
Reversing Basics – A Practical Approach 

Author: Amit Malik (DouBle_Zer0) 

E-Mail: m.amit30@gmail.com 

Note: Keep Out of Reach of Children/Danger-Software Poison. 

Download EXE/Crackme: https://sites.google.com/site/hacking1now/crackmes 

Introduction: 

Reverse engineering is a very important skill for information security researchers. In this tutorial I 
will explore the basic concepts of reverse engineering by reversing a simple crackme. 

The crackme used in this tutorial is from binary auditing course. I will use static approach to solve 
the problem as it clearly demonstrates the power of reverse engineering. A little bit knowledge of 
Assembly and Disassemblers, Debuggers is required to understand this material. I will use IDA 
Disassembler as it is the most powerful disassembler exists in the market, Hexrays provide a demo 
version of IDA and I think demo version is enough for solving this exercise but I am using version 5.1. 
 
Reverse Engineering A Crackme: 
 
Reverse engineering can be easy and can be difficult, it depends on your target. But the basic steps 
are: 

1) Detect packer/encryptor -> if present, then first unpack/decrypt the file and fix imports etc. 
2) Static Analysis -> Understand the application logic without executing it in live environment. 
3) Dynamic Analysis -> Execute the binary and monitor the application activities. 

Above steps are just basic of reverse engineering, overall process is based on reverser goals. For eg: 
for AV researchers and crackers basic steps are same but process is different. 
 
Some Important Terms: 

API(Application Programming Interface): In windows world, code sharing is the core of 

communication and trust. A user application can’t directly control hardware or can’t directly 

communicate with windows kernel. So how would application work if application can’t talk with the 

kernel ?. Windows provide various DLLs(Dynamic Link Library) and these DLLs exports various 

functions to provide services to user applications and we call them API. So the understanding of APIs 

is necessary.  

Eg: if you are using printf() function in your code and the linker links the function call to the printf() 

function in msvcrt.dll, so the printf() function is an API : Read PE file format if you want to know how 

these things work. 

The second important thing is that every function/API mostly returns to EAX register. For eg: lets say 

we are using strlen() to calculate the length of the string, strlen() will return the value into EAX 

register. 

The situation is something like : int a = strlen(const char *); then asm is mov dword ptr[ebp-2c],EAX 

where [ebp-2c] is a. 

mailto:m.amit30@gmail.com
https://sites.google.com/site/hacking1now/crackmes


Ok its time to fire up our crackme. 

 

Our tasks are: 

1) Remove splash screen -> i am leaving this task for you  

2) Find Hard Coded Password -> we will work on this. 

3) Write a keygen -> we will work on this. 

Load file into IDA Pro. (if you don’t know how to operate with IDA then first read “THE IDA PRO 

BOOK” excellent guide for IDA usage) 

Go with default options and you will see IDA is processing the file, you can start the analysis now. 

One of the most important thing is to look on the Import and Export function tabs to get a compact 

view that how many and what api is our target application using. Now run the application 

independently, I mean like a normal application not under debugger and feed some garbage value 

and note the messages that we get.  

  

 As you can see in the picture that our crackme is popping up a message box on invalid input. The 

String “Sorry, please try again” is important or you can say that this string will save a lot of work, 

situation may vary with target to target but for this crackme this string can be the starting point. But 

as we can see that IDA is showing the starting function and we don’t have any string that can match 

with the error message i.e “Sorry, Please try again”. Now we have two approaches one is trace the 

call from start function to the function that is containing our magic string. For eg. Go into call 

sub_40102c and do the same within this function and another approach is to go to function tab in 

IDA and analyse each function independently. Generally we use the combination of both to manage 

the analysis time.  

 



As you can see in the picture that the function name starting with sub_* are user defined functions, 

we will open each function and look for our magic string i.e “Sorry, Please try again”.   Continue with 

this process we can find our magic string in function sub_401178.  

 

As we can see in the picture that we have now clear targets, now we can backtrace and can find out 

the starting point of string matching. 

 

In the first box we can see that application is calling a API GetWindowTextA. If you don’t know the 

api functionality then in this case you can search on msdn win api reference guide. The guide will 

provide you the parameter meanings, structure and expected return values etc.  

 



Now compare this format with the format that is displayed by IDA, we can say that PUSH OFFSET 

String will receive the data entered by user. Now notice the next two statements LEA EAX, 

aHardcoded and LEA EBX, String, that means the address of a hardcoded string is moved into EAX 

and the address of the string that is entered by user is moved into EBX. Now we can say that the 

aHardcoded contain our hardcoded password because application is matching this string with the 

user entered string. 

MOV CL,[EAX]    ; hardcoded string [one char each time] 

MOV DL,[EBX    ; string entered by user [one char each time] 

CMP CL,DL        ; compare 

JN Z SHORT_BAD_BOY ; if no match call bad_boy 

INC EAX ; else increase eax,ebx 

INC EBX 

JMP @Loop ; jump back to loop 

The above loop is for string matching, so now we are sure that the aHardcoded contain our 

harcoded password and that is HardCoded. 

 

Now we have to find out the solution of second challenge. But if we look into the current function 

we have only solution for hardcoded one so it means we have to jump to another function to find 

out the solution for second challenge. Continue with the same process [jumping to functions from 

function tab for our magic string] we can say that the function sub_4015e4 is the next target for 

analysis. 

 



Now we will backtrace to find out the origin of these message boxes and then figure out that what 

value will invoke good_boy message box. Starting point of this function is the origin of these 

message boxes because at the beginning application is calling two GetWindowTextA and we know 

the purpose of this API from our previous challenge. So application is expecting Name and Serial 

from user. If you look at the code then we can say that if we don’t fill any values into the fields then 

we get a message box like “Please enter username or please enter a Serial”.  Now what if we enter a 

garbage value to the fields? Then we will enter into a simple computation and we have to reverse 

that logic. 

mov     username_len, eax  ; move the value of eax (username length – returned by API) into a 

variable 

xor     ecx, ecx ; clear out ECX register 

xor     ebx, ebx ; clear out EBX register 

xor     edx, edx ; clear out EDX register 

lea     esi, username_stor ; move the address of username (a[] = “amit” then ESI = a[0]) into ESI 

lea     edi, user_gene ; destination buffer where we want to store username after computation 

(like b[] = a[0] ^ 2; it is just a example) 

mov     ecx, 0Ah ; move the value 10 (decimal) into ecx 

loop: 

movsx   eax, byte ptr [esi+ebx] ;ESI=address of username and EBX=0 -> look above 

cdq ;nothing special in this application used to convert dword into quadword 

idiv    ecx  ; divide the value of EAX with ECX (EAX/10 –> as ECX = 10) -> look above, now idiv 

instruction store the quotient into EAX and Remainder into EDX so we can say (EAX%10 = EDX) 

xor     edx, ebx  ; xor the value of EDX with EBX (notice that EBX will play as a 

counter)(EDX=EDX^EBX) 

add     edx, 2 ; ADD two into EDX (EDX = EDX+2) 

cmp     dl, 0Ah ; now compare DL (EDX) with 10 

jl      short loc_401646 ;if EDX < 10 jump to loc_401646 

sub     dl, 0Ah ; else subtract 10 from DL(EDX) 

loc_401646: 

mov     [edi+ebx], dl ; move the value of DL(EDX) into EDI (EDI is our destination) -> look above 

inc     ebx  ;increment EBX (notice that EBX work as a pointer or you can say like i in a loop )  

cmp     ebx, username_len ;compare the value of EBX with length of username 



jnz     short loop_username ; jump if EBX != username_length to the (loop) -> look above 

so now we can generate a pseudo code of these instructions 

let say a[] = “amit” is our source string 

and b[] is our destination 

then  

c = 10 ; ECX 

i = 0 ; EBX 

loop: 

b[i] = a[i] % c; 

b[i] = b[i] ^ i; 

b[i] = b[i]+2; 

if (b[i] > 10) 

 b[i] = b[i]-10; 

I++; 

If(i != strlen(a)) 

 Goto loop; 

So this is the logic of username computation and we have our computed value into b[]. 

Now Serial Computation: 

xor     ecx, ecx ; clear out ECX 

xor     ebx, ebx ; clear out EBX 

xor     edx, edx ; clear out EDX 

lea     esi, serial_stor ;move address of user entered serial into ESI 

lea     edi, serial_gene ; target buffer means store serial after computation (similar to username 

process) 

mov     ecx, 0Ah ; move 10 into ECX 

loc_401669: 

movsx   eax, byte ptr [esi+ebx] ; move the value of serial into EAX (one char ) 

cdq ; nothing special for this application 



idiv    ecx ; divide EAX with 10; 

mov     [edi+ebx], dl ; move the remainder into EDI (our destination) 

inc     ebx ; increment pointer (means i) 

cmp     ebx, serial_len ; comare it with the length of serial  

jnz     short loc_401669 

now the result of this computation is stored into another array let say c[]; 

in the next few instructions we have a loop in the application that will match the value of c[] with 

b[]. 

Notice that b[] hold the result of username computation where c[] hold the result of serial 

computation. 

as we can see in above code that application is only dividing the serial number entered by user 

with 10 and comparing the result with the result of username computation, so we can say that if x 

is the result of username computation then x * 11 is the value of serial.  

 

So now we can develop the keygen: 

/* 

Author: DouBle_Zer0 

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

int main() 

{ 

    char a[10]; 

    char b[10]; 

    int c; 

    int i; 

    int d; 



    printf("[-]Coded By DouBle_Zer0\n"); 

    printf("Plz enter your name: "); 

    scanf("%s",a); 

    d = strlen(a) - 1; 

     

    for(i=0;i<=d;i++) 

    { 

                             c = a[i] % 10; 

                             c = c ^ i; 

                             c = c + 2; 

                             if (c > 10) 

                             { 

                                   c = c - 10; 

                                   } 

                                   b[i] = c * 11; 

    } 

   b[i] = 0; 

   printf("Corresponding password is: %s\n",b); 

   system("pause"); 

   exit(0); 

} 

And the Output is: 

 



References: 

1. http://www.binary-auditing.com/ 

2. [IDA PRO] http://www.hex-rays.com/index.shtml 

3. [Challenge EXE, keygen source] https://sites.google.com/site/hacking1now/crackmes 

4. [Video Tutorial] http://vimeo.com/18821178 

 

  

 

  

 

 

 

http://www.binary-auditing.com/
http://www.hex-rays.com/index.shtml
https://sites.google.com/site/hacking1now/crackmes
http://vimeo.com/18821178

