
Exploit Next Generation®

“Missão dada é missão cumprida!”

Agenda

Agenda

• 0001 – Introduction

Agenda

• 0001 – Introduction

• 0010 – Brain at work

Agenda

• 0001 – Introduction

• 0010 – Brain at work

• 0011 – ENG++ approach

Agenda

• 0001 – Introduction

• 0010 – Brain at work

• 0011 – ENG++ approach

• 0100 – Demonstration

Agenda

• 0001 – Introduction

• 0010 – Brain at work

• 0011 – ENG++ approach

• 0100 – Demonstration

• 0101 – Conclusions

Agenda

• 0001 – Introduction

• 0010 – Brain at work

• 0011 – ENG++ approach

• 0100 – Demonstration

• 0101 – Conclusions

• 0110 – Questions and Answers

nbrito@pitbull:~$ whoami

nbrito@pitbull:~$ whoami

• Nelson Brito:

• Security researcher enthusiast

• Addict for (in)security systems

nbrito@pitbull:~$ whoami

• Nelson Brito:

• Security researcher enthusiast

• Addict for (in)security systems

• Home town:

– Rio de Janeiro

nbrito@pitbull:~$ whoami

• Nelson Brito:

• Security researcher enthusiast

• Addict for (in)security systems

• Home town:

– Rio de Janeiro

• Public tools:

• T50 Experimental Mixed Packet Injector

• ENG++ SQL Fingerprint™

nbrito@pitbull:~$ whoami

• Nelson Brito:

• Security researcher enthusiast

• Addict for (in)security systems

• Home town:

– Rio de Janeiro

• Public tools:

• T50 Experimental Mixed Packet Injector

• ENG++ SQL Fingerprint™

• WEB:

• http://fnstenv.blogspot.com/

• http://twitter.com/nbrito

0001 – Introduction

“Because five bytes can make the difference”

0-Day
• 0-day is cool, isn’t it? But only if nobody is aware

of its existence.

• Once the unknown vulnerability becomes
known, the 0-day will expire – since a patch or
a mitigation is released (which comes first).

• So we can conclude that, once expired (patched
or mitigated), 0-day has no more value. If you
do not believe me, you can try to sell a well-
known vulnerability to your vulnerability-
broker.

• Some security solutions fight against 0-day faster
than the affected vendor.

Pattern-matching
• This technology is as need today as it was in the

past, but the security solution cannot rely only on
this.

• No matter how fast is the pattern-matching
algorithm, if a pattern does not match, it means
that there is no vulnerability exploitation.

• No vulnerability exploitation, no protection
action… But what if the pattern is wrong?

• How can we guarantee that the pattern, which
was not matched, is the correct approach for a
protection action? Was the detection really
designed to detect the vulnerability?

Before starting

Techniques
• Packet fragmentation – Overlapping fragments

• Stream segmentation – Overlapping segments

• Byte and traffic insertion

• Polymorphic shellcode

• Denial of Service

• URL obfuscation (+ SSL encryption)

• RPC fragmentation

• HTML and JavaScript obfuscation

• Etc…

Tools
• Fragroute / Fragrouter

• ADMutate / ALPHA[2-3] / BETA3 / Others

• Whisker / Nikto / Sandcat

• Snot / Stick / IDS-wakeup / Others

• Sidestep / “rpc-evade-poc.pl” / Others

• “predator”

• Etc…

Current evasion techniques (a.k.a. TT)

The scenario
• Remember: “Some security solutions fight against

0-day faster than the affected vendor”.

• This protection (mitigation) has a long life, and
sometimes the correct protection (patch) is not
applied.

• People’s hope, consequently their security
strategy, resides on this security model:
vulnerability mitigated, no patch…

• But what if an old and well-known
vulnerability could be exploited, even on this
security approach model?

• According to pattern-matching, any new
variant of an old vulnerability exploitation is
considered a new vulnerability, because there is
no pattern to be matched yet!

The methodology
• To circumvent or avoid a pattern-matching

detection, there are two options:

– Easier: know how the vulnerability is
detected (access to signature/vaccine).

– Harder: know deeply how to trigger the
vulnerability and how to exploit it (access
to vulnerable ecosystem).

• ENG++ is the hardest option:

– Deep analysis of a vulnerability.

– Use all the acquired knowledge to offer a
variety of decision points (variants).

– Interact with the trigger and the
additional entities, preparing the
vulnerable ecosystem and performing
some memory manipulation .

– Use randomness to provide unpredictable
payloads, i.e., permutation.

What is Exploit Next Generation®?

The truth
• ENG++ methodology deals with vulnerable

ecosystem and memory manipulation, rather
than shellcode – it is neither a new
polymorphic shellcode technique, nor an
obfuscation technique, instead, ENG++ employs
“Permutation Oriented Programming”.

• ENG++ methodology can be applied to work with:
Rapid7 Metasploit Framework, CORE Impact Pro,
Immunity CANVAS Professional, and stand-alone
proof-of-concepts (a.k.a. freestyle coding).

• ENG++ methodology is neither an additional
entropy for tools mentioned above, nor an
Advanced Evasion Technique (AET). Instead,
ENG++ methodology can empower both of them.

• ENG++ methodology maintains the exploitation
reliability, even using random decisions, it is
able to achieve all exploitation requirements.

The examples
• Server-side vulnerabilities:

– MS02-039: CVE-2002-0649/CWE-120.

– MS02-056: CVE-2002-1123/CWE-120.

• Client-side vulnerabilities:

– MS08-078: CVE-2008-4844/CWE-367.

– MS09-002: CVE-2009-0075/CWE-367.

• Windows 32-bit shellcodes:

– 波動拳: “CMD /k”.

– 昇龍拳: “CMD /k set DIRCMD=/b”.

• All example modules were ported to work with
Rapid7 Metasploit Framework, but there are also
examples for client-side in HTML and JavaScript.

ENG++ (pronounced /ěn’jĭn/ incremented)

What if…

exploit #1

What if…

exploit #1

exploit #2

What if…

exploit #1

exploit #2 exploit #N

What if…

exploit #1

exploit #2 exploit #N

shared zone

What if…

exploit #1

exploit #2 exploit #N

shared zone

What if…

exploit #1

exploit #2 exploit #N

shared zone

Exploit

Next

Generation®

0010 – Brain at work

“Hardest option”

MS02-039
• Common Vulnerabilities and Exposures:

– CVE-2002-0649.

• Common Weakness Enumeration:

– CWE-120.

• CVSS Severity: 7.5 (HIGH).

• Target:

– Microsoft SQL Server 2000 SP0-2.

• Vulnerable ecosystem:

– Protocol UDP.

– Communication Port 1434.

– SQL Request CLNT_UCAST_INST.

– INSTANCENAME >= 96 bytes.

– INSTANCENAME != NULL.

MS08-078
• Common Vulnerabilities and Exposures:

– CVE-2008-4844.

• Common Weakness Enumeration:

– CWE-367.

• CVSS Severity: 9.3 (HIGH).

• Target:

– Microsoft Internet Explorer 5.01 SP4, 6 SP0-
1, 7 and 8 Beta 2.

• Vulnerable ecosystem:

– XML Data Island feature enabled (default).

– DHTML with embedded Data binding.

– XML Data Source Object (DSO).

– Data Consumer (HTML element) pointing to
a dereferenced XML DSO.

Vulnerabilities

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

a
d
d
i
t
i
o
n
a
l

e
n
t
i
t
i
e
s

↓

MS02-039 (CVE-2002-0649/CWE-120)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

t
r
i
g
g
e
r

↓

MS08-078 (CVE-2008-4844/CWE-367)

a
r
b
i
t
r
a
r
y

c
o
d
e

↓

MS08-078 (CVE-2008-4844/CWE-367)

MS08-078 (CVE-2008-4844/CWE-367)

MS08-078 (CVE-2008-4844/CWE-367)

MS08-078 (CVE-2008-4844/CWE-367)

MS08-078 (CVE-2008-4844/CWE-367)

MS08-078 (CVE-2008-4844/CWE-367)

bp mshtml!CRecordInstance::CRecordInstance

bp mshtml!CRecordInstance::SetHRow

bp mshtml!CCurrentRecordConsumer::Bind

bp mshtml!CXfer::CreateBinding

bp mshtml!CRecordInstance::AddBinding

bp mshtml!CRecordInstance::TransfertoDestination

bp mshtml!CXfer::TransferFromSrc

bp mshtml!CXfer::Detach

bp mshtml!CXfer::ColumnsChanged

bp mshtml!CRecordInstance::RemoveBinding

bp mshtml!CRecordInstance::Detach

bp mshtml!CRecordInstance::~CRecordInstance

MS08-078 (CVE-2008-4844/CWE-367)

bp mshtml!CRecordInstance::CRecordInstance

bp mshtml!CRecordInstance::SetHRow

bp mshtml!CCurrentRecordConsumer::Bind

bp mshtml!CXfer::CreateBinding

bp mshtml!CRecordInstance::AddBinding

bp mshtml!CRecordInstance::TransfertoDestination

bp mshtml!CXfer::TransferFromSrc

bp mshtml!CXfer::Detach

bp mshtml!CXfer::ColumnsChanged

bp mshtml!CRecordInstance::RemoveBinding

bp mshtml!CRecordInstance::Detach

bp mshtml!CRecordInstance::~CRecordInstance

0011 – ENG++ approach

Permutation Oriented Programming

Also known as “(Re)searching for alternatives”

ENG++ approach

Vulnerability

ENG++ approach

Vulnerable

Ecosystem

Vulnerability

ENG++ approach

Vulnerable

Ecosystem

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document Alternatives?

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Reversing

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Reversing

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Alternatives? Reversing

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Alternatives? Reversing

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Alternatives? Reversing

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Vulnerability

Documentation?

ENG++ approach

Vulnerable

Ecosystem
Document Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Vulnerability

Documentation?

Alternatives

ENG++ approach

Vulnerable

Ecosystem
Document Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Vulnerability

Documentation?

Alternatives

ENG++ approach

Vulnerable

Ecosystem
Document Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Arbitrary code

Attack detection

Vulnerability

Documentation?

Alternatives

ENG++ approach

Vulnerable

Ecosystem
Document Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Obfuscation?

Arbitrary code

Attack detection

Vulnerability

Documentation?

Alternatives

ENG++ approach

Vulnerable

Ecosystem
Document Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Permutation?

Arbitrary code

Attack detection

Vulnerability

Documentation?

Alternatives

ENG++ approach

Vulnerable

Ecosystem
Document

Alternatives

Alternatives?

Alternatives? Reversing

Trigger

Additional Entities

Obfuscation?

Permutation?

Arbitrary code

Attack detection

Vulnerability

Documentation?

Alternatives

MS02-039 (CVE-2002-0649/CWE-120) POPed

• SQL Request:

– CLNT_UCAST_INST (0x04).

• SQL INSTANCENAME:

– ASCII hexa values from 0x01 to 0xff,
except: 0x0a, 0x0d, , 0x2f, 0x3a and
0x5c.

– 24,000 permutations.

• Return address:

– Uses the “jump to register” technique, in
this case the ESP register.

– There are four (4) new possible return
addresses within SQLSORT.DLL (Microsoft
SQL Server 2000 SP0-2). There are much
more return addresses if do not mind
making it hardcoded.

– Tools: “Findjmp.c” by Ryan Permeh,
(“Hacking Proof your Network – Second
Edition”, 2002), and “DumpOp.c” by Koskya
Kortchinsky (“Macro reliability in Win32
Exploits” – Black Hat Europe, 2007).

– 4 permutations.

• JUMP:

– Unconditional JUMP short, relative, and
forward to REL8.

– There are 115 possible values to REL8.

– 115 permutations.

• Writable address and memory alignment:

– There are 26,758 new writable addresses
within SQLSORT.DLL (Microsoft SQL Server
2000 SP0-2). There are much more
writable addresses if do not mind making
it hardcoded.

– Tools: “IDA Pro 5.0 Freeware” by Hex-
Rays, and “OlyDBG 2.01 alpha 2” by
Oleh Yuschuk.

– 26,758 permutations.

• Padding and memory alignment:

– ASCII hexa values from 0x01 to 0xff.

– The length may vary, depending on JUMP,
from 3,048 to 29,210 possibilities.

– 29,210 permutations.

MS08-078 (CVE-2008-4844/CWE-367) POPed

MS08-078 (CVE-2008-4844/CWE-367) POPed

MS08-078 (CVE-2008-4844/CWE-367) POPed

• CVE-2008-4844: “…crafted XML document
containing nested elements”? I do not
think so…

• XML Data Island:

– There are two (2) options: using the
Dynamic HTML (DHTML) <XML> element
within the HTML document or overloading
the HTML <SCRIPT> element. Unfortunately,
the HTML <SCRIPT> element is useless.

– The <XML> element accepts a combination
of different types of elements, i.e., they can
be anything.

• XML Data Source Object (DSO):

– Characters like “<” and “&” are illegal in
<XML> element. To avoid errors <XML>

element can be defined as CDATA (Unparsed
Character Data). But the <XML> element
can be also defined as “<” instead of “<”.

– Both and <IMAGE SRC= >
elements are useful as a XML DSO.

– 4 permutations.

• Data Consumer (HTML elements):

– According to MSDN (“Binding HTML Elements
to Data”) there are, at least, fifteen (15)
bindable HTML elements available, but only
five (5) elements are useful.

– The HTML element is a key trigger, because
it points to a dereferenced XML DSO, but it
does not have to be the same HTML element
to do so – it can be any mixed HTML
element.

– 25 permutations.

• Return address:

– Uses “Heap Spray” technique, in this case
the XML DSO handles the return address,
and can use “.NET DLL” technique by Mark
Dowd and Alexander Sotirov (“How to
Impress Girls with Browser Memory
Protection Bypasses” – Black Hat USA, 2008).

– There are, at least, four (4) new possible
return addresses.

– 4 permutations.

0100 – Demonstration

What demo?

The examples applying ENG++
methodology will be available – as

soon as I connect to Internet.

Thus you will be able to test by
yourselves!!!

0101 – Conclusions

Conclusions

• Some examples, applying ENG++ methodology,
will be available. For further details, please refer
to:

– http://fnstenv.blogspot.com/

• ENG++ examples are licensed under GNU
General Public License version 2.

• The examples cover pretty old vulnerabilities, such
as:

– MS02-039: 3,231 days since published.

– MS02-056: 3,161 days since published.

– MS08-078: 893 days since published.

– MS09-002: 838 days since published.

• ENG++ is also not new:

– Encore-NG: 980 days since BUGTRAQ and
FULL-DISCLOSURE.

– ENG++ : 546 days since H2HC 6th Edition.

• The ENG++ methodology is not part of any
commercial or public tool and is freely available,
although the examples were ported to work with
Rapid7 Metasploit Framework – this is to show
how flexible its approach and deployment is –
hoping it can help people to understand the
threat, improving their infra-structure, security
solutions and development approach.

• ENG++ methodology can be freely applied, there
are no restrictions… No other than laziness.

• ENG++ methodology can help different people,
performing different tasks, such as:

– Penetration-testing.

– Development of exploit and proof-of-concept
tools.

– Evaluation and analysis of security solutions.

– Quality assurance for security solution.

– Development of detection and protection
mechanisms.

– Etc…

0110 – Questions & Answers

Any questions?

