in real time,
if parts of the input buffer can be understood by the target
processor as intelligible operand code. It simply tries to
disassemble parts of the input buffer, to see if there are
decompilation errors or not, and then attempts to interpret
the decompiled operands for further analysis.

This approach is not possible in time critical services, like
web browsing. However, electronic mail is not time critical -
and that is the key.

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

4
D E S I G N C O N C E P T S

4.1 general design criteria

The software is a security proxy, so first of all, it has to
be secure.

Performance is a must, since it is necessary to handle heavy
loads of parallel mail traffic. The proxy stands in front of
the MTA, so it must not degenerate all the work done by
talented programmers to optimize the throughput.

Being in front of the MTA, the proxy becomes mission
critical. If the proxy fails to deliver, all the users behind it
will have their Inbox disabled.This can turn into a disaster,
so stability is very important.

It should be very easy for other developers to contribute
and expand the software, so expandability must be taken
into account right from the begining.

At last, system administrators are mostly lazy persons
and preffer ergonomic solutions with least possible administration
complexity.

4.2 modular structure

Writing security-critical software introduces a standalone
programming paradigm, which differetiates itself from all
normal procedures of writing "good" software.

Security code must be as clear as possible. Lisibility is
probably the most important goal. One word: if you can’t
read it, DON’T!

So how to achieve lisibility?

31

[May 22, 2007 at 8:07]

32 design concepts

As opposed to object oriented programming, lisibility of
security code deals with how things are implemented, not
what services are provided.

Writing secure code is very difficult. This is one strong
reason why safety code is always small. Being small, it also
is crystal clear and streightforward (as long as related to
the implementation).

It should be noted that by secure programming the author
reffers to "how to implement", and does not cover design
mistakes like weak protocols, poor algorithms, etc. Secure
programming is one paradigm, and designing secure protocols
is something completely different.

Any security mechanism (including software) can be
viewed as a secure protocol which implies four steps:

1. authentication

2. identification

3. audit

4. authorization

However these are not covered by the subject, as what
the proxy does is replace insecure MTA implementations
with secure watchdogs.

4.2.1 Security

Everywhere and all around the programming paradigms,
modularity improves lisibility. Organized source code is
easier to understand and read.

Therefore, modularity is a must when implementing
secure software.

[May 22, 2007 at 8:07]

4.3 expandability 33

However writing secure software is a state of the art and
many of the principles are better described by Wheeler [9]
in his notorious Linuxdoc HOWTO1.

4.2.2 Stability

Stability (robustness) of the software is very important.
Stable programs are not always secure... but secure programs
should always be stable.

Robustness is a direct achievement of clear lisible code.
And as secure software should be crystally clear lisible,
stability becomes a metric of security.

4.3 expandability

Modular source code is expandable source code. However
things can be improved even more, with a plug-and-go2

mechanism which allows modules to be independently
attached or removed during runtime.

This is what every new programmer who wishes to
contribute is going to appreciate most.

4.4 ergonomy

Everyone knows most system administrators are lazy
guys, including myself. So for a software to be popular,
it should be easy to use and require - if possible - no
administration.

"Good" software from sysadmin’s perspective is something
you easly install, and forget about it for decades. One might
even forget it’s there (it happened..). So this must be taken
into account, if there’s an honest desire to improve the
safety of MTAs.

1 http://www.linuxdoc.org/
2 Will be described in detail in the Implementation chapter.

[May 22, 2007 at 8:07]

http://www.linuxdoc.org/

34 design concepts

4.5 performance

Writing secure software is usually done in the C language.
This means that if the source code is grouped into modules,
the compiled binary code is not - as opposed to object
oriented compilers.

Performance therefore suffers no penalty loss because of
the modular approach.

However the supplimentary communication links and
security checks will most certanly introduce some performance
penalties. If these penalties are too severe, the whole effort
may be rendered useless.

[May 22, 2007 at 8:07]

5
I M P L E M E N TAT I O N

The provided source code is an elegant Proof of Concept
daemon which demonstrates that the suggested approaches
are reliable solutions to MTA intrustion attacks.

The regular expressions used by the syntax module are
very mature and were tested on production enviroments.

The disassembler module is based on Libdasm1, a C
library which is able to parse Intel x86 operands and translate
them into assembly routines.A proof of concept x86 emulator
is used for detecting malicious operations.

5.1 how it works

The proxy is a Layer-7 firewall2 and guards the network
perimeter from possible attacks.

Figure 3. The proxy guards the network border

Threads instantiation is faster than a call to fork() since
there is less data to copy and allocate. That is why unix

1 http://www.nologin.net/
2 Application layer in OSI reference model

35

[May 22, 2007 at 8:07]

http://www.nologin.net/

36 implementation

threads were chosen for multitalking inside the system. The
next figure uses curves for multithreaded communication
links, and all are bidirectional channels. The streight arrows
symbol thread creation and single-threaded activities.

Figure 4. Internal multi-threaded operations detail

The rectangular modules are filters which can be plugged
in and out during runtime, without interrupting the service.
They are decisional filters which have the intelligence to
allow or reject buffer streams.

Only buffers allowed by all the active filtering modules
will be forwarded to the real MTA. Everything else is discarded
and the sender informed.

[May 22, 2007 at 8:07]

5.2 modularity 37

5.2 modularity

The daemon source code is divided into organized files:

config.h Holds configuration variables and knobs
cmdline.c Parses command line input for daemon configuration
daemon.c Transmission Control Protocol (TCP) handler
modules.c Communicates with the independent attached filters

mylog.c A file logging facility
packet.h Protocol used by filters talking to the base proxy
registry.c Registry of active filters, plug-and-go mechanisms

rxp.c Regular expressions compiler and tester
security.c Sandbox with least possible privileges
subnet.c Utility functions for IPv4 addresses and netmasks
testall.c The main() module which starts the process

Table 2. Source Code Organization

Essential implementation details for important modules
are presented below:

5.2.1 config.h

#include <sys/types.h>

#define PROGNAME "DIPLOMA"
#define VERSION "PoC-1"
#define MAX POSIX LINE 2048

/* total number of module sockets */
#define MAX SOCKETS 50

/* total number of concurrent TCP connections */ 10

#define MAX CONN CNT 25

#define LOG FILENAME "audit.log"
#define SOCKET DIR "/socks/"

[May 22, 2007 at 8:07]

38 implementation

/* directory polling interval */
#define SLEEP SEC 5

/* TCP inactivity patience */ 20

#define TCP SEC TIMEOUT 60

int sandbox gid;
int sandbox uid;
int local port;
int server port;
uint32 t local ip;
uint32 t server ip;

char sandbox path[MAX POSIX LINE]; 30

The source itself is explanatory. Lisibility was very important
and taken into account.

5.2.2 cmdline.c

The command line parser makes use of the standard unix
stdlib library for elegantly handling the start-up options.

#define LOCAL ADDRESS 1
#define LOCAL PORT 2
#define SERVER ADDRESS 5
#define SERVER PORT 6
#define SANDBOX PATH 7

static struct option longopts[] = {
{ "local_address", required argument, NULL, LOCAL ADDRESS},
{ "local_port", required argument, NULL, LOCAL PORT},
{ "server_address", required argument, NULL, SERVER ADDRESS}, 10

{ "server_port", required argument, NULL, SERVER PORT},
{ "sandbox_path", required argument, NULL, SANDBOX PATH},

{ NULL, 0, NULL, 0}
};

int
usage(char *myname)

{
fprintf(stderr, "Usage: \n %s [options]\n", myname); 20

fprintf(stderr, "Options are:\n");
fprintf(stderr, " --local_address 10.0.0.1\n");
fprintf(stderr, " --local_port 25\n");
fprintf(stderr, " --server_address 10.0.0.10\n");

[May 22, 2007 at 8:07]

5.2 modularity 39

fprintf(stderr, " --server_port 25\n");
fprintf(stderr, " --sandbox_path /usr/local/nobody/\n");
fprintf(stderr, "\n\n");

return (−1);
} 30

Some of them are optional, some are necessary:

if (local ip == 0) {
mylog(MYLOG ERR, "cmdline_preload(): local_ip not set");

return (−1);
}

if (server ip == 0) {
mylog(MYLOG ERR, "cmdline_preload(): server_ip not set");

return (−1); 10

}

if (strncmp(sandbox path, "lazy_bastard", strlen("lazy_bastard")) == 0) {
mylog(MYLOG ERR, "cmdline_preload(): sandbox_path not set");

return (−1);
}

Wherever string functions are used, the safe alternatives
are preferred and care is taken to correctly limit the buffer
lengths.

5.2.3 daemon.c

Most importantly takes care of the traffic transit between
the server and the Internet:

int
socket transit(int insock, int outsock)

{
struct timeval tv;
struct packet *pkt;
fd set readfds, savedfds;
char buf[MAX POSIX LINE];
int ret;

[May 22, 2007 at 8:07]

40 implementation

tv.tv sec = TCP SEC TIMEOUT; 10

tv.tv usec = 0;

FD ZERO(&savedfds);
FD SET(insock, &savedfds);
FD SET(outsock, &savedfds);

for (;;) {
readfds = savedfds;
if ((ret=select(FD SETSIZE, &readfds, NULL, NULL, &tv)) == −1) {

mylog(MYLOG ERR, 20

"_socket_transit(): select(): %s", strerror(errno));

close(insock);
close(outsock);

return (−1);
}

if (ret == 0) {
mylog(MYLOG INFO, 30

"_socket_transit(): timeout on select(), closing session");
. . .

}

if (FD ISSET(insock, &readfds)) {

/* there is data from Internet connection */

memset(buf, 0x0, MAX POSIX LINE);
if ((ret=recv(insock, buf, MAX POSIX LINE − 1, 0)) == −1) { 40

mylog(MYLOG ERR, "_socket_transit(): recv(): %s",
strerror(errno));

. . .
return (−1);

}
. . .

/* here modules are called to test the safety of buf */

if ((pkt=check safety modules(buf)) == NULL) { 50

mylog(MYLOG ERR,
"_socket_transit(): packet allocation failed");

return (−1);
}

[May 22, 2007 at 8:07]

5.2 modularity 41

switch (pkt−>status) { 60

case STATUS OK:
if ((ret=send(outsock, buf, strlen(buf), 0)) == −1) {

mylog(MYLOG ERR,
"_socket_transit(): send(): %s", strerror(errno));

. . .
return (−1);

}
if (ret < strlen(buf)) {

mylog(MYLOG ERR, . . .);
} 70

break;
case STATUS ERROR:

mylog(MYLOG ERR, . . .);
break;

/* attacks should be logged individually by the modules */

case STATUS ATTACK:
. . .

break; 80

} /* switch() */
free(pkt); /* do not waste RAM */

}
if (FD ISSET(outsock, &readfds)) {

/* there is some data from SMTP server */

memset(buf, 0x0, MAX POSIX LINE);
if ((ret=recv(outsock, buf, MAX POSIX LINE − 1, 0)) == −1) {

mylog(MYLOG ERR, . . .); 90

. . .
}

if (ret == 0) {
. . . /* may happen normally so don’t bark :) */

}

if ((ret=send(insock, buf, ret, 0)) == −1) {
mylog(MYLOG ERR, . . .);
. . . 100

}

if (ret < strlen(buf)) {
mylog(MYLOG ERR, . . .);

}
}

} /* for() */
/* NOT REACHED */
return (0);

} 110

[May 22, 2007 at 8:07]

42 implementation

Errors are comprehensively logged and as a programming
standard the stacktrace of the calling functions is always
included.

Traffic goes unprohibited as long as there are no errors
or attacks detected. Otherwise, filter modules supply the
error message which the attacker is going to receive, and
the real MTA remains unaware.

5.2.4 modules.c

The file provides functionality to loop through the registered
(plugged in) modules until the buffer passes the security
checks or at least one filter detects an intrusion attempt.

struct packet *
check safety modules(char *s)
{

struct packet *pkt, pktr;
int i, ret;

pkt = (struct packet *) malloc(sizeof (struct packet));
if (pkt == NULL) {

mylog(MYLOG ERR, . . .);
10

return (NULL);
}

memset(pkt, 0x0, sizeof (struct packet));
pkt−>status = STATUS OK;
strncpy(pkt−>str, s, MAX POSIX LINE − 1);

if (pthread mutex lock(&mt reg) != 0)
mylog(MYLOG ERR,

"check_safety_modules(): pthread_mutex_lock(): %s", 20

strerror(errno));

for (i=0;i<MAX SOCKETS;i++) {
if (sock table[i] != 0) {

memset(&pktr, 0x0, sizeof (struct packet));

if ((ret=send(sock table[i], pkt,
sizeof (struct packet), 0)) == −1) {
mylog(MYLOG ERR, . . .);

[May 22, 2007 at 8:07]

5.2 modularity 43

30

pkt−>status = STATUS ERROR;
break;

}

if (ret < sizeof(struct packet)) {
mylog(MYLOG ERR, . . .);
. . .
break;

}
40

if ((ret=recv(sock table[i], &pktr,
sizeof (struct packet), 0)) == −1) {
mylog(MYLOG ERR, . . .);
. . .

}

if (ret == 0) {
mylog(MYLOG ERR,

"check_safety_modules(): module closed connection.");
sock table[i] = 0; /* clear out orphan socket */ 50

. . .
}

if (pktr.status != STATUS OK) {
memset(pkt, 0x0, sizeof (struct packet));
pkt−>status = pktr.status;
strncpy(pkt−>str, pktr.str, MAX POSIX LINE − 1);

break;
} 60

}
}

if (pthread mutex unlock(&mt reg) != 0)
mylog(MYLOG ERR,

"check_safety_modules(): pthread_mutex_unlock(): %s",
strerror(errno));

return (pkt); /* all modules passed the security checks */ 70

}

[May 22, 2007 at 8:07]

44 implementation

5.2.5 mylog.c

Very elegant file logging facility, styled around syslog3

format. It’s very important to use files as a log storage and
not specialized unix daemons because the whole process is
going to run inside an opaque security sandbox.

void mylog(int priority, char *fmt, . . .)
{

int fl firstcall = 1;
char mname[][12]={"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

va list ap;
struct tm *tm ptr = NULL;
time t the time;

10

if (fl firstcall) {
fl firstcall = 0;

mylogfp = fopen(LOG FILENAME, "a");
if (mylogfp == NULL) {

perror("fopen logfile");
exit(EXIT FAILURE);

}
}

20

va start(ap, fmt);

time(&the time);
tm ptr = localtime(&the time);

if (tm ptr == NULL) {
fprintf(stderr, "mylog(): localtime() fatal error\n");

fprintf(mylogfp, "mylog(): localtime() fatal error\n");
30

exit(EXIT FAILURE);
}

/* logs to file, no syslog in a secure sandbox */

fprintf(mylogfp, "%3s %02d %02d:%02d:%02d ",
mname[tm ptr−>tm mon], tm ptr−>tm mday,

tm ptr−>tm hour, tm ptr−>tm min, tm ptr−>tm sec);

fprintf(mylogfp, "%s: ", PROGNAME); 40

3 The default UNIX system logger.

[May 22, 2007 at 8:07]

5.2 modularity 45

fprintf(stderr, "%3s %02d %02d:%02d:%02d ",
mname[tm ptr−>tm mon], tm ptr−>tm mday,

tm ptr−>tm hour, tm ptr−>tm min, tm ptr−>tm sec);

switch (priority) {
case MYLOG ERR:

fprintf(stderr, "%s: ERROR ", PROGNAME);
fprintf(mylogfp, "ERROR ");
break; 50

case MYLOG WARNING:
fprintf(stderr, "%s: WARNING ", PROGNAME);
fprintf(mylogfp, "WARNING ");
break;

case MYLOG INFO:
fprintf(stderr, "%s: INFO ", PROGNAME);
fprintf(mylogfp, "INFO ");
break;

}
60

vfprintf(mylogfp, fmt, ap);
vfprintf(stderr, fmt, ap);
fprintf(mylogfp, "\n"); /* automagically add the new line */
fprintf(stderr, "\n");

va end(ap);
}

The mylog() function is a format string function, so it can
take an unlimited number of arguments and format them
accordingly. However that also means it is always important
to provide it a format string argument, otherwise security
errors can occur.

5.2.6 packet.h

The packet header simply defines the structure used for
communication between the main proxy and it’s plugged
in filter modules:

[May 22, 2007 at 8:07]

46 implementation

#include "config.h"

#define STATUS OK 0
#define STATUS ERROR 1
#define STATUS ATTACK 2

struct packet {
char str[MAX POSIX LINE];
int status;

}; 10

5.2.7 registry.c

The registry is responsible for polling the socket directory
and managing the plug and go technology. New filters can be
attached during runtime without any sort of interruptions.
The technology will be described later - as it is important
for expandability.

int
dirlist(char *path)

{
. . .
fcount = scandir(path, &filelist, 0, alphasort);
. . .
for(i = 0; i < fcount; i++) {

. . .
if (stat(realpath, &sb) == −1) {

. . . 10

}

if (S ISSOCK(sb.st mode)) {
if (register(realpath) == −1) {

mylog(MYLOG ERR, . . .);
}

}
free(filelist[i]);

}
free(. . .); 20

. . .
}

int
dirpoll(char *path) {

. . .
for (;;) {

if (stat(path, &sb) == −1) return (−1);

[May 22, 2007 at 8:07]

5.2 modularity 47

if (sb.st mtime != old mtime) { 30

if (dirlist(path) == −1) {
mylog(. . .);
. . .

}
}
old mtime = sb.st mtime;

sleep(SLEEP SEC);
}

} 40

_dirpoll() detects changes in the directory structure, and
_dirlist() scans the directory for unix domain sockets.

Dead sockets are automatically removed from the registry,
and unconnected sockets get linked to the main proxy.

5.2.8 rxp.c

int
match(const char *string, char *pattern)
{

int status;
regex t re;

if ((status=regcomp(&re, pattern, REG EXTENDED|REG NOSUB)) != 0) {
mylog(MYLOG ERR, . . .);

return(0); /* report error */ 10

}

status = regexec(&re, string, (size t) 0, NULL, 0);
regfree(&re);

if (status != 0) {
if (status == REG NOMATCH) return (0);
else mylog(MYLOG ERR, . . .);

return(0); /* report error */ 20

}

return(1); /* return OK */
}
.
.
.

[May 22, 2007 at 8:07]

48 implementation

int
compiled match(const char *string, regex t *code)
{ 30

int status;

status = regexec(code, string, (size t) 0, NULL, 0);
if (status == REG NOMATCH) return (0);
if (status == 0) return (1);

}

The compiled_match() function is much faster than match()
because it uses precompilated regular expression code.
Therefore it is wiser to compile all the regular expressions
at start-up and use the faster function call during runtime.

5.2.9 subnet.c

The subnet module contains utility functions for computing
and verifying IPv4 addresses with their netmasks. I had to
build my own ASCII to network byte order IP conversion
function as the default routines do not handle bogus parameters
correctly.

extern int /* boolean */
ip in subnet(uint32 t ip, struct s subnet *snet)
{

if ((ip << (32 − snet−>mask)) ==
(snet−>ip << (32 − snet−>mask))) return (1);

else return (0);
}

extern uint32 t 10

ip to binary(char *ip1)
{

uint32 t b1,b2,b3,b4;
uint32 t result;
char *ptr=NULL, *old=NULL;
char ip[16]; /* internal buffer to store and work with the IP */

/*
* I preffer the use of malloc here internally because it’s faster
* than a call to strlen. However strncpy might be better. 20

*/

[May 22, 2007 at 8:07]

5.2 modularity 49

memset(ip, 0x0, 16);
strncpy(ip, ip1, 15); /* last byte must be zero */

b1=0;b2=0;b3=0;b4=0;

ptr = strchr(ip, ’.’);
if (ptr == NULL) { 30

mylog(MYLOG ERR, "ip_to_binary(): invalid IP address");
return (0);

}
*ptr=’\0’;
b1=atoi(ip);
ptr+=sizeof(char);
old=ptr;

ptr = strchr(ptr, ’.’);
if (ptr == NULL) { 40

mylog(MYLOG ERR, "ip_to_binary(): invalid IP address");
return (0);

}
*ptr=’\0’;
b2=atoi(old);
ptr+=sizeof(char);
old=ptr;

ptr = strchr(ptr, ’.’);
if (ptr == NULL) { 50

mylog(MYLOG ERR, "ip_to_binary(): invalid IP address");
return (0);

}
*ptr=’\0’;
b3 = atoi(old);
ptr+=sizeof(char);

b4=atoi(ptr);

result=0; 60

/* 3,2,1 use this for host byte-order instead of what follows */

b2 = b2 << 8;
b3 = b3 << 16;
b4 = b4 << 24;

result = b4 + b3 + b2 + b1;

/* returns in network byte order */ 70

return (result);
}

[May 22, 2007 at 8:07]

50 implementation

5.3 security

The daemon builds a sandbox before executing any other
functionality. This assures that the worst case scenario,
when the daemon itself is taken over by an intruder, is
jailed into a security sandbox.

The security sandbox implemented by the daemon consists
of a restricted filesystem zone, with the least possible system
privileges. That is, the daemon changes the root path to a
configurable "no-man’s-land" area, and then it irreversibly
drops all it’s execution privileges to the lowest level possible.
This is done by the security_drop_privileges() function from
the security.c module:

int
security drop privileges(void)
{

sandbox uid= get sandbox user();
sandbox gid= get sandbox group();

if (sandbox uid == −1) {
mylog(MYLOG ERR, . . .);

return (−1); 10

}

if (sandbox gid == −1) {
mylog(MYLOG ERR, . . .);

return (−1);
}

if ((sandbox uid == 0) | | (sandbox gid == 0)) {
. . . /* don’t be dumb root */ 20

}

if (chdir(sandbox path) == −1) {
. . . /* change directory */

}

if (chroot(sandbox path) == −1) {
. . . /* change root path */

}

[May 22, 2007 at 8:07]

5.4 expandability 51

30

if (setgid(sandbox gid) == −1) {
. . . /* drop group privileges */

}

if (setuid(sandbox uid) == −1) {
. . . /* drop user privileges */

}
40

return (0);
}

It is very important to observe that each filter module may
run at different privilege levels and have a sandbox of it’s
own. This arcane configuration makes life a cruel scenario
for possible intruders.

An unfortunate attacker which manages to drill into the
system may need to sequencially break out of 50

4 or more
unprivileged sandboxes. And it may need to use different
techniques for each of them.

The sources are compiled with the gcc -Wall flag, which
provides some basic static analysis for possible bugs. No
errors are mentioned.

Furthermore, all the secure programming principles briefly
introduced in the previous chapters are carefully respected.

5.4 expandability

The Plug-and-Go technology allows for uninterruptible
addons and updates to be attached. The mail traffic flows
unaffected through the security mechanisms while an unlimited
number of filter modules can be attached to the system.

4 The number of registered modules.

[May 22, 2007 at 8:07]

52 implementation

Figure 5. Plug and Go Technology - unlimited filter modules

5.5 ergonomy

At last, ergonomy is pretty self-implied. The proxy itself
requires no restart when it is updated or when modules
detach, so no administration is required. It can remain
untouched for a long period of time, while filter modules
may come an go.

Administration burden is thus throwed upon the filtering
modules. However modules may be written by different
developers and companies, so each can handle the technical
support in private.

It is also possible to grant different levels of administration
and responsibilities accordingly to the number of filtering
modules, or simply share the burden with a low-priviliged
sysadmin.

5.6 sample filter modules

5.6.1 SMTP Syntax Verifier

The regular expressions are precompiled at startup for
speed optimization. The following expressions were long
tested on production mail servers and are quite powerful:

[May 22, 2007 at 8:07]

5.6 sample filter modules 53

#define RXP DOMAIN "(([[:alnum:]]+)|((([[:alnum:]]+)|([[:alnum:]]+"
"\\-[[:alnum:]]+))\\.)+[[:alpha:]]+)"

#define RXP ADDRESS "([[:alnum:]]+(@" RXP DOMAIN "))"
#define RXP BRACKET ADDRESS "(" RXP ADDRESS ")|(<" RXP ADDRESS ">)"
#define RXP SMTP ADDRESS "<" RXP ADDRESS ">"
#define RXP IP BYTE "[0-9]?[0-9]?[0-9]"

#define RXP IP RXP IP BYTE "." RXP IP BYTE "."
RXP IP BYTE "." RXP IP BYTE /* very round */ 10

/*
* Commands are detected in the first round, profound
* syntax is checked in the second round.
*
* Here follow primitive command detectors for round 1.
*/

regcomp(&RXP CMD HELO, "(^[Hh][Ee][Ll][Oo][])|(^[Hh][Ee][Ll][Oo]$)", . . .); 20

regcomp(&RXP CMD EHLO, "(^[Ee][Hh][Ll][Oo][])|(^[Ee][Hh][Ll][Oo]$)", . . .);

regcomp(&RXP CMD VRFY, "(^[Vv][Rr][Ff][Yy][])|(^[Vv][Rr][Ff][Yy])$", . . .);

regcomp(&RXP CMD EXPN, "(^[Ee][Xx][Pp][Nn][])|(^[Ee][Xx][Pp][Nn])$", . . .);

regcomp(&RXP CMD HELP, "(^[Hh][Ee][Ll][Pp][])|(^[Hh][Ee][Ll][Pp])$", . . .);

regcomp(&RXP CMD QUIT, "(^[Qq][Uu][Ii][Tt][])|(^[Qq][Uu][Ii][Tt])$", . . .); 30

regcomp(&RXP CMD RSET, "(^[Rr][Ss][Ee][Tt][])|(^[Rr][Ss][Ee][Tt])$", . . .);

regcomp(&RXP CMD NOOP, "(^[Nn][Oo][Oo][Pp][])|(^[Nn][Oo][Oo][Pp])$", . . .);

regcomp(&RXP CMD XFORWARD,
"(^[Xx][Ff][Oo][Rr][Ww][Aa][Rr][Dd][])|(^[Xx][Ff][Oo][Rr][Ww][Aa][Rr][Dd])$", . . .);

regcomp(&RXP CMD MAIL, "(^[Mm][Aa][Ii][Ll][])|(^[Mm][Aa][Ii][Ll])$", . . .);
40

regcomp(&RXP CMD RCPT, "(^[Rr][Cc][Pp][Tt][])|(^[Rr][Cc][Pp][Tt])$", . . .);

regcomp(&RXP CMD DATA, "(^[Dd][Aa][Tt][Aa][])|(^[Dd][Aa][Tt][Aa])$", . . .);

/*
* Now for the Real syntax checkers,
* to be used in round 2.
*/

50

[May 22, 2007 at 8:07]

54 implementation

regcomp(&RXP CMD HELO OK, "^[Hh][Ee][Ll][Oo][]" RXP DOMAIN "$", . . .);

regcomp(&RXP CMD EHLO OK, "^[Ee][Hh][Ll][Oo][]" RXP DOMAIN "$", . . .);

regcomp(&RXP CMD VRFY OK, "^[Vv][Rr][Ff][Yy][]" RXP BRACKET ADDRESS "$", . . .);

regcomp(&RXP CMD EXPN OK, "^[Ee][Xx][Pp][Nn][]" RXP BRACKET ADDRESS "$", . . .);

regcomp(&RXP CMD HELP OK, "^[Hh][Ee][Ll][Pp]([][[:alpha:]]+)?$", . . .); 60

regcomp(&RXP CMD QUIT OK, "^[Qq][Uu][Ii][Tt]$", . . .);

regcomp(&RXP CMD RSET OK, "^[Rr][Ss][Ee][Tt]$", . . .);

regcomp(&RXP CMD NOOP OK, "^[Nn][Oo][Oo][Pp]$", . . .);

regcomp(&RXP CMD DATA OK, "^[Dd][Aa][Tt][Aa]$", . . .);

regcomp(&RXP CMD XFORWARD OK, 70

"^[Xx][Ff][Oo][Rr][Ww][Aa][Rr][Dd][][Aa][Dd][Dd][Rr]=" RXP IP "$", . . .);

regcomp(&RXP CMD MAIL OK,
"^[Mm][Aa][Ii][Ll][][Ff][Rr][Oo][Mm]:[]?" RXP SMTP ADDRESS "$", . . .);

regcomp(&RXP CMD RCPT OK,
"^[Rr][Cc][Pp][Tt][][Tt][Oo]:[]?" RXP SMTP ADDRESS "$", . . .);

There are two major rounds for syntax checking: first,
commands are indentified even with bogus syntax. This
allows the module to send appropiate error messages back
to the Internet user - SMTP has different error codes for
unknown commands and bad parameter syntax.

The second round will check the buffer against the appropiate
precomputed regular expression, depending on what command
was identified (and only if the first round is passed). As
expected, comp_match() is used.

5.6.2 Realtime Shellcode Disassembler

The disassembly routines are imported from the Libdasm5

library. It is fairly easy to use, but interpreting the result
can be very frustrating:

5 http://www.nologin.net

[May 22, 2007 at 8:07]

http://www.nologin.net

5.6 sample filter modules 55

. .
#include ". ./libdasm.h"
. .

int main() {
INSTRUCTION inst; /* internal structure */
. . .

/*
* Fetches 32-bit Intel instruction from buffer &data 10

*/

get instruction(&inst, data, MODE 32);

if (inst.type == INSTRUCTION TYPE ADD) {
. . .

if (inst.op1.type == OPERAND TYPE MEMORY) {
. . .
if (inst.op1.basereg == REGISTER EDX) . . . 20

if (inst.op2.reg == REGISTER EAX) {
. . .
if (inst.op2.type != OPERAND TYPE REGISTER) {

. . .
}

}
}

return (0);
} 30

Unfortunately the x86 instruction set is very dense, and
almost any regular human language sentence can be translated
into correct assembly instructions by linear disassembly.

For example: "Thank you, Hannah, Princess of Persia"
can be disassembled into:

; Intel Syntax
;
push esp
push dword 0x206b6e61
jns 0x77
jnz 0x2a
dec esp
popa
jnz 0x80
popa 10

[May 22, 2007 at 8:07]

56 implementation

sub al,0x20
push byte 0x75
outsb
imul ebp,[ecx+0x65],0x20
jz 0x91
db 0x69
outsb
db 0x6b
insb
db 0x65 20

db 0x72

Therefore simple disassembly may suffice on other hardware
architectures, but not on x86. And the following shellcode
makes things even more perverse:

; AT&T Syntax
;
;Dump of assembler code for function beast:
0x08049780 <beast+0>: jmp 0x8049791 <beast+17>

0x08049782 <beast+2>: pop %esi
0x08049783 <beast+3>: sub %ecx,%ecx
0x08049785 <beast+5>: mov %esi,%ebx
0x08049787 <beast+7>: mov $0x17,%cl
0x08049789 <beast+9>: addb $0xaa,(%ebx)
0x0804978c <beast+12>: inc %ebx 10

0x0804978d <beast+13>: loopne 0x8049789 <beast+9>

0x0804978f <beast+15>: jmp 0x8049796 <beast+22>

0x08049791 <beast+17>: call 0x8049782 <beast+2>

0x08049796 <beast+22>: xchg %edx,(%esi)
0x08049798 <beast+24>: cmpsb %es:(%edi),%ds:(%esi)
0x08049799 <beast+25>: mov $0xbec98585,%esi
0x0804979e <beast+30>: mov $0xc4bfb885,%esi
0x080497a3 <beast+35>: fistpll (%ecx)
0x080497a5 <beast+37>: cmpsb %es:(%edi),%ds:(%esi)
0x080497a6 <beast+38>: stos %al,%es:(%edi) 20

0x080497a7 <beast+39>: test $0x239106a6,%eax
0x080497ac <beast+44>: (bad)
0x080497ad <beast+45>: add %al,(%eax)
0x080497af <beast+47>: add %al,(%eax)
0x080497b1 <beast+49>: add %al,(%eax)
0x080497b3 <beast+51>: add %al,(%eax)
0x080497b5 <beast+53>: add %al,(%eax)
0x080497b7 <beast+55>: add %al,(%eax)
0x080497b9 <beast+57>: add %al,(%eax)
0x080497bb <beast+59>: add %al,(%eax) 30

0x080497bd <beast+61>: add %al,(%eax)
0x080497bf <beast+63>: add %ch,%bl
;End of assembler dump.

[May 22, 2007 at 8:07]

5.6 sample filter modules 57

And in buffer stream it looks like:

char beast[]=
"\xeb\x0f\x5e\x29\xc9\x89\xf3\xb1\x17\x80"
"\x03\xaa\x43\xe0\xfa\xeb\x05\xe8\xec\xff\xff\xff"
"\x87\x16\xa6\xbe\x85\x85\xc9\xbe\xbe\x85\xb8\xbf"
"\xc4\xdf\x39\xa6\xaa\xa9\xa6\x06\x91\x23\xd6";

The sample shellcode is a touppercase() evasion instruction
set which runs on FreeBSD6. The bold instructions decrypt
the rest of the code by adding 0xAA in hexadecimal to the
value of every byte that follows.

A lot of imbricated conditional blocks need to be used
for simulating my proof of concept decryption instructions.

After the decryption loop has finished, the remaining
buffer has been tranformed into a pure execve(/bin/sh) system
call. If executed, provides terminal control:

; Intel Syntax AT&T Syntax
;
xor eax,eax <beast+22>: xor %eax,%eax
push eax <beast+24>: push %eax
push dword 0x68732f2f <beast+25>: push $0x68732f2f ; load /bin/sh
push dword 0x6e69622f <beast+30>: push $0x6e69622f ;
mov ebx, esp <beast+35>: mov %esp,%ebx
push eax <beast+37>: push %eax
push esp <beast+38>: push %esp
push ebx <beast+39>: push %ebx 10

push eax <beast+40>: push %eax
mov al, 59 <beast+41>: mov $0x3b,%al ; execve()
int 0x80 <beast+43>: int $0x80 ; syscall int

The shellcode presented above has two interesting properties:

• it remains functional even if passed to an uppercase
conversion function

• it hides the system call (interrupt 0x80) by encrypting
the machine binary code

Uppercase/lowercase evasive instruction sets are useful
when the target application converts the supplied user

6 http://www.freebsd.org/

[May 22, 2007 at 8:07]

http://www.freebsd.org/

58 implementation

input before the vulnerability is trigered.SQL databases are
notorious examples.

The only precise methodolgy for detecting such perverse
situations is by trying to execute the decryption routines
in a virtual processor emulator. In my simplified scenario,
all I have to do is simulate the decryption loop with an
arithmetic instruction.

An interesting opensource project named Libemu7 promises
to emulate all the major hardware architectures, at least the
simplified instruction set required for analyzing shellcode
decryptors. It is still under research and development phase
at the date of this writing.

Shellcodes must be short and are slaughtered by a lot of
restrictions in order to work in the Wild. However emulating
a dense instruction set like x86 is very hard and out of this
paper’s scope.

For measurements, a simple decryption loop based on
the disassembled code will suffice. Nothing useful can
be done without kernel system calls. If such a syscall is
detected during decryption or before, the code is most
certanly dangerous.

So to speak, the module attempts to identify (through
emulation) dangerous payloads inside the buffered stream.
It stops when a syscall routine is detected during emulation
or the tested buffer segment becomes shorter than 3 bytes.

A valid unix syscall needs at least 3 bytes to be encoded,
and shellcodes must use system calls:

7 http://libemu.tigris.org/

[May 22, 2007 at 8:07]

5.6 sample filter modules 59

#define CRYPTO START 22
#define KEY 0xAA

. . .

int
emulate decrypt(char *buf)
{

int i;
10

for (i=CRYPTO START; i<strlen(buf); i++) *(buf+i*sizeof(char))
= *(buf+i*sizeof(char)) + KEY;

return (i);
}

. . .

/* boolean */
int 20

evil code(char *realdata)
{

INSTRUCTION inst;
int i, c, bytes, format = FORMAT INTEL, size, len;
char *data;

data = realdata;

while (strlen(data) >= 3) {
/* A system call takes at least 3 bytes ;) 30

* Example 0xCD 0x80 -> kernel mode interrupt
* EAX must hold the syscall number so +1 byte ;)
*/

c = 0;
size = strlen(data);

/*
* Intentionally waste a function call to
* simulate the frame stack creation before 40

* the decryption loop :-)
*/
bytes=emulate decrypt(data);

while (c < size) {
len = get instruction(&inst, data + c, MODE 32);

if (!len | | (len + c > size)) {
return (−1); /* bad opcode or out of bound */

} 50

[May 22, 2007 at 8:07]

60 implementation

c += len;

if (inst.type == INSTRUCTION TYPE INT) {
if (inst.op1.type == OPERAND TYPE IMMEDIATE) {

if (inst.op1.immediate == 0x80) {
/* bastard system call */

return (1); /* evil code */
} 60

}
}

}
data = data + sizeof(char);

} /* try to emulate as long as shellcode is longer than 3 bytes */

return (0); /* code is clean */
}

[May 22, 2007 at 8:07]

6
E VA L U AT I O N

6.1 benchmarking

They who would give up an essential liberty for temporary
security, deserve neither liberty or security.

— Benjamin Franklin

Postal1 was used for stress testing the solution, allowing
variable message sizes from 1 Kb to 1 Mb and a maximum
of 4 messages per TCP link. This fits the real world scenario
well.

time(s) messages Kbytes errors

60 25 12602 0

120 25 12565 0

180 25 12633 0

240 23 12599 0

300 23 11127 0

360 25 12470 0

420 28 12531 0

480 25 12620 0

540 24 12587 0

600 24 12491 0

Table 3. Benchmark with proxy

The average traffic flow per minute is about 12.14 Megabytes.
That’s a relief! Realtime disassembly and emulation is an
O(n)[1] algorithm for each and every SMTP command - it’s
probably the slowest method of detecting shellcodes, but it
compensates with precision. Such glorious attempts would

1 http://www.coker.com.au/postal/

61

[May 22, 2007 at 8:07]

http://www.coker.com.au/postal/

62 evaluation

never be realistic for web and other time-critical services, at
least with the current technological background.

The daily barrier of 17.07 Gigabytes is a little bit better
than a Tier-12 network, with 1.61 Mbps bottleneck.

Zero errors for about 121.40 Megabytes of mail traffic
prove that the proxy is very robust. And as stability is a
metric of security, the main objectives have been accomplished.

time(s) messages Kbytes

60 277 143047

120 295 140516

180 289 142715

240 284 146482

300 296 139305

360 285 145620

420 283 146968

480 291 142404

540 289 143185

600 287 143718

Table 4. Benchmark without proxy

All tests were done using the Postfix3 MTA. It’s obvious
that without the proxy the maximum traffic flow can blow
up to 196.91 Gigabytes daily. That is the equivalent of 140

Megabytes per minute. So security really does cost!

The proxy with code emulation and profound syntax
integrity slows down the "mail pipe" capacity with about
83%. In Figure 7 it can be observed that the performance
penalty is relatively constant around a linearly stable value.

2 1.54 Mbps
3 http://www.postfix.org/

[May 22, 2007 at 8:07]

http://www.postfix.org/

6.2 system requirements 63

Figure 6. Throughput comparison

Figure 7. Performance penalty variation

6.2 system requirements

The tests were done on a dual-processor P4 system with
peer-to-peer inter-processor synchronization.

[May 22, 2007 at 8:07]

64 evaluation

The minimum requirements are very low, the only needed
resource is CPU cycles. A medium configuration may consist
of a Pentium-3 with 1 Ghz clock.

It’s requirements are tightly bounded around the needed
mail throughput. No significant memory or harddisk resources
are used.

In short, it may even run well on a 133 Mhz processor
like Postfix does, but only with limited throughput - small
number of users.

6.3 source code complexity

The proof of concept solution has no more than 5k lines of
security code. As debated earlier, the security programming
paradigm requires less code for the same functionality, to
keep it controllable and clear.

metric value

McCabe’s Cyclomatic Number 250

Lines of code / comments 9.75

Cyclomatic complexity / comments 2.84

Table 5. Proxy complexity metrics

metric value

McCabe’s Cyclomatic Number 159

Lines of code / comments 10.698

Cyclomatic complexity / comments 3.698

Table 6. Syntax module complexity metrics

[May 22, 2007 at 8:07]

6.3 source code complexity 65

The CCCC4 tool was handy for generating source code
metrics.

metric value

McCabe’s Cyclomatic Number 82

Lines of code / comments 6.346

Cyclomatic complexity / comments 1.577

Table 7. Disassembler module complexity metrics

4 http://cccc.sourceforge.net/

[May 22, 2007 at 8:07]

http://cccc.sourceforge.net/

[May 22, 2007 at 8:07]

7
C O N C L U S I O N

In spite of the fact that it degrades performance by 83%,
the solution compensates with the highest level of security.
There is no technology more precise on identifying intrusion
attacks than virtual processor emulators. Emulators can detect
unknown polymorphic and alphanumeric instruction sets
at first contact.

My solution demonstrates that the oldest Internet service
can also be the most secure, due to it’s store and forward
nature.

In fact, if 17.07 Gigabytes of mail traffic is enough for the
daily use, the solution fits perfectly for highly demanding
protection levels.

Medium-sized datacenters use Tier-1 connections and
share them across hundreds of web servers. The mail system
requires far less bandwidth than web and realtime services
and the current unoptimized solution can handle a bit more.

7.1 future work

A lot of work can be done for optimization. The emulator
should be fully developed for solving complex encryption
routines.

The proxy could manage a pool of persistant connections
with the real MTA to minimize connection time gaps.

There are other types of threats which could be added
to the protection scheme, in order to develop a complete,
integrated solution.

New modules could be added for inspecting SMTP commands.

67

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

B I B L I O G R A P H Y

[1] Vladimir-Ioan Creţu. Structuri de Date şi Algoritmi.
Editura Orizonturi Universitare Timişoara, 1st edition,
2000. (Cited on page 61.)

[2] Hiroaki Etoh and Kunikazu Yoda. Protecting from
stack-smashing attacks. June 2000. (Cited on page 6.)

[3] Oded Horovitz. Big Loop Integer Protection. Phrack, 11

(60), December 2002. (Cited on page 8.)

[4] Ionel Jian. Assembly Programming Course. 2005. (Cited
on page 6.)

[5] Elias Levy. Smashing the Stack for Fun and Profit.
Phrack Magazine, 1996. (Cited on pages 5 and 25.)

[6] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin
Goh, Nagendra Modadugu, and Dan Boneh. On the
effectiveness of address-space randomization. 11th Con-
ference on Computer and Communications Security, pages
298–307, October 2004. (Cited on page 7.)

[7] Mircea Vladutiu. Computer Architecture Course. 2005.
(Cited on pages 9 and 25.)

[8] Perry Wagle and Crispin Cowan. StackGuard: Simple
Stack Smash Protection for GCC. GCC Developers Sum-
mit, May 2003. (Cited on page 5.)

[9] David A. Wheeler. Secure Programming for Linux and
Unix HOWTO. http://www.tldp.org/, 3rd edition, 2003.
(Cited on page 33.)

69

[May 22, 2007 at 8:07]

[May 22, 2007 at 8:07]

colophon

This thesis was typeset with LATEX 2ε using Hermann
Zapf’s Palatino and Euler type faces (Type 1 PostScript
fonts URW Palladio L and FPL were used). The listings are
typeset in Bera Mono, originally developed by Bitstream, Inc.
as “Bitstream Vera”. (Type 1 PostScript fonts were made
available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Robert Bringhurst’s
genius as presented in The Elements of Typographic Style
(Version 2.5, Hartley & Marks, 2002) and is available for
LATEX via CTAN as “classicthesis”.

[May 22, 2007 at 8:07]

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

[May 22, 2007 at 8:07]

D E C L A R AT I O N

Timişoara, Romania, Europe, June 2007

Alin-Adrian Anton

[May 22, 2007 at 8:07]

	Dedication
	Abstract
	Descrierea continutului
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	I Theoretical Sketch
	1 Introduction
	1.1 Current state
	1.1.1 General Overview
	1.1.2 StackGuard
	1.1.3 ProPolice
	1.1.4 Randomized Stack Space
	1.1.5 Randomized Heap Space
	1.1.6 Boundary check patch for GCC
	1.1.7 Non-executable stack space
	1.1.8 Intrusion Detection Systems
	1.1.9 Conclusion

	1.2 Content description

	II The Showcase
	2 Basic Knowledge
	2.1 Store and Forward Systems
	2.2 The SMTP Protocol
	2.2.1 HELO Command
	2.2.2 MAIL Command
	2.2.3 RCPT Command
	2.2.4 DATA Command
	2.2.5 RSET Command
	2.2.6 NOOP Command
	2.2.7 QUIT Command
	2.2.8 Error codes

	2.3 Extensions to the protocol
	2.3.1 The EXPN Command
	2.3.2 The VRFY Command

	2.4 Type of threats
	2.4.1 Structure of the e-mail system
	2.4.2 Unsolicited commercials
	2.4.3 Viral worms
	2.4.4 Backdoor threats
	2.4.5 Denial of Service
	2.4.6 Intrusion

	3 Problem specification
	3.1 SMTP Syntax Verifier
	3.2 Realtime Shellcode Disassembler

	4 Design concepts
	4.1 General Design Criteria
	4.2 Modular structure
	4.2.1 Security
	4.2.2 Stability

	4.3 Expandability
	4.4 Ergonomy
	4.5 Performance

	5 Implementation
	5.1 How it Works
	5.2 Modularity
	5.2.1 config.h
	5.2.2 cmdline.c
	5.2.3 daemon.c
	5.2.4 modules.c
	5.2.5 mylog.c
	5.2.6 packet.h
	5.2.7 registry.c
	5.2.8 rxp.c
	5.2.9 subnet.c

	5.3 Security
	5.4 Expandability
	5.5 Ergonomy
	5.6 Sample Filter Modules
	5.6.1 SMTP Syntax Verifier
	5.6.2 Realtime Shellcode Disassembler

	6 Evaluation
	6.1 Benchmarking
	6.2 System requirements
	6.3 Source code complexity

	7 Conclusion
	7.1 Future work

	Bibliography
	Colophon
	Declaration

