
Polymorph 2.0:
Advanced manipulation of network

traffic in real time

@santiagohramos

https://github.com/shramos/polymorph

Content

Introduction .. 3

Setting up the environment .. 4

Case Study: Modifying ICMP network packets in real time (I) .. 5

Introduction: How does Polymorph work? .. 5

Template ... 5

Functions .. 7

Intercepting and modifying network packets in real time ... 9

Case Study: Modifying ICMP network packets in real time (II) ... 12

Introduction .. 12

Importing a template saved on disk ... 12

Global Variables .. 13

Case Study: Modifying MQTT network packets in real time... 15

Introduction .. 15

Setting up the environment .. 15

Intercepting communication between machine A and machine B .. 15

Modifying MQTT network packets in real time .. 16

Structs: Recalculating the length of a field dynamically ... 18

Creating custom layers and fields ... 20

Introduction .. 20

Adding new layers and fields .. 21

Introduction

Polymorph is a tool that facilitates the modification of network traffic on the fly by allowing the

execution of Python code on network packets that are intercepted in real time.

This framework can be used to modify network packets that implement any publicly specified

network protocol. Additionally, it can be used to modify privately specified network protocols by

creating custom abstractions and fields.

This new version of Polymorph greatly improves the capabilities of the previous version and

facilitates the use of the tool. The following sections present different case studies with which you

can learn how to use Polymorph 2.0.

Setting up the environment

Before starting with the first section, you must install the tool. To do so, install the following

requirements on a Linux operating system:

apt-get install build-essential python-dev libnetfilter-queue-dev tshark tcpdump python3-pip

wireshark

After installing the above requirements, install Polymorph by running the following commands in

the terminal:

pip3 install git+https://github.com/kti/python-netfilterqueue

pip3 install polymorph

If everything went well, you can access Polymorph by using the polymorph command on a
terminal of your operating system.

kali@kali:~$ polymorph

 ██████╗ ██████╗ ██╗ ██╗ ██╗███╗ ███╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗
 ██╔══██╗██╔═══██╗██║ ╚██╗ ██╔╝████╗ ████║██╔═══██╗██╔══██╗██╔══██╗██║ ██║
 ██████╔╝██║ ██║██║ ╚████╔╝ ██╔████╔██║██║ ██║██████╔╝██████╔╝███████║
 ██╔═══╝ ██║ ██║██║ ╚██╔╝ ██║╚██╔╝██║██║ ██║██╔══██╗██╔═══╝ ██╔══██║
 ██║ ╚██████╔╝███████╗██║ ██║ ╚═╝ ██║╚██████╔╝██║ ██║██║ ██║ ██║
 ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝
 < Santiago Hernandez Ramos >

PH >

Case Study: Modifying ICMP network packets in real time (I)

Introduction: How does Polymorph work?

The way Polymorph works is quite simple. The first step is to capture a network packet
equivalent to the type of network packets you wish to modify on the fly afterwards. To do this,
we execute the following command in Polymorph's main interface:

PH > capture -f icmp
[+] Waiting for packets...

(Press Ctr-C to exit)

The capture command performs network traffic sniffing in the same way that other utilities
such as wireshark or tcpdump do. With the -f option you can set a filter for the network
packets you want to capture. For more information on this command, you can use the -
h option.

After running the capture command, the next thing we need to do is generate network traffic
containing network packets equivalent to the ones we want to modify on the fly. In this case,
we generate ICMP traffic.

root@kali:/home/kali# ping localhost
PING localhost (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.020 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.044 ms
64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 time=0.075 ms
^C
--- localhost ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2039ms
rtt min/avg/max/mdev = 0.020/0.046/0.075/0.022 ms

Once the ICMP traffic is generated, we can stop Polymorph's sniffing process with the
combination ctrl + C, Polymorph will parse the captured network packets and generate a data
structure called template.

PH > capture -f icmp
[+] Waiting for packets...

(Press Ctr-C to exit)

[+] Parsing packet: 12
[+] Parsing complete!
PH:cap >

Template

The template has a dissection of all the layers and fields of the different network protocols
that implement the captured network packets. Among the attributes it includes for each of the
fields are: the field type, the fixed position it occupies within the packet bytes, its
representation as a function of type, its value in bytes...

To view all the templates that have been generated from the capture made, we can use the
show command:

PH:cap > show
1 Template: ETH / IP / ICMP
2 Template: ETH / IP / ICMP
3 Template: ETH / IP / ICMP
4 Template: ETH / IP / ICMP
5 Template: ETH / IP / ICMP
6 Template: ETH / IP / ICMP
7 Template: ETH / IP / ICMP
8 Template: ETH / IP / ICMP
9 Template: ETH / IP / ICMP
10 Template: ETH / IP / ICMP
11 Template: ETH / IP / ICMP
12 Template: ETH / IP / ICMP

PH:cap >

At this point, what we must do is select the template that corresponds to the type of network
packet that we would like to modify on the fly. To do this we use the template command
followed by the template number.

If we want to see more detail about which network packet each of the generated templates
corresponds to, we can use the wireshark command that will open this application with the
captured network packets.

PH:cap > show
1 Template: ETH / IP / ICMP
2 Template: ETH / IP / ICMP
3 Template: ETH / IP / ICMP
4 Template: ETH / IP / ICMP
5 Template: ETH / IP / ICMP
6 Template: ETH / IP / ICMP
7 Template: ETH / IP / ICMP
8 Template: ETH / IP / ICMP
9 Template: ETH / IP / ICMP
10 Template: ETH / IP / ICMP
11 Template: ETH / IP / ICMP
12 Template: ETH / IP / ICMP

PH:cap > template 1
PH:cap/t1 >

After doing the above, we are in the interface that will allow us to perform different actions on
the selected template and modify network packets on the fly using this template as a
reference. Let's start by visualizing the template's content with the show command:

PH:cap/t1 > show

---[ETH]---
FT_ETHER dst = 00:00:00:00:00:00
FT_ETHER src = 00:00:00:00:00:00
FT_HEX type = 0x800

---[IP]---
FT_BIN_BE version = 4
FT_BIN_BE hdr_len = 5
FT_HEX dsfield = 0x0
FT_INT_BE len = 84
FT_HEX id = 0xa3fd
FT_HEX flags = 0x4000
FT_INT_BE ttl = 64
FT_INT_BE proto = 1
FT_HEX checksum = 0x98a9
FT_IPv4 src = 127.0.0.1
FT_IPv4 addr = 127.0.0.1

---[ICMP]---
FT_INT_BE type = 8
FT_INT_BE code = 0
FT_HEX checksum = 0x41a8
FT_INT_BE ident = 13880
FT_INT_BE seq = 1
FT_ABSOLUTE_TIME data_time= Sep 30, 2020 13:35:20.000000
FT_BYTES data =
b'j*\n\x00\x00\x00\x00\x00\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f
!"#$%&\'()*+,-./01234567'

As can be seen, Polymorph has dissected the ICMP network packet by identifying a set of
layers (Ethernet, IP, ICMP) and a set of fields for each of the layers.

Polymorph now "knows" what an ICMP network packet looks like, what position each of the
fields occupies within the network packet bytes, and stores as a reference the values that the
captured network packet had for each of the fields.

The great advantage of this, is that now Polymorph will allow us to modify network packets in
real time by accessing each of the fields of the captured network packet using the names
shown in the template for each of the fields.

Functions

To understand how this works, we are going to add one of the fundamental components of the
framework, a function. As the name implies, functions are code snippets in Python 3 that will
be executed on network packets in transit. We can add as many functions as we want, each of
which will be executed sequentially on the intercepted network packets.

To add a function, we execute the functions command as shown below. The -a option
indicates that we are adding a new function, the -e option indicates the text editor with which
we want to edit this function.

PH:cap/t1 > functions -a filter_icmp_packets -e emacs

When this command is executed, the selected text editor will be opened with a code skeleton
in Python 3 similar to the following one:

def filter_icmp_packets(packet):

 # your code here

 # If the condition is meet
 return packet

The three most important things we should know about functions are

• The packet parameter represents the packet that is being intercepted in real time at
that moment

• We can access the contents of the packet that is being intercepted through the name
of the layers and fields that have been generated in the template

• If we want to continue executing other functions that we have added, the function
must return packet, otherwise, it must return None.

With these main points in mind, we are going to create our first function that will take care of
filtering ICMP network packets request and reply.

def filter_icmp_packets(packet):
 try:
 if packet['IP']['proto'] == 1:
 if packet['ICMP']['type'] == 8:
 print("ICMP Request. Executing next function...")
 return packet
 elif packet['ICMP']['type'] == 0:
 print("ICMP Reply. Executing next function...")
 return packet
 except:
 return None

Save, close the text editor, and the function will be automatically added to Polymorph.

PH:cap/t1 > functions -a filter_icmp_packets -e emacs
[+] Function filter_icmp_packets added

We can visualize the functions that we have active and the order with the command functions
-s:

PH:cap/t1 > functions -s
+-------+---+
| Order | Functions |
+=======+===+
0	def filter_icmp_packets(packet):
	try:
	if packet['IP']['proto'] == 1:
	if packet['ICMP']['type'] == 8:
	print("ICMP Request. Executing next function...")
	return packet
	elif packet['ICMP']['type'] == 0:
	print("ICMP Reply. Executing next function...")
	return packet
	except:
	return None
+-------+---+

Intercepting and modifying network packets in real time

Once the function is added, it is time to test it by intercepting network traffic in real time. To
do this, we execute the intercept -localhost command, which will put Polymorph in intercept
mode in the loopback interface.

PH:cap/t1 > intercept -localhost
[*] Waiting for packets...

(Press Ctrl-C to exit)

Now all we have to do is generate network traffic on the system and check the execution of
the function on the network packets. If all goes well, we should see a result similar to the one
shown below when we generate ICMP traffic by executing the ping localhost command on a
terminal.

PH:cap/t1 > intercept -localhost
[*] Waiting for packets...

(Press Ctrl-C to exit)

ICMP Request. Executing next function...
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
ICMP Reply. Executing next function...

The possibilities with functions are as many as we can think of, for example, we are going to
create a new function to modify the data field of the ICMP Request network packets.

def modify_icmp(packet):
 if packet['ICMP']['type'] == 8:
 packet['ICMP']['data'] = packet['ICMP']['data'][:-8] + b'newvalue'
 print("New value inserted")
 return packet

The most important thing to keep in mind, is that both to compare a value, as to add a new
value to a field, we must respect the type shown in the template. In this case the type
is FT_BYTES that indicates us that this field must receive a value in bytes.

We execute again the command intercept -localhost and generate ICMP traffic.

PH:cap/t1 > intercept -localhost
[*] Waiting for packets...

(Press Ctrl-C to exit)

ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...

We can observe how after executing the command ping localhost the machine does not
receive a response, this is because we are modifying the content of the ping request packets
on the fly, which causes that when the ping reply arrives the value of the data field does not
coincide with the one originally sent. We can check this if we use a utility such as wireshark at
the same time as modifying the network packets with Polymorph.

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00 E.
0010 00 54 d3 6a 40 00 40 01 69 3c 7f 00 00 01 7f 00 .T.j@.@.i<......
0020 00 01 08 00 70 fe 37 3b 00 01 5e ce 74 5f 00 00 p.7;..^.t_..
0030 00 00 ca e7 03 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 6e 65 77 76 61 6c &'()*+,-./newval
0060 75 65 ue

With the command Ctr + C we leave the intercept mode and with the command save -p
path we save the template on disk to be able to use it later without the need to add
the functions again.

PH:cap/t1 > save -p icmp_template
[+] Template saved to disk

Finally, we can exit Polymorph with the exit command.

PH:cap/t1 > exit
Are you sure you want to exit? (y/n) y

Bye Bye! See you soon!

Case Study: Modifying ICMP network packets in real time (II)

Introduction

Let's continue with the exercise explained in the previous section and try to make additional
on-the-fly modifications to the ICMP network packets so that the ping -localhost command
works properly.

The problem we have with the previous exercise is that we are modifying on the fly the value
of the data field of the ICMP Request network packets, and therefore, the ICMP Reply contains
a value in the data field that differs from the original. (This can be checked by using tools such
as wireshark).

To remedy this, we will make an on-the-fly modification to the data field value of the ICMP
Reply network packets by inserting the original value that the ICMP Request network packets
had before making the modification.

Importing a template saved on disk

We start by importing the template we have saved in the previous case study, this can be done
with the import command from the main Polymorph interface:

 ██████╗ ██████╗ ██╗ ██╗ ██╗███╗ ███╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗
 ██╔══██╗██╔═══██╗██║ ╚██╗ ██╔╝████╗ ████║██╔═══██╗██╔══██╗██╔══██╗██║ ██║
 ██████╔╝██║ ██║██║ ╚████╔╝ ██╔████╔██║██║ ██║██████╔╝██████╔╝███████║
 ██╔═══╝ ██║ ██║██║ ╚██╔╝ ██║╚██╔╝██║██║ ██║██╔══██╗██╔═══╝ ██╔══██║
 ██║ ╚██████╔╝███████╗██║ ██║ ╚═╝ ██║╚██████╔╝██║ ██║██║ ██║ ██║
 ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝
 < Santiago Hernandez Ramos >

PH >
PH >
PH > import -t icmp_template
PH:cap/t0 >

https://github.com/shramos/polymorph/wiki/Case-Study.-Part-1:-How-does-Polymorph-work%3F

Once the template has been imported, we can check that the previously
generated functions have already been automatically added with the command functions -s.

PH:cap/t0 > functions -s
+-------+--+
| Order | Functions |
+=======+==+
0	def filter_icmp_packets(packet):
	try:
	if packet['IP']['proto'] == 1:
	if packet['ICMP']['type'] == 8:
	print("ICMP Request. Executing next function...")
	return packet
	elif packet['ICMP']['type'] == 0:
	print("ICMP Reply. Executing next function...")
	return packet
	except:
	return None
+-------+--+	
1	def modify_icmp(packet):
	if packet['ICMP']['type'] == 8:
	packet['ICMP']['data'] = packet['ICMP']['data'][:-8] +
	b'newvalue'
	print("New value inserted")
	return packet
+-------+--+

PH:cap/t0 >

In order to replace the value of the ICMP Reply network packets with the original value of the
ICMP Request network packets, we must somehow "remember" the value of the ICMP
Request network packet before making the modification on the fly. To do this we will use
a global variable.

Global Variables

Global variables allow us to store values that will persist between executed functions and
intercepted network packets.

To modify the function modify_icmp we execute the same command that we used to create it.

PH:cap/t0 > functions -a modify_icmp -e emacs

This sentence will open the function that we indicate with the selected text editor. The new
function should be similar to the one shown below.

def modify_icmp(packet):
 # ICMP Request network packet
 if packet['ICMP']['type'] == 8:
 packet.global_var('orig_data', packet['ICMP']['data'])
 packet['ICMP']['data'] = packet['ICMP']['data'][:-8] + b'newvalue'
 print("New value inserted")
 # ICMP Reply network packet
 elif packet['ICMP']['type'] == 0:
 packet['ICMP']['data'] = packet.orig_data
 print("Original value inserted")
 return packet

As we can see, before inserting the new value in the ICMP Request network packet, we save
the original value in the global variable orig_data which we later use to replace the value in
the data field of the ICMP Reply packets.

The only thing we have to do at this point is to execute the intercept -localhost command in
Polymorph and generate ICMP traffic executing the ping localhost command in a terminal of
our operating system.

PH:cap/t0 > intercept -localhost
[*] Waiting for packets...

(Press Ctrl-C to exit)

ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
Original value inserted
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
Original value inserted
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
Original value inserted
ICMP Request. Executing next function...
New value inserted
ICMP Reply. Executing next function...
Original value inserted

At this point we can see how we are making a double modification on the fly of ICMP network
packets. On the one hand, we insert on the fly a new value in the data field of the ICMP
Request network packets, and, on the other hand, when the system generates the ICMP Reply
packet with the modified value, we modify on the fly this network packet to insert the original
value that the data field had before the first modification.

Case Study: Modifying MQTT network packets in real time

Introduction

In the previous case study we have made an on-the-fly modification of ICMP network packets
directed to the same machine (localhost). In this section, we are going to see another use case
in which we will have two machines that exchange information through the MQTT network
protocol and another machine with Polymorph installed. The aim of the exercise is to modify
on the fly the information that is exchanged between the first two machines.

Setting up the environment

The environment used for the development of this case study is quite simple. On the one
hand, we have two linux machines (192.168.71.130, 192.168.71.138) that will communicate
through the MQTT protocol. In both machines we must install the utilities that allow us to
make this communication:

sudo apt install mosquitto mosquitto-clients

On the other hand, we have the machine 192.168.71.131 that will have Polymorph installed
and will be in charge of intercepting the communication between the other two and modifying
on the fly the network traffic exchanged between them.

To test the communication by MQTT between the two machines (192.168.71.130,
192.168.71.138), from now on machine A and machine B, we open two terminals in machine
A and we execute, on one hand, the command mosquitto that will activate the broker in
charge of establishing the communications, and, on the other hand, the
command mosquitto_sub -t test that will cause the machine to wait for messages directed to
the topic test.

In the machine B we open a terminal and we execute the command mosquitto_pub -t test -m
hello -h 192.168.71.130 that will cause the sending of the message hello to the machines
subscribed under the topic test.

If all went well, machine A should have received the hello message. Our objective in this
practical case will be to modify this message on the fly.

Intercepting communication between machine A and machine B

This practical case differs from the one presented in the previous section in that
communication is not on the same machine but between two different machines. Therefore, in
order for Polymorph to "see" the traffic exchanged between the two and modify it on the fly,
we must intercept the communication.

There are several ways of intercepting communication between two machines, one of the
most common, and the one we are going to use in this practical case, is ARP poisoning. We can
use this technique from Polymorph with the spoof command:

 ██████╗ ██████╗ ██╗ ██╗ ██╗███╗ ███╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗
 ██╔══██╗██╔═══██╗██║ ╚██╗ ██╔╝████╗ ████║██╔═══██╗██╔══██╗██╔══██╗██║ ██║
 ██████╔╝██║ ██║██║ ╚████╔╝ ██╔████╔██║██║ ██║██████╔╝██████╔╝███████║
 ██╔═══╝ ██║ ██║██║ ╚██╔╝ ██║╚██╔╝██║██║ ██║██╔══██╗██╔═══╝ ██╔══██║
 ██║ ╚██████╔╝███████╗██║ ██║ ╚═╝ ██║╚██████╔╝██║ ██║██║ ██║ ██║
 ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝
 < Santiago Hernandez Ramos >

PH > spoof -t 192.168.71.130 -g 192.168.71.138
[+] ARP spoofing started between 192.168.71.138 and 192.168.71.130

At this point, the network traffic exchanged between machines A and B passes through the
machine on which Polymorph is installed (192.168.71.131), from now on machine C.

Modifying MQTT network packets in real time

Once we are in the middle of the communication between machine A and machine B, the rest
of the steps that we must follow are the same as those indicated in the previous case study.

First, we must capture a MQTT Publish network packet, which is the network packet that
contains the message:

PH > capture -f mqtt
[+] Waiting for packets...

(Press Ctr-C to exit)

[+] Parsing packet: 4
[+] Parsing complete!
PH:cap > s
1 Template: ETH / IP / TCP / MQTT
2 Template: ETH / IP / TCP / MQTT
3 Template: ETH / IP / TCP / MQTT
4 Template: ETH / IP / TCP / MQTT

PH:cap > template 3
PH:cap/t3 > s

---[ETH]---
FT_ETHER dst = 00:0c:29:72:3c:22
FT_ETHER src = 00:0c:29:54:0d:00
FT_HEX type = 0x800

---[IP]---
FT_BIN_BE version = 4
FT_BIN_BE hdr_len = 5
FT_HEX dsfield = 0x2
FT_INT_BE len = 65
FT_HEX id = 0x8a44
FT_HEX flags = 0x4000
FT_INT_BE ttl = 64
FT_INT_BE proto = 6
FT_HEX checksum = 0xa013
FT_IPv4 src = 192.168.71.138
FT_IPv4 addr = 192.168.71.130

---[TCP]---
FT_INT_BE srcport = 50286
FT_INT_BE dstport = 1883
FT_HEX len = 0x80
FT_HEX seq = 0x7e4efe7b
FT_HEX ack = 0x532c2b04
FT_BIN_BE flags = 24
FT_INT_BE window_size_value= 229

FT_HEX checksum = 0x98e2
FT_INT_BE urgent_pointer= 0
FT_BYTES options = b'\x01\x01\x08\nP,\xc1\xa1\xe3\xf9\xb4;'
FT_BYTES payload = b'0\x0b\x00\x04testhello'

---[MQTT]---
FT_HEX hdrflags = 0x30
FT_INT_BE len = 11
FT_INT_BE topic_len = 4
FT_STRING topic = test
FT_BYTES msg = b'hello'

PH:cap/t3 >

And then we must add the functions that are in charge of filtering and modifying on the fly this
type of network packets:

def filter_mqtt_pub(packet):
 try:
 if packet["TCP"]["dstport"] == 1883:
 if packet["MQTT"]["hdrflags"] == "0x30":
 print("Topic:", packet["MQTT"]["topic"])
 print("Msg:", packet["MQTT"]["msg"])
 return packet
 except:
 return None

def mod_mqtt_pub(packet):
 packet['MQTT']['msg'] = b'hhhhh'
 print("New value inserted\n")
 return packet

After adding the functions, we execute the intercept command in Polymorph to wait for a
network packet with these characteristics to be sent and make the modification on the fly.

If everything goes well, when we send the hello message again via MQTT between machine A
and B, the modification will be made and machine B will receive the hhhhh message.

PH:cap/t3 > intercept
[*] Waiting for packets...

(Press Ctrl-C to exit)

Topic: test
Msg: b'hello'
New value inserted

Structs: Recalculating the length of a field dynamically

So far, there is not much variation from the case study seen in previous sections. However, in
the case of ICMP network packets, the data value was a fixed value that was always the same
size, in this case, the msg field can be modified by the user and therefore its value is variable.
This means that the value of the msg field received in the intercepted network packet in real
time may differ from the one found in the generated template.

If we make a test with the exercise as we have it right now, and we modify the message sent
by machine A to machine B so that it is hello how are you instead of hello:

mosquitto_pub -t test -m "hello how are you" -h 192.168.71.130

We will notice that Polymorph makes a modification, but does not modify the entire message:

santi@lubuntu:~$ mosquitto_sub -t test
hhhhh how are you

This is caused because the templates have static values that represent the position of the field
in the network packet as a function of the captured network packet. In the captured network
packet, the msg field received the value hello and therefore had a size of 5 bytes in that
network packet.

To solve this type of problem, Polymorph implements the concept of struct. These structures
allow us to declare expressions that reevaluate the size of fields in real time. The structs are
associated with a field within a given layer within the template and require the name of the
field to be recalculated, the beginning byte, and the expression that recalculates its size.

For our particular case of study, we can define a struct for the msg field in the following way:

PH:cap/t3 > layer mqtt
PH:cap/t3/MQTT > struct -f msg -sb "70 + this.topic_len" -e "this.len - 2 - this.topic_len"
[+] Struct added to field msg

PH:cap/t3/MQTT >

We can test if the struct has been created correctly with the struct -t msg command, which
should return the value of the msg field in the template.

PH:cap/t3/MQTT > struct -t msg
b'hello'

Once this struct is added, the msg field of the network packets intercepted in real time will be
recalculated on the fly in the manner indicated before any action is taken on it.

It must be taken into account that if the original value is greater than the value inserted on
the fly, we must recalculate other control fields of the packet, such as the len field of the IP
layer or the len field of the MQTT layer.

The new function mod_mqtt_pub would be the following:

def mod_mqtt_pub(packet):
 # Calculating size difference
 orig_size = len(packet['MQTT']['msg'])
 new_value = b'hhhhh'
 diff = len(new_value) - orig_size
 # Inserting new values
 packet['MQTT']['msg'] = new_value
 packet['IP']['len'] += diff
 packet['MQTT']['len'] += diff
 print("New value inserted\n")
 return packet

Once this function has been modified, we execute the intercept command in Polymorph and
generate the message hello how are you from machine A to machine B.

PH:cap/t3 > intercept
[*] Waiting for packets...

(Press Ctrl-C to exit)

Topic: test
Msg: b'hello how are you'
New value inserted

After the execution, we can see how Polymorph has been able to interpret the new value of
the msg field of the network packet intercepted on the fly and modify it to enter a
smaller hhhhh value that corresponds to the one received by machine B.

santi@lubuntu:~$ mosquitto_sub -t test
hhhhh

To save the template we can use the command save -p mqtt_template.

Creating custom layers and fields

Introduction

Finally, I would like to present the use case where, for some reason (e.g. if it is a network
protocol without a public specification) Polymorph is not able to dissect all the layers and fields
of the network packet when the template is generated.

For these cases, Polymorph provides us with the ability to create new layers and fields within
the template or to modify the type of fields already present.

Modifying the type of a field

Modifying the type of a field that is presented in the template is something trivial but can be
very useful when building the functions. Remember that in the functions we must always
consider that the fields we access have the type indicated in the template.

In the example shown below we change the type of the field msg to be a string instead of a set
of bytes.

PH:cap/t3 > layer mqtt
PH:cap/t3/MQTT > show

---[MQTT]---
FT_HEX hdrflags = 0x30
FT_INT_BE len = 11
FT_INT_BE topic_len = 4
FT_STRING topic = test
FT_BYTES msg = b'hello'

PH:cap/t3/MQTT > field msg
PH:cap/t3/MQTT/msg > type -a

1: FT_INT_BE
2: FT_INT_LE
3: FT_STRING
4: FT_BYTES
5: FT_BIN_BE
6: FT_BIN_LE
7: FT_HEX
8: FT_ETHER
9: FT_IPv4
10: FT_IPv6
11: FT_ABSOLUTE_TIME
12: FT_RELATIVE_TIME
13: FT_EUI64

Select the type of the field: 3
[+] New type Ftype.FT_STRING added to the field.

PH:cap/t3/MQTT/msg > back
PH:cap/t3/MQTT > show

---[MQTT]---
FT_HEX hdrflags = 0x30
FT_INT_BE len = 11
FT_INT_BE topic_len = 4
FT_STRING topic = test
FT_STRING msg = hello

PH:cap/t3/MQTT >

Adding new layers and fields

Adding new layers and fields is something very useful when Polymorph is not able to dissect
the entire network packet, usually this happens in protocols without public specification.

To add a new layer, all we have to do is execute the command layer -a new_layer, Polymorph
will ask us for some values, such as the layer's position within the bytes of the network packet.

PH:cap/t3 > layer -a new_layer
00000000: 00 0C 29 72 3C 22 00 0C 29 54 0D 00 08 00 45 02 ..)r<"..)T....E.
00000010: 00 41 8A 44 40 00 40 06 A0 13 C0 A8 47 8A C0 A8 .A.D@.@.....G...
00000020: 47 82 C4 6E 07 5B 7E 4E FE 7B 53 2C 2B 04 80 18 G..n.[~N.{S,+...
00000030: 00 E5 98 E2 00 00 01 01 08 0A 50 2C C1 A1 E3 F9 P,....
00000040: B4 3B 30 0B 00 04 74 65 73 74 68 65 6C 6C 6F .;0...testhello

Start byte of the custom layer: 50
End byte of the custom layer: 79
[+] New layer new_layer added to the Template

PH:cap/t3 > show

---[ETH]---
FT_ETHER dst = 00:0c:29:72:3c:22
FT_ETHER src = 00:0c:29:54:0d:00
FT_HEX type = 0x800

---[IP]---
FT_BIN_BE version = 4
FT_BIN_BE hdr_len = 5
FT_HEX dsfield = 0x2
FT_INT_BE len = 65
FT_HEX id = 0x8a44
FT_HEX flags = 0x4000
FT_INT_BE ttl = 64
FT_INT_BE proto = 6
FT_HEX checksum = 0xa013
FT_IPv4 src = 192.168.71.138
FT_IPv4 addr = 192.168.71.130

---[TCP]---
FT_INT_BE srcport = 50286
FT_INT_BE dstport = 1883
FT_HEX len = 0x80
FT_HEX seq = 0x7e4efe7b
FT_HEX ack = 0x532c2b04
FT_BIN_BE flags = 24
FT_INT_BE window_size_value= 229
FT_HEX checksum = 0x98e2
FT_INT_BE urgent_pointer= 0
FT_BYTES options = b'\x01\x01\x08\nP,\xc1\xa1\xe3\xf9\xb4;'
FT_BYTES payload = b'0\x0b\x00\x04testhello'

---[MQTT]---
FT_HEX hdrflags = 0x30
FT_INT_BE len = 11
FT_INT_BE topic_len = 4
FT_STRING topic = test
FT_STRING msg = hello

---[NEW_LAYER]---

PH:cap/t3 >

Creating a new field is also a simple task, all we have to do is access the layer where we want
to create the new field and execute the command field -a new_field.

PH:cap/t0 > layer new_layer
PH:cap/t0/NEW_LAYER > field -a new_field
00000000: 00 0C 29 72 3C 22 00 0C 29 54 0D 00 08 00 45 02 ..)r<"..)T....E.
00000010: 00 41 8A 44 40 00 40 06 A0 13 C0 A8 47 8A C0 A8 .A.D@.@.....G...
00000020: 47 82 C4 6E 07 5B 7E 4E FE 7B 53 2C 2B 04 80 18 G..n.[~N.{S,+...
00000030: 00 E5 98 E2 00 00 01 01 08 0A 50 2C C1 A1 E3 F9 P,....
00000040: B4 3B 30 0B 00 04 74 65 73 74 68 65 6C 6C 6F .;0...testhello

Start byte of the custom field: 74
End byte of the custom field: 79

1: FT_INT_BE
2: FT_INT_LE
3: FT_STRING
4: FT_BYTES
5: FT_BIN_BE
6: FT_BIN_LE
7: FT_HEX
8: FT_ETHER
9: FT_IPv4
10: FT_IPv6
11: FT_ABSOLUTE_TIME
12: FT_RELATIVE_TIME
13: FT_EUI64

Select the type of the field: 3
[+] Field new_field added to the layer

PH:cap/t0/NEW_LAYER > show

---[NEW_LAYER]---
FT_STRING new_field = hello

PH:cap/t0/NEW_LAYER >

All new layers and fields created support the same manipulations and accesses as the original
layers and fields dissected by Polymorph.

