
Exploit Next Generation®

“Missão dada é missão cumprida!”

Agenda

• 0000 – Once upon a time…

• 0001 – Introduction

• 0010 – Brain at work

• 0011 – ENG++ applied

• 0100 – ENG++ advanced

• 0101 – Demonstration

• 0110 – Conclusions

• 0111 – Questions and Answers

0000 – Once upon a time…

Once upon a time…

ENG++ examples published @ Web Security Forum

0001 – Introduction

“Because five bytes can make the difference”

0-Day
• 0-day is cool, isn’t it? But only if nobody is aware

of its existence.

• Once the unknown vulnerability becomes
known, the 0-day will expire – since a patch or
a mitigation is released (which comes first).

• So we can conclude that, once expired (patched
or mitigated), 0-day has no more value. If you
do not believe me, you can try to sell a well-
known vulnerability to your vulnerability-broker.

• Some security solutions fight against 0-day faster
than the affected vendor.

Pattern-matching
• This technology is as need today as it was in the

past, but the security solution cannot rely only on
this.

• No matter how fast is the pattern-matching
algorithm, if a pattern does not match, it means
that there is no vulnerability exploitation.

• No vulnerability exploitation, no protection
action… But what if the pattern is wrong?

• How can we guarantee that the pattern, which
was not matched, is the correct approach for a
protection action?

Before starting

Exploitation
• There are lots of good papers and books

describing the exploitation techniques. Thus, I
do recommend you to look for them for a better
understanding.

• This lecture has no pretension of being a
complete reference for this topic.

• The exploitation path described here is
something that I decided to follow, and it helped
me to understand and apply ENG++ to the
vulnerabilities.

• All the definitions are in compliance with:

– Common Vulnerabilities and Exposures.

– Common Vulnerability Scoring System.

– Common Weakness Enumeration.

Vulnerability
• Any vulnerability has a trigger, which leads the

vulnerability to a possible and reasonable
exploitation.

• For some weakness types the vulnerability allows
to control the flow of software’s execution,
executing an arbitrary code (shellcode), such
as: CWE-119, CWE-120, CWV-134, CWE-190,
CWE-196, CWE-367, etc.

• Before executing a shellcode, the exploitation
must deal with the vulnerable ecosystem
(trigger, return address, etc…), performing
memory manipulation on additional entities
(such as: offset, register, JUMP/CALL, stack,

heap, memory alignment, memory padding,
etc).

Some concepts

Memory mapping
• Process stack grows DOWN:

– LOW memory address.

– BOTTOM of memory.

– You name it.

• Stack-based buffer overflow:

– Occurs in the stack data area.

• Process heap grows UP:

– HIGH memory address

– TOP of memory.

– You name it.

• Heap-based buffer overflow:

– Occurs in the heap data area.

• That is just to make sure we are all set before
going ahead!

Remembering

high

low

The scenario
• Remember: “Some security solutions fight against
0-day faster than the affected vendor”.

• This protection (mitigation) has a long life, and
sometimes the correct protection (patch) is not
applied.

• People’s hope, consequently their security
strategy, resides on this security model:
vulnerability mitigated, no patch…

• But what if an old and well-known vulnerability
could be exploited, even on this security
approach model?

• According to pattern-matching, any new
variant of an old vulnerability exploitation is
considered a new vulnerability, because there is
no pattern to be matched yet!

The methodology
• To circumvent or avoid a pattern-matching

detection, there are two options:

– Easier: know how the vulnerability is
detected (access to signature/vaccine).

– Harder: know deeply how to trigger the
vulnerability and how to exploit it (access
to vulnerable ecosystem).

• ENG++ is the hardest option:

– Deep analysis of a vulnerability.

– Use all the acquired knowledge to offer a
variety of decision points (variants).

– Interact with the trigger and the
additional entities, preparing the
vulnerable ecosystem and performing
some memory manipulation .

– Use randomness to provide unpredictable
payloads, i.e., permutation.

What is Exploit Next Generation®?

The truth
• ENG++ methodology deals with vulnerable
ecosystem and memory manipulation, rather
than shellcode – it is neither a polymorphic
shellcode, nor an obfuscation. However,
ENG++ is also able to deal with shellcode.

• ENG++ methodology can be applied to work with:
Rapid7 Metasploit Framework, CORE Impact Pro,
Immunity CANVAS Professional, and stand-alone
proof-of-concepts.

• ENG++ methodology is neither an additional
entropy for tools mentioned above, nor an
Advanced Evasion Technique (AET). Instead,
ENG++ methodology can empower both of them.

• ENG++ methodology maintains the exploitation
reliability, even using random decisions, it is
able to achieve all exploitation requirements.

The examples
• Server-side vulnerabilities:

– MS02-039: CVE-2002-0649/CWE-120.

– MS02-056: CVE-2002-1123/CWE-120.

• Client-side vulnerabilities:

– MS08-078: CVE-2008-4844/CWE-367.

– MS09-002: CVE-2009-0075/CWE-367.

• Windows 32-bit shellcodes:

– 波動拳: “CMD /k”.

– 昇龍拳: “CMD /k set DIRCMD=/b”.

• All example modules were ported to work with
Rapid7 Metasploit Framework, but there are also
examples for client-side in HTML and JavaScript.

ENG++ (pronounced /ěn'jĭn/ incremented)

What if…

exploit #1

What if…

exploit #1

exploit #2

What if…

exploit #1

exploit #2exploit #N

What if…

exploit #1

exploit #2exploit #N

shared zone

What if…

exploit #1

exploit #2exploit #N

shared zone

What if…

exploit #1

exploit #2exploit #N

shared zone

Exploit

Next

Generation®

0010 – Brain at work

“Hardest option”

MS02-039
• Common Vulnerabilities and Exposures:

– CVE-2002-0649.

• Common Weakness Enumeration:

– CWE-120.

• CVSS Severity: 7.5 (HIGH).

• Target:

– Microsoft SQL Server 2000 SP0-2.

• Vulnerable ecosystem:

– Protocol UDP.

– Communication Port 1434.

– SQL Request CLNT_UCAST_INST.

– INSTANCENAME >= 96 bytes.

– INSTANCENAME != NULL.

MS08-078
• Common Vulnerabilities and Exposures:

– CVE-2008-4844.

• Common Weakness Enumeration:

– CWE-367.

• CVSS Severity: 9.3 (HIGH).

• Target:

– Microsoft Internet Explorer 5.01 SP4, 6 SP0-
1, 7 and 8 Beta 2.

• Vulnerable ecosystem:

– XML Data Island feature enabled (default).

– DHTML with embedded Data binding.

– XML Data Source Object (DSO).

– Data Consumer (HTML element) pointing to
a dereferenced XML DSO.

Vulnerabilities

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓
MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓
MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

MS08-078 (CVE-2008-4844/CWE-367)

0011 – ENG++ applied

“(Re)searching for alternatives”

MS02-039 (CVE-2002-0649/CWE-120)

• SQL Request:

– CLNT_UCAST_INST (0x04).

• SQL INSTANCENAME:

– ASCII hexa values from 0x01 to 0xff,
except: 0x0a, 0x0d, , 0x2f, 0x3a and
0x5c.

– 24,000 permutations.

• Return address:

– Uses the “jump to register” technique, in
this case the ESP register.

– There are four (4) new possible return
addresses within SQLSORT.DLL (Microsoft
SQL Server 2000 SP0-2). There are much
more return addresses if do not mind
making it hardcoded.

– Tools: “Findjmp.c” by Ryan Permeh,
(“Hacking Proof your Network – Second
Edition”, 2002), and “DumpOp.c” by Koskya
Kortchinsky (“Macro reliability in Win32
Exploits” – Black Hat Europe, 2007).

– 4 permutations.

• JUMP:

– Unconditional JUMP short, relative, and
forward to REL8.

– There are 115 possible values to REL8.

– 115 permutations.

• Writable address and memory alignment:

– There are 26,758 new writable addresses
within SQLSORT.DLL (Microsoft SQL Server
2000 SP0-2). There are much more
writable addresses if do not mind making
it hardcoded.

– Tools: “IDA Pro 5.0 Freeware” by Hex-
Rays, and “OlyDBG 2.01 alpha 2” by
Oleh Yuschuk.

– 26,758 permutations.

• Padding and memory alignment:

– ASCII hexa values from 0x01 to 0xff.

– The length may vary, depending on JUMP,
from 3,048 to 29,210 possibilities.

– 29,210 permutations.

MS08-078 (CVE-2008-4844/CWE-367)

• CVE-2008-4844: “…crafted XML document
containing nested elements”? I do not
think so…

• XML Data Island:

– There are two (2) options: using the
Dynamic HTML (DHTML) <XML> element
within the HTML document or overloading
the HTML <SCRIPT> element. Unfortunately,
the HTML <SCRIPT> element is useless.

– The <XML> element accepts a combination
of different types of elements, i.e., they can
be anything.

• XML Data Source Object (DSO):

– Characters like “<” and “&” are illegal in
<XML> element. To avoid errors <XML>

element can be defined as CDATA (Unparsed
Character Data). But the <XML> element
can be also defined as “<” instead of “<”.

– Both and <IMAGE SRC= >

elements are useful as a XML DSO.

– 4 permutations.

• Data Consumer (HTML elements):

– According to MSDN (“Binding HTML Elements
to Data”) there are, at least, fifteen (15)
bindable HTML elements available, but only
five (5) elements are useful.

– The HTML element is a key trigger, because
it points to a dereferenced XML DSO, but it
does not have to be the same HTML element
to do so – it can be any mixed HTML
element.

– 25 permutations.

• Return address:

– Uses “Heap Spray” technique, in this case
the XML DSO handles the return address,
and can use “.NET DLL” technique by Mark
Dowd and Alexander Sotirov (“How to
Impress Girls with Browser Memory
Protection Bypasses” – Black Hat USA, 2008).

– There are, at least, four (4) new possible
return addresses.

– 4 permutations.

0100 – ENG++ advanced

“The five bytes”

Regular
shell:

push 0x00646D63

mov ebx, esp

push edi

push edi

push edi

xor esi, esi

push byte 18

pop ecx

Code by Stephen Fewer (Harmony Security) and
part of Metasploit Framework.

Hadoken (波動拳)

Shellcode

shell:

call shell_set_cmd

db “CMD /k”, 0

shell_set_cmd:

pop ebx

push edi

push edi

push edi

xor esi, esi

push byte 18

pop ecx

Ideas by sk (SCAN Associates Berhad), and
published on Phrack Magazine (issue 62, file 7).

Demonstrated on H2HC 6th Edition (2009).

Shoryuken (昇龍拳)
shell:

call shell_set_cmd

db “CMD /k set DIRCMD=/b”, 0

shell_set_cmd:

pop ebx

push edi

push edi

push edi

xor esi, esi

push byte 18

pop ecx

Ideas by sk (SCAN Associates Berhad), and
published on Phrack Magazine (issue 62, file 7).

Demonstrated on H2HC 6th Edition (2009).

FPU GetPC
fnstenv_getpc PROC

; Could be fld1, fldl2t, fldl2e,

; fldz, fldlg2 or fldln2.

fldpi

fnstenv [esp - 0Ch]

pop eax

add byte ptr [eax], 0Ah

assembly:

fnstenv_getpc ENDP

Ideas by Aaron Adams, and published on VULN-
DEV (November 18th, 2003).

Demonstrated on H2HC 6th Edition (2009).

Shellcode

0101 – Demonstration

What demo?

The examples applying ENG++

methodology will be available on
“Hebdomas Sancta” (Holy Week) –

Good Friday or Holy Saturday.

Thus you will be able to test by
yourselves!!!

0110 – Conclusions

Conclusions

• Some examples, applying ENG++ methodology,
will be available. For further details, please refer
to:

– http://fnstenv.blogspot.com/

• ENG++ examples are licensed under GNU
General Public License version 2.

• The examples cover pretty old vulnerabilities, such
as:

– MS02-039: 3,182 days since published.

– MS02-056: 3,112 days since published.

– MS08-078: 844 days since published.

– MS09-002: 789 days since published.

• ENG++ is also not new:

– Encore-NG: 931 days since BUGTRAQ and
FULL-DISCLOSURE.

– ENG++ : 497 days since H2HC 6th Edition.

• The ENG++ methodology is not part of any
commercial or public tool and is freely available,
although the examples were ported to work with
Rapid7 Metasploit Framework – this is to show
how flexible its approach and deployment is –
hoping it can help people to understand the
threat, improving their infra-structure, security
solutions and development approach.

• ENG++ methodology can be freely applied, there
are no restrictions… No other than laziness.

• ENG++ methodology can help different people,
performing different tasks, such as:

– Penetration-testing.

– Development of exploit and proof-of-concept
tools.

– Evaluation and analysis of security solutions.

– Quality assurance for security solution.

– Development of detection and protection
mechanisms.

– Etc…

0111 – Questions & Answers

Any questions?

