
1

Jailbreaking iOS 11.1.2
An adventure into the XNU kernel – Bryce Bearchell

Table of Contents

Introduction ..2

Background to December 11th ..2

Async Wake ...2
What is tfp0.. 2
Async Wake Bugs ... 2

Getting Root ..3
Getting root with tfp0 .. 4

Signed process execution woes ..8
AMFID .. 8
Kernel Page Protections ... 8
Sandbox Protections .. 9

It Gets Worse ...9
You can’t patch the kernel ... 9
You can “almost” patch the kernel ... 9
You shouldn’t patch the kernel .. 9

Extracting the kernel .. 10
Reverse Engineering Useful Things ... 11

Platform attributes .. 15
Problems getting root .. 16

Getting access to the root filesystem .. 17

Neutralizing Apple Mobile File Integrity Daemon .. 18

Task For PID Entitlements... 18

Completing the Jailbreak .. 19
Notes .. 21

TL DR; How to jailbreak your phone .. 21
Loading the Jailbreak onto your phone .. 22
Build and Load Jailbreak using XCode .. 22
Side Load using Cydia Impactor .. 22

Obtain an App-Specific password.. 22
Use Impactor to side load the IPA ... 23

Side load using Apple Configurator 2 ... 23
Win!!! ... 24

Final Thoughts ... 24

Credits ... 24

2

Introduction
This was an exercise in quickly turning around a Proof Of Concept (POC) and weaponizing it into
a useful jailbreak. The POC was released on December 11th, and the final jailbreak was finished
on January 4th, 24 days. I was able to begin full time on the 18th and took a half day on
Christmas and 2 days off over the New Year for alcohol related activities. From January 4th to
the 12th I spent fixing critical bugs (e.g. pressing menu would cause a kernel panic) and writing
my report, bringing the time I worked on the jailbreak to 13.5 days. Six books were read and
4k+ lines of Object C / C code were written, thrown away, and re-written. The entire project is
available open source on GitHub and the following text is my journey from knowing nothing of
iOS kernel internals to writing a jailbreak for it.

Background to December 11th
The fundamental kernel that drives both iOS and MacOS is the XNU kernel, which is a
combination of BSD and Mach duct taped together to form the iOS kernel. As of late 2017,
Apple open sourced the XNU kernel, and since iOS 10 has included it unencrypted as part of iOS
software pushes (Lending itself to higher public scrutiny and reverse engineering). There was
an unofficial race of first-to-market public exploit for use in jailbreaking iOS 11, and Google
Project 0’s Ian Beer won it (Ian gets my nomination for 2018’s Pwnie Awards). So, then a
secondary race began to release a jailbreak for iOS 11.* because just the exploit was released.
This race wasn’t won by myself, but rather Jonathan Levin published a jailbreak using his QiLin
jailbreak framework on December 29th, 2017 (please note that no discussion of jailbreaking iOS
10 is here; Pangu8, Yalu, and several others have released jailbreaks for that). Other public
releases of jailbreaks have emerged recently such as Electra.

Async Wake
On December 11th, 2017, Ian Beer published to the Google bug tracker an XCode project named
async_wake_ios. The project exploits several bugs and returns tfp0.

What is tfp0
The tfp in tfp0 stands for task_for_port which is a Mach trap to obtain a task port for a process.
Think of a task port as an IPC mechanism to read / write memory in a process’ memory space.
It’s even nicer than an arbitrary memory read and write, because we can use the offsets
(accounting for KASLR) in the kernel to directly access (*cough* patch *cough*) code.

Async Wake Bugs
The two bugs that comprise the exploit are an information leak (CVE-2017-13865) and a Use-
After-Free (CVE-2017-13861). The information leak is a result of a bug in proc_pidlistuptrs that
is the result of improper bounds checking that enables the reading of 7 extra bytes, which are
copied directly from kernel mode to user mode, enabling the bypass of KASLR via enumeration
of a large number of address. Next, the Use-After-Free bug results from
UISyrfaceRootUserClient improperly handling references once an error has occurred in its sub-
functions, which can be triggered if a previous call to it (and its subsequent async function,

https://github.com/Coalfire-Research/iOS-11.1.2-15B202-Jailbreak/
https://github.com/apple/darwin-xnu
https://pwnies.com/
http://pangu8.com/jailbreak/10.3.3/
https://yalujailbreak.com/10.3.3/
https://github.com/coolstar/electra
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417#c3

3

wake_port), allowing a dangling pointer to freed memory in the kernel. This, coupled with
some innovative heap feng shui allows for the creation of an arbitrary kernel read and write,
which Ian wrangles into a pointer to the kernel task process, tfp0.

In order to properly exploit the Use-After-Free a bunch of kalloc allocations are made pointing
to the target port, then a number of mach ports are allocated to ensure the current page only
contains mach ports owned by our PID. Then the IOSurface dangling pointer bug is triggered by
slowly reallocating memory until the garbage collector collects the page that the IOSurface
pointer references.

The reallocations contain crafted ipc_kmsg messages with a fake IKOT_TASK task port which
points to a process block structure (bsd_info) that contains a fake task structure. This can then
be leveraged into an arbitrary read primitive

Once the read primitive has been used to find the kernel’s vm_map and ipc_space then the task
port is overwritten via reallocating the previous kalloc.4096.

Included in Ian’s XCode project is a fantastic README that dives much deeper into the exact
mechanism that were used during exploitation.

One thing to note is that, in my experience, you can throw the exploit 3 times without
compromising the integrity of the phone. The 4th time, the kernel panics and the phone
reboots (11.1.2 / 15B202).

Getting Root
I downloaded the XCode project from Google Bugs site (https://bugs.chromium.org/p/project-
zero/issues/detail?id=1417#c3), updated the signing with my personal developer account and
ran the project. I was greeted with a blank screen on my phone, but the XCode console
revealed the exploit at work:

Figure 1 – iPhone view of the async_wake_ios exploit

https://bugs.chromium.org/p/project-zero/issues/detail?id=1417#c3
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417#c3)
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417#c3)

4

Figure 2 - XCode console of async_wake exploit in progress (truncated)

Figure 3 - Obtaining tfp0 with async_wake exploit (truncated)

I’ve truncated the output from 0,1,2,3…,198,199, but the main result is that we’ve obtained
tfp0.

Getting root with tfp0
I want root on the device. This is NOT the same thing as a jailbreak, I just want PID 0 credentials
and all of the privileges that go with it so that I can progress towards a jailbreak. A full jailbreak
means I can run unsigned (or self-signed) code as root on the device, but that goal is some ways
away. To get root we need to get access to all process’ bsd_info which is part of a kernel
structure. This structure is what makes XNU beautiful to work with, however, we have to
kludge together some offsets with tfp0 to get access to it.

To do this, I wrote some code heavily based off of Abraham Masri (@cheesecakeufo). The idea
is to get our process address via Ian Beer’s code in Mach Portal, then perform the following:

1. Iterate through all of the process blocks via a doubly-linked-list structure
a. A process block looks like this: {

5

• back-pointer(0x8)

• forward-pointer(0x8)

• PID(0x10),

• …,

• creds(0x100),

• …}
2. Find PID 0 and copy the pointer to its creds (offset 0x100 in the process block structure).
3. Find my process PID (obtained via getpid()) and overwrite my cred pointer.
4. Loop through all the active threads in the process block
5. Copy the creds to their structure
6. Win!

One caveat is that I need to save my old credential pointer and restore it before my process
exits, otherwise all hell breaks loose and the kernel panics. Likewise, any tampering with the
process block could also lead to kernel panics if not done properly.

An interesting situation here is that because execution is not defined by processes, rather
threads are execution tasks for the processor, (processes are seen as blocks of resources,
threads are the actual code execution tasks) it is possible to completely hide a process from the
kernel but keep execution in the task scheduler by modifying the back and forward pointers of
the surrounding process blocks (same as process hiding on windows).

You’ll notice that the steps to get root listed above are almost one-to-one with token stealing
attacks on windows to gain NT AUTHORITY\SYSTEM.

Here’s the attack in action:

Figure 4 - Getting root by stealing creds from PID 0

Fantastic, we now have root! Now, to prove that this is the case, let’s attempt to read some
sensitive files on the operating system that only root should have access to:

6

Figure 5 - Reading /etc/passwd as root

Hell yeah. After throwing “/smx7MYTQIi2M” into a password cracker it seems to be “alpine”,
which is a quick google could have told us. But cracking is fun!

After proving that we can read arbitrary files on the system, the next step was to make it easier
by taking a C web server and adapting it to our current constraints. No HTML, so we have to list
files/directories and link-ify them and we cannot have a multi-threaded process (currently
fork()’ing will cause a sandboxing failure and kill our code).

So, here is the code in action:

http://bfy.tw/FmhI

7

Figure 6 – Webserver serving the root file system

This turned out to be a great way to interact with the iPhone instead of rebooting / recompiling
/ deploying the app. Several features were added to the webserver so to aid in jailbreak
development:

8

Figure 7 – Dumping live kernel memory

Signed process execution woes
So, given that we have root on the phone, we’ve achieved a jailbreak right? That couldn’t be
further from the truth. There are a number of protections in place that stop us from running
arbitrary executables (both signed and unsigned).

AMFID
AMFI stands for Apple Mobile File Integrity, and AMFID is the Daemon that is running as a
process that gets called whenever a binary is loaded off of disk. This is the heavy hitter that we
will have to deal a lot with, as almost everything is signed. Validation takes place of the code
signing and if a binary is not properly signed, it is immediately killed off.

Kernel Page Protections
A code page in memory can never be RWX (Read / Write / Execute) unless it has the JIT
entitlement, which is allowed for Safari alone (so that it’s JavaScript engine runs faster than its
Chrome or Firefox). We would like to run code that isn’t bound by the RW / RX policy present
on the system.

9

Sandbox Protections
There are restrictions on where binaries can be loaded from. This sandbox is to stop apps from
running binaries outside of their allowed directories, and normally protects against malware
but we want to subvert this functionality and be able to run arbitrary binaries on the system.

It Gets Worse
So, in order for patching of launchd and amfid to take place, we need to get a task port to them
and this is accomplished via the task_for_port command. However, this has been patched
since iOS 10 and we will need to patch the kernel to allow us to make this call without the
proper entitlements.

You can’t patch the kernel
The kernel is running a patch guard to defend against this very attack that we are trying to
perform. Every 60 seconds, or when processor utilization is low, a kernel process goes through
and checks each of the kernel pages and hashes them to determine if they have been changed.
If they have, the kernel panics and you get a reboot.

You can “almost” patch the kernel
So, the choices of patching the kernel is to either determine where KPP process’ code is at and
patch that to make sure that the KPP process thinks everything is OK—This scenario is much
more difficult due to how ARM processors are structured. Somewhat like the rings of privilege
in x86, ARM has Exception Levels (EL) ranging from:

• EL0 – Untrusted user code

• EL1 – Trusted kernel code

• EL2 – Hypervisor mechanism (unused in iOS AFAIK)

• EL3 – EL1 protection mechanisms (Kernel Patch Protection et. All.)
An alternative is to perform the patch, keep the utilization of the processor high, and revert the
patched code to the original once you’ve used it and hope the KPP process running in EL3
doesn’t run during your window of execution.

You shouldn’t patch the kernel
Multiple books and write-ups addressed the KPP present in iOS, each with their mix of pros and
cons. I would recommend starting with the following:

• OS X and iOS Kernel Programming - Ole Henry Halvorsen, Douglas Clarke

• Mac OS X Internals: A Systems Approach - Amit Singh

• iOS Hacker's Handbook - Charlie Miller, Dion Blazakis, Dino DaiZovi, Stefan Esser,
Vincenzo Iozzo, Ralf-Philip Weinmann

• A Guide to Kernel Exploitation: Attacking the Core - Enrico Perla, Massimiliano Oldani

• MacOS and iOS Internals, Volume I - Jonathan Levin

• MacOS and iOS Internals, Volume III - Jonathan Levin

10

• (Update): A complete write-up for QiLin was released by its author, Jonathan Levin here:
http://newosxbook.com/QiLin/qilin.pdf.

The end-goal of getting task_for_pid() for other process’ has trended away from patching the
kernel to overwriting the exported pointer from AMFI to the kernel when the kernel wants to
perform code signing checks or stuffing the trust cache AMFI maintains with the signatures of
the binaries that aren’t properly signed. For patching AMFI, we end up setting an exception
handler and then overwriting this pointer with trash (to ensure a crash), our exception handler
will be called and this can return to the kernel with saying every binary is properly signed
(regardless if it is or isn’t). This is the easier way of going about bypassing AMFI, due to the
added complexity of parsing the Mach-O method and then properly inserting the hash into the
AMFI trust cache.

Extracting the kernel
Unless you have updated your iPhone at just the right time to get the proper kernel and didn’t
delete the IPWS iTunes file from disk before it was cleaned up, several sites backup the full
system IPSW, which includes the entire iOS system. The kernel resides inside of the kernel
cache file, named “kernelcache.release.iphone9”. The IPSW is a glorified zip file, so extraction
from that is relatively painless. However, the, “kernelcache.release.iphone9” file is
compressed, so extraction is performed via Willem Hengeveld’s lzss decompression tool. First,
the offset of the binary is discovered by inspecting the file with Binary Ninja:

Figure 8 – Kernel cache in compressed format. Notice 0xfeedfacf (little endian) starting at 0x1b4

The offset here is 0x1b3 (including 0xff), so decompression was performed like so:

Figure 9 – decompression with lzssdec

http://newosxbook.com/QiLin/qilin.pdf
https://binary.ninja/

11

Then, using Binary Ninja, the kernel was disassembled (and later lifted to an Intermediate
Language representation):

Figure 10 – Disassembling the kernel with Binary Ninja

The address where the kernel is loaded on iOS 15B202 start at 0xfffffff00760a0a0 + KASLR
(Kernel Address Space Layout Randomization), which is 12 bytes of entropy. Given the page size
of 2MB (0x2000 hex), there is a total of 256 slots that the kernel can start at in memory (not
exactly the hardest protection to break) and iteration through these is possible without
crashing the kernel due to the error handling present on the kernel read / write given by Ian
Beer.

Reverse Engineering Useful Things
Having the kernel is fantastic. If we end up messing with the kernel, it’s essential to know
where certain interesting functions lie. There is still the issue of bypassing the Kernel Address
Space Layout Randomization (KASLR), but we will cross that bridge once we get to it.

The part of the kernel that we will have to patch is task_for_pid, which is currently stopping us
from getting a task port so that the process space of amfid and launchd can be modified to
allow for arbitrary binaries to be run on the device. _port_name_to_task was symbolized in the
kernel cache, and was used in the task_for_pid function so finding task_for_pid was simply
going through the references that call _port_name_to_task, after some reverse enmgineering
this was discovered:

https://binary.ninja/

12

Figure 11 - task_for_pid in the kernel cache

Now, it was at this point that Jonathan Levin released his jailbreak “LiberIOS”, available here,
which is based on the Qilin jailbreaking toolkit. This proved to be a fantastic resource to fact
check my offsets and guide my jailbreaking efforts. Initially, I just wanted to see the internals of
it to validate there was no malicious code (spoilers: I couldn’t find any):

http://newosxbook.com/liberios/
http://newosxbook.com/QiLin/

13

Figure 12 – Qilin decompiled with IDA

After a suitable amount of time peering at the functionality of the code, it appeared to perform
as expected so I moved to testing it on a live device. It does indeed work very well:

Before LiberIOS Jailbreak After LiberIOS Jailbreak

Figure 13 – LiberiOS jailbreak

Figure 14 – LiberiOS jailbreak successful install

And at this point it is possible to SSH into the iPhone and be presented with a root console
prompt. Hooray!

https://www.hex-rays.com/

14

Figure 15 – Successful SSH login to root on the iPhone

My next thought was how well does this map up to my perceived path of jailbreaking? Initially
my thought was to patch the kernel to get TFP0, get a handle to AMFI / other significant
processes, then revert the kernel quickly to avoid KPP, then using that add an exception handler
to AMFI so that when the code signing check was called it would fail, trigger the exception
handler, and return that everything was OK and the code could be run. After a bit of reversing,
I had this as a code flow for Qilin:

Figure 16 – The functionality of Qilin reversed

The simplicity of Qilin is beautiful:
a) Steps 1 through 7 are to get a handle to task_for_pid and disable code signing
b) Step 8 is dropping binaries on the system and running them to allow remote access.

Simple, right? (notice the “Dragons” in the code entitlement section) This could not be further
from the truth.

15

So—using this knowledge—I pulled down the Qilin kit and inserted into my jailbreak. Given the
black box nature fudging around in kernels (sometimes the phone crashes before error
messages hit the console log), and lacking a good debugging environment, Qilin served as a
“known good” set of functionality as I compared the output of my functions and operations to
what the Levin’s “Rosetta stone” said was saying. Right off the bat I discovered that I was
finding the kernel base unreliably. I was searching for 0x0100000cfeedfacf too far forward in
memory, and not aligned to the proper kernel base. After fixing my search algorithm, I was
able to reliably determine the base of the kernel.

Several things that pop up that I initially didn’t anticipate. Instead of patching the kernel
task_for_pid, Qilin properly entitles the binary via the entitleMe() function to use
task_for_pid(), bypassing the need to sneak around the Kernel Patch Protection running in
Exception Level 3 (ARMv8 runs untrusted user code in EL0, the iOS kernel in EL1, and KPP in
EL4). This is a rather elegant work around to successfully call task_for_pid(), so instead of
fighting with KPP my code will follow the same thought-path. Initially when I obtained file
system access (see Figure 5 & 6) I didn’t write in functionality to upload files so the fact that the
root of the filesystem wasn’t writeable was not apparent and would have caused several
problems dropping binaries. The platformize functions in Qilin also showed that there were
additional pitfalls I didn’t take into account or realize was going to be a barrier.

Platform attributes
Looking at the source code for XNU, in ipc_tt.c, the following will stop us from obtaining a task
port for another process:

16

Figure 17 - @Siguza’s response to TFP query on twitter

Therefore, our process block needs to have the proper platform attributes to bypass that check.
Because of all this, platform attributes are essential for allowing our process to call task for PID,
and we also end up needing to set the platform attributes for the AMFID process in order for us
to get a handle to perform mach_vm_read and mach_vm_write operations.

Problems getting root
The first thing to note about stealing the root credentials is that the reference counter to the
credential pointer will not be updated and so when the application closes down the kernel will
panic. This can be fixed by modifying the appropriate value by +1, but there are other problems
down the line that cause problems. The way that initially worked for me is parsing into the
creds structure and manually setting the UID, effective UID, and saved UID to get root. After
struggling with overwriting just the right bit, I went ahead and overwrote the entire cred
pointer, saving my old one to be restored before program exit. This hearkens across to the
Windows NT kernel where the end goal for an Escalation of Privilege (Epos) is token stealing,
usually accomplished once a kernel read/write. Token stealing in NT is parsing through similar
kernel structures, copying process 4’s pointer (SYSTEM) to your own process to grant NT
AUTHORITY\SYSTEM to your process. Initially, the system would panic when we left creds from
another process in our cred pointer and exited (and this is due to reference counting in the
kernel getting out of whack), so we were replacing our old credential pointer once the process
was exiting. Later on, I’ll explain why this stopped working for me, as this is a result of spinning
up a thread to make sure AMFID ignores improperly signed binaries.

https://twitter.com/s1guza/status/943108890476072960

17

Getting access to the root filesystem
So, there’s a couple of problems with the sandbox that we have to deal with, one being that the
filesystem for / is not mounted in a writeable way. Normally this wouldn’t be a problem, but
there are other considerations with sandbox protections in iOS: we can’t run binaries from
/tmp, /var, /private, etc. In order to get use the root level access we need, we have to drop
binaries into /jailbreak and use that as the base for all non-apple code. So, we need to remount
the root filesystem as read / write. This is a problem, as the kernel enforces these protections
by filtering the arguments to mount* calls. Fortunately, this isn’t a new problem, and has been
solved by several people. I went with Xerubs solution, as it seems very short and succinct. The
code simply flips off the MNT_ROOTFS flag, remounts the drive, then flips it back on. Simple is
beautiful!

Figure 18 – We need to remove the flags and remount (darwin-xnu/bsd/sys/mount.h)

https://twitter.com/xerub

18

Figure 19 – We can remove the RDONLY and ROOTFS flag by AND’ing them out logically (0xFFFFBFFE)

Neutralizing Apple Mobile File Integrity Daemon
Running unsigned code will be a problem, as the kernel has several complex mechanisms that
hijack running code, but the weakest link in the chain lies in the user-mode application AMIFD.
When the kernel captures the request to run a binary (via execl / dylib-loading or some other
mechanism), then a call is triggered to an exported function of AMFID
(_MISValidateSignatureAndCopyInfo) to validate the code signature and return whether or not
the code is properly signed. One neat trick that a several people have discovered is that if you
register an exception handler for AMFID, then overwrite the exported pointer to a bad address,
when the kernel attempts to jump to the exported MISVSACI function, the bad address will
cause an exception and we can then control the state of AMFI, giving us the ability to jump in
the code to the “everything OK” path and resume execution, allowing all unsigned (or badly
signed) code to run as if it was blessed from Apple. Fortunately, this whole process is relatively
easy, as the exception handling code was already provided by Ian Beer in his mach_portal code
he released, so I was able to insert it as an exception handler and modify the offsets and change
the hashing function from SHA1 to SHA256.

Task For PID Entitlements
task_for_pid is a function used as the pre-cursor for inter-process Mach-o traps like
mach_vm_read and mach_vm_write, which gives us the power to read and write into other
process’ memory space. Ian’s kernel read and write grants easy control over the kernel, but to
neutralize AMFID we need to be able to write into its process space, which is managed by the

19

Mach-o traps. So, to hijack and bypass AMFID, so it is essential for us to read into our own
entitlement blob, replace permissions, replace the SHA256 signature of the permissions with
the appropriate value.

Figure 20 – Replacing my old entitlements with the task_for_pid-allow entitlement ,then updating the SHA256 hash

Completing the Jailbreak
We can place relevant files on the device by including them in the XCode project. For this
purpose, I am using pre-compiled binaries for iOS / ARM64 from Jonathan Levin. There is a
problem signing the binaries, as XCode will attempt to sign all of them using my signature,
however if I overwrite the first several bytes with junk and restore it before attempting to run,
it bypasses the XCode IPA packaging check. Now, this gets annoying with a large number of
binaries to perform this overwriting operation for, so as a method of obfuscating them I tarred
them all up and can just drop a tar file and un-tar it. This method is derivative from the file
dropping technique from LiberIOS.

Now, after completely phasing out Qilin “known good” functions completely for my own, I
know have my very own jailbreak!

http://www.newosxbook.com/tools/iOSBinaries.html

20

Before Jailbreak Jailbreak complete

Figure 21 – Before the Jailbreak is run

Figure 22 – Successful exploitation and SSH setup!

And to validate that everything is working, I SSH’d into it:

Figure 23 – Successful login as root

And, accessing the HTTP server running in another thread:

Figure 24 – Webserver exposing kernel memory and file system

21

Notes
An interesting take-away that I discovered that if you disable updates, several built-in apps (TV,
Reminders, Notes, Podcasts, Compass, etc.) will not install. You can fix this by temporarily
enabling updates and installing them. Once you’ve finished, disable them again!

You can add the following to /etc/hosts to block the resolution of the Apple update service:

127.0.0.1 mesu.apple.com

And to disable it (enable updates / built-in app installs):

sed '$ d' /etc/hosts > /tmp/hosts_new
mv /tmp/hosts_new /etc/hosts

Updates are stored at:

• /var/MobileAsset/Assets/com_apple_MobileAsset_SoftwareUpdate/

• /var/MobileAsset/Assets/com_apple_MobileAsset_SoftwareUpdateDocmentation/

After I got the jailbreak working, everything would be fine until I hit the menu button, then the
kernel would panic. I couldn’t figure this crash out for a weekend, but after sacrificing enough
qwords to the binary gods I discovered that I was improperly rebuilding my entitlement section.
Ugh! After some wrangling I got it working, but I still am generating entitlement errors—
however this doesn’t impact the jailbreak (arbitrary code still runs, etc.). If you happen to know
the root cause, please let me know.

I also noticed that after properly replacing my process credentials at the end of execution
effectively cut off the access from the error handler thread and the process it was supposed to
be handling, AMFID. There were two ways I saw of getting around this issue: first was to edit
the error handler’s thread credential pointer to allow it access, second was to never end up
reverting our process credentials so that we maintain the high level of access needed. A better
solution for this will be implemented soon in an update to the overall jailbreak, including
additional kernel versions.

One thing to note, if AMFID is restarted you will lose the ability to run unsigned code. I’m not
sure how launchd controls the process, but XCode will restart AMFID if it encounters an error
launching, so be aware of that. Also, suspending the thread that is handling errors for AMFI will
stop all code from passing signing checks. LiberIOS solved this problem by running a dedicated
process outside of the app to provide constant error handling and to check (and replace the
error handler if need be) if AMFID has been restarted.

TL DR; How to jailbreak your phone
Here’s the steps to jailbreak your device, but please remember that this is for iOS 11.1.2
(15B202) only. If you have higher or equal to 11.0 and under 11.2, I would highly recommend

22

the LiberIOS jailbreak here. For iOS 10 devices, both Pangu8 and Yalu support iOS 10, although
I cannot vouch to their code, as I haven’t looked at it. The IPA for my jailbreak is here.

Loading the Jailbreak onto your phone
1. Build and Load Jailbreak using XCode
2. Side load using Cydia Impactor

a. Obtain Cydia Impactor
b. Obtain an App-Specific password
c. Use Impactor to side load the IPA

3. Side load using Apple Configurator 2
4. Win!

Build and Load Jailbreak using XCode
The most reliable method of loading the jailbreak is to load the source code into XCode, select
your iPhone as the target, and hit run! XCode will take care of properly building, signing, and
loading the app onto your phone, and this method allows you to see all the debugging
information associated with the jailbreak.

Side Load using Cydia Impactor
Impactor is a fantastic tool developed by Saurik and can be found at
http://www.cydiaimpactor.com.

Figure 25 – Cydia Impactor

Obtain an App-Specific password
A temporary password for your iOS account can be obtained from https://appleid.apple.com/
so that the IPA can be properly side loaded (and signed) by Apple. Note: Apple requires 2-factor
authentication in order to create an app-specific password, if you don’t have it set up you won’t
see the option to generate it.

http://newosxbook.com/liberios/
http://pangu8.com/jailbreak/10.3.3/
https://yalujailbreak.com/10.3.3/
https://github.com/Coalfire-Research/iOS-11.1.2-15B202-Jailbreak/
http://www.cydiaimpactor.com/
https://appleid.apple.com/

23

Figure 26 – The Apple ID login page

Figure 27 – Type a random name to generate an app specific password

Figure 28 – Here is the (censored) output from the password generation process

Use Impactor to side load the IPA
Simply drag the IPA onto Impactor, type in your username and the previously generated
password, and the app is loaded!

Figure 29 – Just click and drag to load IPA

Side load using Apple Configurator 2
Apple configurator is obtainable from the App store on OSX. Once installed, you can simply
right-click on your device, select Add, then Apps, then load an app from disk. Selecting “Choose
from my Mac” will allow you to load an arbitrary IPA. This is probably the easiest method of
side loading the jailbreak:

24

Figure 30 – Apple Configurator 2 side loading Jailbreak

Win!!!
Simply tap on the app to start it up, then tap on “Run Jailbreak” to run the exploit. Once the
jailbreak completes, you can SSH to your phone using the username “root” and the password
“alpine” to get root access!

Also, the webserver is running on port 80, it has complete access to the filesystem for easy
browsing. Included is a link to the kernel base / process structures, so you can peruse the
running kernel memory in an easy fashion!

Final Thoughts
As a kinetic learner, this was an amazing experience for me to go through and fall in all the
pitfalls and traps of making a jailbreak for iOS. I would highly recommend this process if that is
how you learn, as making the mistakes and errors firsthand is very enlightening. It appears that
for future projects, once an exploit gains tfp0, most jailbreaking efforts will be abstracted away
with jailbreak toolkits (like QiLin) that perform standard operations and have a wide range of
supported devices.

Credits
This jailbreak could not have been born without the magnanimously provided kernel read /
write by Ian Beer. If you’re at DefCon I’ll buy you a beer^H^H^H^H whiskey!

Thank you Coalfire for supporting me in this journey and enabling and encouraging me along
the way: Ryan Jones for giving me research time, Marcello Salvati for initiating the whole
process and providing the dank memes.

25

Thanks, wait_what for pointing me in the right direction.

Mxms, you gave a random stranger on Freenode hope and great advice. Thanks for keeping my
spirits up!

Jonathan Levin for providing a stellar (amazing (mind blowing)) jailbreak for me to learn from,
and fact check my assumptions. I was so off man, for like a week I was finding random binaries
in memory and thinking they were the kernel cache and raging when my gadgets failed or
pointers wouldn’t go where I expected, when all that needed to be done was brute force back
to get the kernel base. There is beauty in simplicity. My implementation of neutralizing AMFI is
a bastardization of a number of people’s code and Sulphur-smelling runes, yours is so nice.
Cheers man, you the real MVP.

Props to Brad Conte for his SHA256 and SHA1 code, and thank you Logan Evans for sending
them to me!

Last (but not least), thank you Rusty and Jordan for making Binary Ninja, a most excellent tool
for reverse engineering. Hi Brian & everyone from Vector35!

Figure 31 – Learning is fun, thanks for Coalfire not firing me while I did all this!

	Introduction
	Background to December 11th
	Async Wake
	What is tfp0
	Async Wake Bugs

	Getting Root
	Getting root with tfp0

	Signed process execution woes
	AMFID
	Kernel Page Protections
	Sandbox Protections

	It Gets Worse
	You can’t patch the kernel
	You can “almost” patch the kernel
	You shouldn’t patch the kernel

	Extracting the kernel
	Reverse Engineering Useful Things

	Platform attributes
	Problems getting root

	Getting access to the root filesystem
	Neutralizing Apple Mobile File Integrity Daemon
	Task For PID Entitlements
	Completing the Jailbreak
	Notes

	TL DR; How to jailbreak your phone
	Loading the Jailbreak onto your phone
	Build and Load Jailbreak using XCode
	Side Load using Cydia Impactor
	Obtain an App-Specific password
	Use Impactor to side load the IPA

	Side load using Apple Configurator 2
	Win!!!

	Final Thoughts
	Credits

