
Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

 Post XSS Exploitation: Advanced Attacks and

Remedies

Nishtha Jatana
1
, Adwiteeya Agrawal

2
, Kritika Sobti

3

1
Assistant professor, Department of Computer Science and Engineering, Maharaja Surajmal

Institute of Technology, New Delhi, India

nishtha.jatana@gmail.com
2,3

 Student, Department of Information Technology, Maharaja Surajmal Institute of Technology,

New Delhi, India

adwiteeyaagrawal@gmail.com, kritikasobti92@gmail.com

Abstract – XSS (cross site scripting) is a web application vulnerability wherein an end point user can pass simple

scripts as payloads in un-sanitized input variables. XSS vulnerability has been in existence since long but the

current scenario deals with exploiting these vulnerabilities for further attacks, this concept is known as "Post XSS

Exploitation" and is focused upon in this paper. This paper presents an in depth study of the dangers of XSS

vulnerabilities and vulgarizes its exploitation, it also showcases the remedies of post XSS attacks that can be

adopted as a safeguard. Further we exploit a vulnerability and develop a novel module for one of the popular tools

of post XSS exploitation. This module can be used to make a SIP (Session Initiation Protocol) call. It has been

developed with the intention of being included into the new release of the XSSF framework.

Keywords: XSS, Post- XSS, Attacks, Remedies.

1. INTRODUCTION

With the advent of dynamic web application

development technologies that are used today, the

increasing use of the web services have also triggered

the rate at which these web applications are

becoming vulnerable. Cross Site Scripting (referred

to as CSS or more commonly as XSS) is one of the

most common code injection attacks. XSS is an

injection based vulnerability found in web

applications wherein malicious codes are injected as

payloads in un-sanitized input variables. When

legitimate users access an infected web application,

the malicious code is echoed back to the user's

browser. The injected code has the ability to read,

alter and transmit any classified data accessible by

the browser such as cookies, session tokens and so

on.

XSS (Cross-site Scripting (XSS) - OWASP) is a

vulnerability that is in existence since long. A

detailed view of XSS can be obtained from

(Shanmugam & Ponnavaikko, 2008). In this paper

our prime focus is on Post XSS Exploitation, that is

the attacks that can be executed after the XSS

vulnerability is found or in conjunction with it. In the

paper, we first present the basic features of some

useful as well as popular XSS detection and post XSS

exploitation tools in Section 2. In Section 3, we

describe the categories of XSS which classify XSS

attacks as Persistent, Non-persistent or DOM

(Document Object Model) based. Section 4 provides

description about some of the latest and most

fascinating vulnerabilities found on the web and how

they can be exploited. In Section 5, we have listed a

few remedies which can be implemented on server

side as well as on the client side to protect a webpage

or application from being XSS vulnerable. In Section

6 we present the concept and the subsequent code of

a new module developed for making VOIP (Voice

over Internet Protocol) calls using XSS vulnerability.

In the succeeding section we conclude our work

and provide ideas for future work in this field.

2. RELATED WORK

Herein, we present a brief analysis of the various

popular frameworks that exist for the detection of

XSS vulnerabilities in web applications and their

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

exploitation (post XSS attacks). They work by

injecting payloads and running scripts on the

vulnerable page.

2.1 Xenotix

Xenotix (Abraham, 2012) is essentially a penetration

testing tool used for post XSS exploitation. It has an

in-built payload list of more than 450 XSS payloads

including even those which can surpass the basic

XSS filters that are employed by web developers for

protection. It can make use of these payloads in

manual as well as auto mode.

It can act as a key logger to capture the keystrokes

made by a user when he visits the infected page. The

attacker can also download a malevolent executable

file on the user's system without him being aware of

it. When the user then views the injected page, the

java applet client.jar will access the command prompt

of his system. With the help of echo command, it will

write down some scripts to a Visual basic script file

named winconfig.vbs in the temp directory(%temp%)

and then the cmd.exe will start winconfig.vbs which

will download the malicious executable specified by

the attacker in the URL to temp directory and rename

it as update.exe and finally it will execute update.exe.

Another exploit offered by Xenotix is installation of a

reverse shell (Hammer, 2006) at the user's system to

gain access to his machine.

Despite being a simple tool, it carries a few concerns

with it. The key logging feature is not persistent as it

can capture only those strokes made inside the

infected page. The drive-through download can run

only 16 bit supported executable files. Also the user

is prompted every time a drive by download or

reverse shell attack is made as the software uses self

signed applets to execute the attack.

2.2 XSSF

The XSSF Project as elucidated in (Tomes, 2011)

(htt1) and (xssf - Cross-Site Scripting Framework -

Google Project Hosting) aims to exhibit the potential

dangers associated with XSS vulnerabilities. Its basic

working includes creation of a communication

channel (known as an XSSF tunnel) with the target

browser (which has an XSS vulnerability) to perform

various attacks. The attacker can execute various

attacks, each existing as a separate module. A large

number of modules such as file stealer, iphone Skype

call, network scanning and many others exist that can

be implemented to exploit the vulnerable web

applications.

Basically XSSF works by creating a tunnel that

involves listing of all the victim id’s when a victim

arrives on an XSS vulnerable webpage. The attacker

then checks the user’s browser, searches a suitable

exploit, executes it and sends a session to the user. It

might then gain access to the user’s system. The

advanced post XSS attacks that can be performed

include creation of an XSSF tunnel that can provide

access of the local host of the remote machine to the

attacker and allows him to gain its functionality. Also

using XSSF which has been integrated with the

Metasploit console (Offensive Security Ltd., 2012)

one can run any browser based exploit on an XSS

vulnerable site to get its meterpreter session thus

gaining access to the system. Another feature of this

tool is XSSF auto attack wherein various exploits

may be added in a queue, each with its own job id

and can be executed automatically once the victim

visits the vulnerable link provided by the attacker.

While on one hand XSSF offers great many features

as a successful tool for Post XSS attacks it does not

provide a large number of means for detection of

XSS vulnerabilities. Also working with the XSSF

framework mandates prior knowledge of Metasploit.

2.3 BeEF

Beef (Home · beefproject/beef Wiki · GitHub, 2006)

is an acronym for Browser Exploitation Framework.

It is a powerful penetration testing tool for the web

browser. It uses various client side vectors to assess

the actual security postures of a target environment.

The framework comprises of various command

modules that employ BeEF's simple and powerful

API contributing to its effectiveness and efficiency. It

allows quick and easy development of user modules.

BeEF hooks one or more web browsers as

beachheads for launching of directed command

modules and further attacks against the system from

within the browser context. The different browsers

are likely to lie within different security contexts, and

each context may have a set of unique attack vectors.

The framework allows the penetration tester to select

specific modules (in real-time) to target each

browser, and therefore each context.

BeEF framework is a powerful tool that can use XSS

vulnerabilities to launch various attacks such as

browser fingerprinting (gathering information about

the browser), persistence, network fingerprinting,

DNS enumeration, Port scanning, and IRC NAT

Pinning to name a few.

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

 3. TYPES OF XSS

There exist three types of XSS attacks namely

 Non-Persistent or Reflected Vulnerability

 Stored or Persistent vulnerability

 DOM based or Local XSS.

The vulnerability that exists on various web pages or

web applications can be classified as any of the above

three. Each one of these is explained below with the

help of a sequence diagram describing the process of

detection and exploitation (post XSS attack) for each

type.

 : Attacker : User

Web Application

1 : User visits and logs in()

2 : Attacker feeds malicious code to user as a crafted URL()

3 : User requests attacker's URL()

4 : Server replies with attacke's URL()

5 : Attacker's javascript is executed in user's browser()

6 : User's browser sends session token to attacker()

7 : Attacker hijacks user session and gains confidential data()

Fig. 1: Typical scenario of Reflected or non-

persistent XXS

Non-persistent or Reflected attacks (Fig 1) are carried

out when data provided by a web client is used right

away by server-side scripts to generate a page of

results for that user. If user-supplied data is

invalidated and is included in the resulting page

without HTML encoding, this enables client-side

code to be injected into the dynamic page. The

injected code can now be reflected off the web

server, like in a search result, an error message, or

any such response messages that includes part of the

input sent to the server as part of the request.

Reflected attacks are delivered to users via another

route, like in an e-mail message, or may be on some

other web server. When a user is tricked into clicking

on a malicious link or submitting a specially crafted

form, the injected code travels to the vulnerable web

server, which reflects the attack back to the victim’s

browser. The browser then executes the code because

it came from a reliable server.

 : Attacker : User

Web Application

1 : Attacker yields data containing malicious javascript()

2 : User visits the application()

3 : User views attacker's data()

4 : Server responds with attacker's javascript()

5 : Attacker's javascript executes in user's browser()

6 : User's browser sends session token to attacker()

7 : Attacker's hijacks user session()

Fig.2: Typical Scenario of Stored or persistent

XXS

Stored or persistent vulnerability (Fig 2) allows most

potent kind of attacks wherein the malicious code is

submitted to a website where it is stored for certain

duration (in a database, file system, or other location)

and subsequently displayed to users in a web page

without being encoded using HTML entities. An

example of such a situation is with online message

boards, where users are permitted to post HTML

formatted messages for other users to read.

 : Attacker : User

Web Application

1 : User visits and logs in()

2 : malicious code to user as a crafted URL()

3 : User requests attacker's URL()

4 : Server responds with page containing hard coded javascript()

5 : Attacke's URL is processed by javascript triggering his attack payload()

6 : User's browser sends session token to attacker()

7 : Attacker hijacks user session()

Fig. 3: Typical Scenario of DOM based XXS

For DOM (Document Object Model) (Fig 3) -based

or Local XSS, the attacker abuses the runtime

embedding of attacker data in the client side, from

within a page served from the web server.

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

For example, if a piece of JavaScript accesses a URL

request parameter and writes some HTML to its own

page, using this information which is not encoded

using HTML entities, an XSS hole will possibly be

present, since this written data will be re-interpreted

by browsers as HTML which could include

additional client-side script.

4. POST XSS Attacks

4.1 Android Data Stealing Vulnerability

The vulnerability explained herein (Cannon, 2013)

exists in the Android 2.2 framework. It can be

exploited to gain access of the files stored in the

SDcard of that android machine. The Android

browser doesn’t prompt the user while downloading a

file, for example a file such as"payload.html" is

automatically downloaded to /sdcard/download/

payload.html. A JavaScript can be used to open this

file "payload" automatically which causes the

browser to render the local file and allows the script

to gain access to the local context of the SDcard and

hence the files stored within. It can then post the

contents of the accessed files back to the infected

website. Being a simple exploit involving JavaScript

and redirects, it can be used on multiple handsets and

various versions of android. But it also has a few

limitations such as the name and path of the file to be

accessed has to be known beforehand. Since it’s not a

root exploit it cannot access all the files but only

those stored on the SDcard.

4.2 Skype's improper URI scheme and

embeddable Webkit browser on IOS

This vulnerability as explained in (Kumar, 2011) and

(Purviance, 2011) and (iPhones Make Automatic

Skype Calls | Security Generation, 2010) exits in the

iOS framework. It can be exploited by an attacker to

gain access to the user's SQLlite Address Book

database and also to place direct calls using Skype.

The Skype application developed for iOS uses a

locally stored HTML file to display chat messages

from other Skype users, but it fails to properly

encode the incoming user's "Full Name", allowing an

attacker to craft malicious JavaScript code that runs

when the victim views the message.

The problem is made more exploitable by the use of

embeddable Webkit browser. Also the Skype

developers have set the URI scheme for the

embedded browser to “file://” which allows an

attacker to access the file system and read any file

that can be read by the iOS application sandbox.

Further the lack of need for permission for the third

party apps to perform the action defined by URL as

well as the URI schemes allow websites to embed an

invisible iframe that forces Skype to open (if

installed) and call a particular number. The

JavaScript for the same being<iframe

src=”skype://1900expensivepremium

number?call”> </iframe>.

4.3 HTML5 API for cross domain calls

This vulnerability can be exploited only for Windows

systems (Kuppan, 2010). HTML5 has two APIs for

making cross domain calls - Cross Origin Requests

and WebSockets. By using these, JavaScript can

make connections to any IP and to any port (apart

from blocked ports), making them an ideal candidate

for port scanning. These API's can be exploited to

determine if the port being connected to is open,

closed or filtered. It does so by the help of two

properties: 'ready state' property that indicates the

status of the connection at a given time and the 'time

duration' for which a specific 'ready State' value lasts.

Thus by observing the difference in behaviour we can

determine the nature of the port. Being an

application-level scan its success also depends on the

nature of the application running on the target ports.

When a request is sent to certain type of applications

they read the request and remain silent keeping the

socket open, probably expecting more input or input

in a particular format. If the target is running such an

application then its status cannot be determined.

Since even closed ports can be identified we can

extend this technique to perform network scanning as

well as internal IP detection.

4.4 HTML5 implementation of AJAX history

This vulnerability is stated in (Kotowicz, 2010).

HTML5 has a feature that allows the users to access

various web pages and links within a site without

changing the URL. It is done with the help of

window.history.pushState() function. It was created

for AJAX websites for easy modification in the

window location bar and manipulating history. It's a

great and convenient feature for developers - for

example, AJAX apps can now easily support back &

forward buttons without resorting to URI fragment

identifier (#) tricks. But it can also be exploited for an

XSS vulnerable website as it allows the attacker to

redirect the user to any link without changing the

URL in the address bar.

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

4.5 Access to the WScript ActiveX control in

Internet Explorer

The security settings in Internet Explorer grants

access to the WScript ActiveX control through

scripting languages such as JavaScript and VBScript.
The sample application shows how to use the

"WScript.shell" ActiveX object in order to interact

with the client machine and some more can be

obtained from (Spitzen, 2008). With this control one

can execute commands similar to a shell prompt

without notifying the user. Using Shell one can also

create, delete and modify text files through

WScript.FileSystemObject. IE7 has put in a new

security control called "Access data sources across

domain", which now by default is set to prompt the

user if they want to allow your script to talk to other

'domains' (it considers file system as a seperate

domain) but one can write a script file directly to disk

and then execute it, getting around the extra IE7

permissions.

4.6 File API in HTML5

This vulnerability is currently being implemented in

Webkit (latest Google Chrome) and can be exploited

to convert the Google chrome browser into a file

server. The File API in HTML5 allows JavaScript to

access the file once it is chosen by the user (i.e.

before uploading it). Apart from delivering better file

uploading experience, it can also be used maliciously

to steal your files in XSS attack. With clever styling

you can hide input type=file control so that the user is

unaware that he's going to upload the file. In this case

the file chosen by the user in 'Open File' dialog box is

the only one that can be accessed. However input

type=file directory is a splendid feature which allows

the user to upload contents of a chosen directory thus

giving access of the whole directory to the attacker.

4.7 XSS MAP

Google while collecting data for the Google Street

View had also collected data of the wireless networks

in the vicinity and the MAC address of those routers

and then mapped them to the GPS co-ordinates. In

this, as elaborated in (Higgins, 2010), an XSS exploit

can be use to map the location of a user. The post

XSS exploit can retrieve the MAC address of the

target's router and then uses Google Maps to GPS co-

ordinates. A malicious page you’re visiting might

perform an XSS exploit and recover your GPS

coordinates from the Google Maps. The router and

web browser themselves don't contain any geo

location/GPS data and neither its IP based Geo

location. It works via Router XSS which obtains the

MAC address of the router via AJAX. The MAC

address is then sent to the attacker who forwards it to

Google’s Location Based Services which can map the

location (approximate GPS co-ordinates) of a user

based on his MAC address.

4.8 NAT PINNING - IRC Over HTTP

Samy Kamkar explains about this vulnerability

(Kamkar, 2010). In this post XSS attack, a web page

forces the user's router or firewall, unbeknownst to

them, to port forward any port number back to the

user's machine. When the victim clicks on an XSS

vulnerable URL that has a hidden form connecting to

http://attacker.com:6667 (IRC port), he submits the

form without knowing. An HTTP connection is

created to the (fake) IRC server run by the attacker

that simply listens. The victim’s router sees an "IRC

connection" (even though its client is speaking in

HTTP) and an attempt at a ‘DCC chat’. Direct Client-

to-Client (DCC) is an IRC-related sub-protocol that

allows exchange of files and performs non-relayed

chats by enabling peers to interconnect with each

other using an IRC server for handshaking. DCC

chats require opening of a local port on the client to

which the remote chatter to connect back. Since the

router is blocking all inbound connections, it decides

to forward any traffic to the port in the DCC chat

back to the victim to allow NAT traversal for the

friendly attacker to connect back and chat with him.

However the attacker has to specify the port. For

example, port 21 (FTP), the router port forwards 21

back to the victim's internal system. The attacker now

has a clear route to connect to the victim on port 21

and launch an attack.

4.9 Browser Exploits

In these one can exploit the browser application stack

and maliciously execute a shell code or open a

meterpreter session by using a memory corruption

exploit involving XSS. Also the other exploits can

return a meterpreter session that does not attack the

application stack directly. For example the java self

signed applet may be used to maliciously download

and execute an exe file.

5. NOVEL MODULE FOR POST XSS

In this section we introduce a new module which can

be entrenched with cross site scripting framework

(XSSF). The module, its working and utility are

described below.

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

5.1 The module

Herein we explain the concept behind the creation of

a new module for XSSF that exploits an XSS

vulnerability to place a VoIP call.

The Elastix PBX (Elastix Freedom to communicate,

2006) is a VoIP based PBX server available for free

download and use from http://www.elastix.org

/index.php/en/downloads.html. The software includes

a web interface for configuring the entire PBX

functionality and can be accessed from any machine

in the network by simply pointing the browser to

https://IP/ (where IP is the address of the server). The

version of Elastix PBX under concern for our module

is 2.2. On 20
th

 March 2012, an XSS vulnerability was

reported by "Martin Tschirsich" on the web interface

of the Elastix PBX server.

As per his disclosure the vulnerable file is

www/html/recordings/ misc/callme_page.php. This

vulnerability allows an SIP client to launch a call to

the specified extension. We have developed a module

for the cross site scripting framework (XSSF) in

Ruby language to exploit this vulnerability and call

an extension. When our module is executed the

victim is prompted with a call on his screen.

When a user visits an XSS vulnerable link that has

already been compromised by the attacker, he gets

listed on the victim panel in the XSSF framework. If

the victim is a registered SIP client with the Elastix

PBX server, the attacker can launch this module and

perform the attack.

Fig.4 : Screenshot after module execution

5.2 The module code

5.2.1 The module code: Module initialization (Fig

4)

Fig 4: Module Initialization

5.2.2 The module code: Script sent to the victim

(Fig 5)

Fig.5: Script to be sent to the victim

5.3 Steps to reproduce the attack

For this attack it is required that the Elastix 2.2.0

PBX server be running inside the victim's subnet. The

Victim must also have an SIP client registered with

the PBX server. The attacker is then required to

install the XSSF inside the Metasploit framework on

his system. This attack basically aims at making an

SIP user visit the following link from his browser:

https://IP_address_of_Elastix/recordings/misc/callm

e_page.php?action=c&callmenum=Extension@from

-internal/h

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

This is done to launch a call to the "Extension". The

following steps are then performed:

 The attacker sends (directly or indirectly) a

link of the vulnerable website to the target

with the script to connect back to the XSSF

server.

 The target gets listed as the victim in xssf

victim list after visiting the link.

 Then "Elastix_PBX_voip_call" module is

loaded by the attacker with the command:

Use

auxiliary/xssf/public/misc/Elastix_PBX_voip

_call

 The attacker enters the IP address of the

VoIP server in the "address" option and the

extension of the client in "extension" using

the following commands:

set address IP

set extension EXT

 The module is launched and on the victim's browser

an iframe, whose source is the link to make the call,

is created and the victim receives a call from an

unknown number.

6. Remedies for XSS vulnerabilities

In today's world web applications are gaining
widespread importance to provide various online

services. But at the same time application

vulnerabilities are being discovered and disclosed at

an alarmingly fast pace. In the world where web

security can be easily compromised, it becomes

mandatory to safeguard oneself from such attacks.

Various measures can be adopted to avoid being a

victim of XSS. These mechanisms (XSS (Cross Site

Scripting) Prevention Cheat Sheet - OWASP, 2012)

can be implemented either on the server side or client

side.

6.1 Server Side protection

In order to protect from XSS vulnerabilities, the

following measures may be taken by the developer at

the server side. The basic concept used here is,

not to trust the input supplied (including the cookies)

by the user. The user needs to be verified and

validated before allowing access to it. Cookie

security as explained by Robert Hafner (Hafner,

2009) protection can be implemented by limiting the

domain and path for accepting cookies, setting them

as HttpOnly, using SSL and never storing

confidential data in cookies. Another safe way out

could be to disable the use of client site scripts.

Content-Security-Policy headers can also be used to

provide security against post XSS exploits. Also,

appropriate encoding of HTML control characters,

JavaScript, CSS, and URLs should be done to make

them harmless before they are displayed in a browser.

Some of the filters that can be used to sanitize the

user inputs are filter_sanitize_encoded (for URL

encoding), htmlentities (for HTML filtering),

filter_sanitize_magic_quotes (to apply addslashes()).

These filters keep a watch on the user inputs and

checks for javascript or HTTP POST in the input and

then stop these scripts from being executed. Apart

from these measures there are a number of security

libraries available for encoding user input such as

OWASP Encoding Project available at Google Code,

the HTML Purifier or Htmlawed for PHP Anti-XSS

Class for .net applications AntiSamy API for .Net or

XSS-HTML-Filter for Java.

6.2 Endpoint Protection

End users can take steps to prevent becoming a

victim of cross-site scripting by installing various

browser add-ons. These add-ons keep a watch on

various input fields (forms, URLs etc), if a JavaScript

or HTTP POST is encountered, it then uses XSS

filters to stop those scripts from execution. Examples

of such add-ons include NoScript for FireFox;

NotScripts for Chrome and Opera whereas Internet

Explorer 8 has them as an in-built feature.

7. Conclusion and Future Work

In the current era web applications have become an

integral part of our lifestyle. But these websites are

often vulnerable to certain malicious attacks. This

paper has explored one of the rifle vulnerability that

exists and its post exploitation. XSS is a pre-

dominant code injection attack that can form the

basis of many powerful exploits. It can often be

combined with other vulnerabilities to execute further

critical attacks. In this paper, we have discussed a

few such attacks that are prevalent. We have listed a

few tools for XSS detection and post XSS

exploitation along with their key features. Further we

have included a few latest as well as fascinating post

XSS attacks and explained the concept behind them.

Finally we have developed a new module for post

XSS attack which can be embedded with XSSF to

make VOIP calls. The coding for the module, along

with its basic idea and working has also been

included in the paper. In conclusion we have also

listed a few protection mechanisms that can be

implemented either on the client side or server side to

safeguard ourselves from the XSS attacks. As new

applications and functions continue to be developed

http://us2.php.net/manual/en/function.htmlentities.php

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

so would newer vulnerabilities and attacks. We

propose to further advance our work by combining

such critical vulnerabilities with XSS and creating

modules that can be used by other software and

frameworks.

REFRENCES

(n.d.). Retrieved from

http://santoshdudhade.blogspot.in/2012/07/x

ssf-v22-cross-site-scripting-framework.html

Abraham, A. (2012). Detecting and Exploiting XSS

with Xenotix XSS Exploit Framework.

Retrieved from Club Hack 2012:

http://www.clubhack.com/2012/event/techni

cal-briefings/detecting-and-exploiting-xss-

with-xenotix-xss-exploit-framework/

Cannon, T. (2013, november 23). Android Data

Stealing Vulnerability | thomascannon.net.

Retrieved 2013, from thomascannon.net:

http://thomascannon.net/blog/2010/11/andro

id-data-stealing-vulnerability/

Cross-site Scripting (XSS) - OWASP. (n.d.).

Retrieved February 2013, from

www.owasp.org:

https://www.owasp.org/index.php/Cross-

site_Scripting_%28XSS%29

Elastix Freedom to communicate. (2006). Retrieved

from

http://www.elastix.org/index.php/en/downlo

ads.html.

Hafner, R. (2009, August). How to create totally

secure cookies. Retrieved from

teamtreehouse.com:

http://blog.teamtreehouse.com/how-to-

create-totally-secure-cookies

Hammer, R. (2006). Inside-Out Vulnerabilities,

Reverse Shells. Retrieved from

www.sans.org:

http://www.sans.org/reading_room/whitepap

ers/covert/inside-out-vulnerabilities-reverse-

shells_1663

Higgins, K. J. (2010). Hack Pinpoints Victim's

Physical Location. Retrieved from

http://www.darkreading.com/security/news/

222200541/hack-pinpoints-victim-s-

physical-location.html

Home · beefproject/beef Wiki · GitHub. (2006).

Retrieved from github.com:

https://github.com/beefproject/beef/wiki

iPhones Make Automatic Skype Calls | Security

Generation. (2010, November 10).

Retrieved 2013, from

www.securitygeneration.com:

http://www.securitygeneration.com/tech/iph

ones-make-automatic-skype-calls/

Kamkar, S. (2010, January). NAT Pinning:

Penetrating routers and firewalls from a

web page (forcing router to port forward).

Retrieved from http://samy.pl/natpin/

Kotowicz, K. (2010, November). THE WORLD.

ACCORDING TO KOTO. Retrieved from

blog.kotowigz.net:

http://blog.kotowicz.net/2010/11/xss-track-

got-ninja-stealth-skills.html

Kumar, M. (2011, September 20). iPhone Skype XSS

Vulnerability Lets Hackers Steal Phonebook

[Video] - Hacking News. Retrieved 2013,

from thehackernews.com:

thehackernews.com/2011/09/iphone-skype-

xss-vulnerability-lets.html

Kuppan, L. (2010). Port Scanning with HTML5 and

JS-Recon. Retrieved from

http://blog.andlabs.org:

http://blog.andlabs.org/2010/12/port-

scanning-with-html5-and-js-recon.html

Offensive Security Ltd. (2012). Introduction -

Metasploit Unleashed. Retrieved from

www.offensive-security.com:

http://www.offensive-

security.com/metasploit-

unleashed/Introduction

Purviance, P. (2011, September 19). XSS in Skype for

iOS « Superevr. Retrieved from

superevr.com:

https://superevr.com/blog/2011/xss-in-

skype-for-ios/

Proceedings of the National Conference “Current Scenario & Emerging trends in Information Technology”

Shanmugam, J., & Ponnavaikko, D. M. (2008). Cross

Site Scripting-Latest developments and

solutions: A survey. International Journal of

Computational Mathematics, 1(2). Retrieved

from

http://www.emis.de/journals/IJOPCM/files/I

JOPCM(Vol.1.2.2.S.08).pdf

Spitzen, I. (2008). Using WScript.shell to interact

with the Client machine. Retrieved from

http://www.visualwebgui.com/Developers/K

B/tabid/654/article/using_wscript_shell_to_i

nteract_with_the_client_machine_by_mark_

reed/Default.aspx

Tomes, T. (2011, July). PaulDotcom. Retrieved from

http://pauldotcom.com/2011/07/xssf-

expanding-the-attack-surf.html

XSS (Cross Site Scripting) Prevention Cheat Sheet -

OWASP. (2012). Retrieved February 2013,

from www.owasp.org:

https://www.owasp.org/index.php/XSS_%2

8Cross_Site_Scripting%29_Prevention_Che

at_Sheet

xssf - Cross-Site Scripting Framework - Google

Project Hosting. (n.d.). Retrieved February

2013, from code.google.com:

http://code.google.com/p/xssf/

