

Object Prototype Pollution attack

---***---

Submit by: SunCSR (Sun* Cyber Security Research)

I. Overview
1. What is prototype pollution

JavaScript is prototype-based: when new objects are created, they carry over the

properties and methods of the prototype “object”, which contains basic

functionalities such as toString, constructor and hasOwnProperty.

Object-based inheritance gives JavaScript the flexibility and efficiency that web

programmers have come to love – but it also makes it vulnerable to tampering.

Malicious actors can make application-wide changes to all objects by modifying

object, hence the name prototype pollution.

Interestingly, attackers don’t even need to directly modify object – they can access it

through the ‘__proto__’ property of any JavaScript object. And once you make a

change to object, it applies to all JavaScript objects in a running application, including

those created after tampering.

II. Object Prototype
1. Object

JavaScript objects are containers for named values called properties or methods.

Two ways to define Object in JavaScript:

2. Function

In JavaScript functions are also objects, which can be constructed using its own

constructor which is Function

3. Constructor Function

• Constructor functions are templates for creating objects. We can use it to create

different objects using the same constructor, which has the same instance

methods and properties with different values for the non-method properties

• this keyword

• Objects of the same type are created by calling the constructor function with the

new keyword

4. prototype and constructor

Point 2D (function)

Point2D.prototype.constructor = Point2D (function)

5. Prototype

• Prototypes are the mechanism by which JavaScript objects inherit features from

one another. In this article, we explain how prototype chains work and look at

how the prototype property can be used to add methods to existing constructors.

• All JavaScript objects inherit properties and methods from a prototype.

Create Object

• A default property named prototype that:

• Is an Object

• Constructor property is constructor function

6. prototype and __proto__

In reality, the only true difference between prototype and __proto__ is that the

former is a property of a class constructor, while the latter is a property of a class

instance.

p1.__proto__ === Point2D.prototype

Who is my parent?

Property access

7. Prototype chain

JavaScript objects have a link to a prototype object. When trying to access a property

of an object, the property will not only be sought on the object but on the prototype

of the object, the prototype of the prototype, and so on until either a property with

a matching name is found or the end of the prototype chain is reached.

III. Object Prototype attack
1. How can you find it?

Add new unexpected property to Object.prototype to cause unexpected behavior

Everything in JavaScript is inheriting from Object.

2. Where it occurs?

prototype pollution and it happens due to some unsafe merge, clone, extend and

path assignment operations on JSON objects obtained through user inputs.

Ex1:

Ex 2:

https://grey-acoustics.surge.sh/?__proto__%5Bonload%5D=alert(1)

3. Impact

• Vary based on app implementation

• Bypass authentication

• Bypass sanitization

- https://research.securitum.com/prototype-pollution-and-bypassing-client-

side-html-sanitizers

• XSS

• RCE (node.js app)

4. Real case

• Reflected XSS on www.hackerone.com via Wistia embed code

https://hackerone.com/reports/986386

• Prototype pollution – RCE in Kibana (CVE-2019-7609)

https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/

• Ghost CMS - RCE

https://grey-acoustics.surge.sh/?__proto__%5Bonload%5D=alert(1)
https://research.securitum.com/prototype-pollution-and-bypassing-client-side-html-sanitizers
https://research.securitum.com/prototype-pollution-and-bypassing-client-side-html-sanitizers
https://hackerone.com/reports/986386
https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/

https://www.youtube.com/watch?v=LUsiFV3dsK8

• AST Injection, Prototype Pollution to RCE

https://blog.p6.is/AST-Injection/

5. How to hunt?

• Extensions

https://github.com/msrkp/PPScan

• Breakpoint on access to a property

https://www.youtube.com/watch?v=OvOyW4jQNps&feature=youtu.be

https://gist.github.com/dmethvin/1676346

• Pollute.js - Logs all the properties be polluted in the Chrome DevTools Console.

https://github.com/securitum/research/tree/master/r2020_prototype-pollution

6. Resources

• Payloads

https://github.com/BlackFan/client-side-prototype-pollution/

• Lab

https://github.com/Kirill89/prototype-pollution-explained

IV. Conclusions
• Good programming practices will automatically mitigate prototype pollution

attacks.

• Since this attack relies heavily on the data sent from the client side, make sure you

sanitize them all and also run the npm-audit periodically to keep track of

vulnerabilities in the packages you use. After all, It is better safe than to be sorry.

https://www.youtube.com/watch?v=LUsiFV3dsK8
https://blog.p6.is/AST-Injection/
https://github.com/msrkp/PPScan
https://www.youtube.com/watch?v=OvOyW4jQNps&feature=youtu.be
https://gist.github.com/dmethvin/1676346
https://github.com/securitum/research/tree/master/r2020_prototype-pollution
https://github.com/BlackFan/client-side-prototype-pollution/
https://github.com/Kirill89/prototype-pollution-explained

