
iOS Swift Anti-Jailbreak Bypass with Frida

May 13, 2020 | Posted by Raffaele Sabato

Link: https://syrion.me/blog/ios-swift-antijailbreak-bypass-frida/

References:

• https://syrion.me/

• https://twitter.com/syrion89

• https://www.linkedin.com/in/raffaelesabato/

Frida

Frida is a dynamic binary instrumentation framework that has been around for a while. In a
nutshell, Frida allows reverse engineers to perform activities such as function
hooking/trancing and runtime code modification. If your target is an iOS application, Frida
provides you with powerful Objective-C API, making painless reverse engineering tasks.
Unfortunately, out of the box, Frida lacks of Swift API, and some community contributions
are outdated. Analysing Swift iOS applications with Frida hasn’t been an easy task for me so
far. Fortunately, my friend r3dx0f provided me with some suggestions about how to
approach the problem, and I will share with you what I learnt during this journey.

Swift Security Checks

In this blogpost, I will describe how to bypass a number of jailbreak and reverse engineering
detection mechanisms implemented within the IOSSecuritySuite. The aforementioned
project is written in Swift and is hosted on Github. However, we will perform the analysis
against a non-stripped iOS application which implements such library. The analysis will be
conducted without the support of the source code in order to simulate a real-life scenario.
When the application is executed, it shows the message below, telling us that our iPhone is
jailbroken. Some suspicious files are found and the application is considered “reversed”.

https://syrion.me/blog/ios-swift-antijailbreak-bypass-frida/
https://syrion.me/
https://twitter.com/syrion89
https://www.linkedin.com/in/raffaelesabato/
https://github.com/maltek/swift-frida
https://twitter.com/r3dx0f
https://github.com/securing/IOSSecuritySuite

Figure 1 - Security Checks

We have two modules defined within the binary:

• FrameworkClientApp

• IOSSecuritySuite

Because we know that the IOSSecuritySuite modules contains the jailbreak detection
mechanism logic, we will reverse it first.

Reverse Engineering

When I’m looking for jailbreak detection mechanisms, I usually start searching for strings
and functions containing the word “jailbr” (jail, jailbreak or jailbroken) or “root”. We have a
lot of matches as shown below:

Figure 2 - Functions containing the string "Jailbr"

My first goal is to hook each function and see if it does affect the alert message that we saw
before.

Bypass canOpenUrlFromList

The first function we are going to analyse is
_$s16IOSSecuritySuite16JailbreakCheckerC18canOpenUrlFromList33_F8E503CD913F87B6F
3E966D69D 813ABLL10urlSchemesSb6passed_SS11failMessagetSaySSG_tFZ.

By reversing it, we can see the canOpenURL method call at the address offset 0x126bc.
According with the AArch64 ABI, the x0 register will contain the value returned from the
function call. This function usually tries to open suspicious URL scheme such as “cydia://” in
order to identify jailbreak artefact. When it founds any suspicious file, the function returns
“true”. Because the value returned is a Boolean it should contain the values 0x01 (true) or
0x00 (false), therefore we have to change it to 0x00 in order to bypass this check.

Figure 3 - canOpenURL

We can use Frida’s Module.getBaseAddress() function to obtain the base address where the
library is loaded in memory (Frida calculate the ASLR Shift for us) and then we have to add
the 0x126c offset to it. Then we ask Frida to hook and replace the code at that specific
address (baseAddress+offset). Our implementations will change the x0 register value from
0x01 (true) to 0x00 (false). In Frida we can access register’s values by using the this.context
object.

Frida Code
var targetModule = 'IOSSecuritySuite';

var addr = ptr(0x126c0);

var moduleBase = Module.getBaseAddress(targetModule);

var targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass canOpenUrlFromList");

 }

 },

 });

Running the script, we can see that the target instruction is reached and the check is
bypassed as shown in the images below.

Figure 4 - Frida Script

Figure 5 – Security Checks

N.B. During the analysis it was observed that some Swift functions defined within the
IOSSecuritySuite library, executed Objective-C code by “bridging” them. It should be noted
that in such circumstances, controls can also be bypassed by using the “ObjC” object
defined within Frida’s API.

Bypass checkExistenceOfSuspiciousFiles

Function:
_$s16IOSSecuritySuite16JailbreakCheckerC31checkExistenceOfSuspiciousFiles33_F8E503C
913F87 B6FC3E966D69D813ABLLSb6passed_SS11failMessagetyFZ

In the disassembled code below we can see that the function calls the fileExistsAtPath
method at the offset address 0x100a8, so we need to change the return value as we did
before.

Figure 6 - fileExistsAtPath

Using the same Frida code, we can set the new target address, and bypass the check.

Frida Code
addr = ptr(0x100ac);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass checkExistenceOfSuspiciousFiles");

 }

 },

 });

Running the updated script, we can bypass the two methods. As shown in the images below.
Moreover, the message in the alert box will change as well.

Figure 7 - Frida Script

Figure 8 - Security Checks

Bypass checkSuspiciousFilesCanBeOpened

Function:
_$s16IOSSecuritySuite16JailbreakCheckerC31checkSuspiciousFilesCanBeOpened33_F8E50
3CD913F87 B6FC3E966D69D813ABLLSb6passed_SS11failMessagetyFZ

As we can see in the disassembled code below, the isReadableFileAtPath method is called
at the offset address 0x1064c and the return value is stored in the x0 register as usual.

Figure 9 - isReadableFileAtPath

Using the same script with the new address we can bypass the check.

Frida Code
addr = ptr(0x10650);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass checkSuspiciousFilesCanBeOpened");

 }

 },

 });

Figure 10 - Frida Script

Figure 11 - Security Checks

Bypass checkSymbolicLinks

Function:
_$s16IOSSecuritySuite16JailbreakCheckerC18checkSymbolicLinks33_F8E503CD913F87B6F
C3E966 D69D813ABLLSb6passed_SS11failMessagetyFZ

Our iPhone is still recognized as “jailbroken”, so we need to bypass other methods. As we
can see below, the destinationOfSymbolicLinkAtPath method is called at the offset address
0x118ac, so we can modify the x0 register by replacing the its value with 0x00 as we did
before.

Figure 12 - destinationOfSymbolicLinkAtPath

Using the same script we can change the return value contained in the x0 register.

Frida Code
addr = ptr(0x118b0);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 != 0x00){

 this.context.x0 = 0x00

 console.log("Bypass checkSymbolicLinks");

 }

 },

 })

Figure 13 - Frida Script

Figure 14 - Security Checks

We successfully bypassed all the Anti-Jailbreak checks.

Bypass amIReversed

Function: _$s16IOSSecuritySuiteAAC20amIReverseEngineeredSbyFZ

The method amIReversed checks if the application is debugged or tampered using
instrumentation tools like Frida. Again, we can change its return value contained in the x0
register, before the RET instruction is executed at the offset address 0xaea8.

Figure 15 - amIReverseEngineered

Frida Code
addr = ptr(0xaea8);
moduleBase = Module.getBaseAddress(targetModule);
targetAddress = moduleBase.add(addr);
 Interceptor.attach(targetAddress, {
 onEnter: function(args) {
 if(this.context.x0 == 0x01){
 this.context.x0=0x00
 console.log("Bypass amIReverseEngineered");
 }
 },
 });

Figure 16 - Frida Script

Figure 17 - Security Checks

Bypass AmIDebugged

Function: _$s16IOSSecuritySuiteAAC11amIDebuggedSbyFZ

Figure 18 - AmIDebugged

The function AmIDebugged checks if the application is debugged, following the method call,
we can see there is another method
_$s16IOSSecuritySuite15DebuggerCheckerC11amIDebuggedSbyFZ looking for a debugger
using sysctl and getPid.

Figure 19 - sysctl

If we try to debug the application, the check will return true but we can hook the ret
instruction at address 0xae08 and change the return value contained in x0 to 0x00 with the
following Frida script.

Frida Code
addr = ptr(0xae08);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass amIDebugged");

 }

 },

 });

Figure 20 - Frida Script

Figure 21 - Security Checks

Bypass amIRunInEmulator

Function: _$s16IOSSecuritySuite15EmulatorCheckerC08amIRunInC0SbyFZ

Because the application is running on a real iPhone, the amIrunInEmulator check can’t be
triggered, therefore what we can do is to inject a true value and let the application believe
that is running in an emulator. The image below shows the method. As always, we have to
change the x0 register value before the RET instruction at the offset address 0xa880 is
executed.

Figure 22 - amIRunInEmulator

We can “enable” the emulator with the following Frida script.

Frida Code
addr = ptr(0xa880);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x00){

 this.context.x0=0x01

 console.log("Enable amIRunInEmulator");

 }

 },

 });

Figure 23 - Frida Script

Figure 24 - Security Checks

Change the “Jailed” string

Finally, I wanted to change “Jailed” string for fun. However, its address is no writable so we
can’t modify its value. What we can do, is creating our own string and put its address in the
register that point to the string message. In order to do so, we need to reverse the
FrameworkClientApp module. In the
_$s18FrameworkClientApp14ViewControllerC13viewDidAppearyySbF methods, we can
find the instruction where the “Jailed” string address is put into the x0 register. We can see
it at address 0x4348.

Figure 25 - Jailed String

We can create our own string and put its address into the x0 register after the instruction at
address 0x4348.

Frida Code
targetModule = 'FrameworkClientApp';

addr = ptr(0x04348);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

var myMessage = Memory.allocUtf8String("Br0k3n")

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 this.context.x0 = myMessage;

 },

 });

Figure 26 - Security Checks

This is the complete Frida script (which potentially can be written in a better way, so I will
let this to you as exercise).

Complete Frida Script
var targetModule = 'IOSSecuritySuite';

var addr = ptr(0x126c0);

var moduleBase = Module.getBaseAddress(targetModule);

var targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass canOpenUrlFromList");

 }

 },

 });

addr = ptr(0x100ac);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass checkExistenceOfSuspiciousFiles");

 }

 },

 });

addr = ptr(0x10650);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass checkSuspiciousFilesCanBeOpened");

 }

 },

 });

addr = ptr(0x118b0);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 != 0x00){

 this.context.x0 = 0x00

 console.log("Bypass checkSymbolicLinks");

 }

 },

 });

addr = ptr(0xaea8);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass amIReverseEngineered");

 }

 },

 });

addr = ptr(0xae08);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x01){

 this.context.x0=0x00

 console.log("Bypass amIDebugged");

 }

 },

 });

addr = ptr(0xa880);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 if(this.context.x0 == 0x00){

 this.context.x0=0x01

 console.log("Enable amIRunInEmulator");

 }

 },

 });

targetModule = 'FrameworkClientApp';

addr = ptr(0x04348);

moduleBase = Module.getBaseAddress(targetModule);

targetAddress = moduleBase.add(addr);

var myMessage = Memory.allocUtf8String("Br0k3n")

 Interceptor.attach(targetAddress, {

 onEnter: function(args) {

 this.context.x0 = myMessage;

 },

 });

Conclusion

As we have seen, Frida provides a very powerful way to attach each arm instruction and
interact with register and memory. Its documentation is very clear and full of examples. I
hope you enjoined it. If you find any mistakes in my write-up, please contact me and I will
be more than happy to fix them.

	Frida
	Swift Security Checks
	Reverse Engineering
	Bypass canOpenUrlFromList
	Bypass checkExistenceOfSuspiciousFiles
	Bypass checkSuspiciousFilesCanBeOpened
	Bypass checkSymbolicLinks
	Bypass amIReversed
	Bypass AmIDebugged
	Bypass amIRunInEmulator
	Change the “Jailed” string
	Conclusion

