
 of 1 32

HOW TO:

FIND
WORDPRESS
PLUGIN
VULNS
BY WPSCAN.COM
Version 1.0
Released June 8th, 2021

This e-book and all of its contents are Copyright © SAS WPScan

WPScan is a WordPress security company based in France. WPScan started over
ten years ago as a tool for penetration testers to test the security of WordPress
websites. Today WPScan manages the WordPress vulnerability database for
WordPress core, plugin and theme vulnerabilities. The WordPress vulnerability
database is manually updated daily with new vulnerabilities. The vulnerability
database contains over 22,835 vulnerabilities recorded since 2014.

wpscan.com

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

 of 2 32

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

1. INTRODUCTION 4

2. TESTING ENVIRONMENT 6

3. TESTING METHODOLOGY 10

4. CROSS-SITE SCRIPTING (XSS) 13

5. SQL INJECTION 15

6. CROSS-SITE REQUEST FORGERY (CSRF) 18

7. AUTHORISATION 20

8. REMOTE COMMAND EXECUTION (RCE) 23

9. REMOTE PHP CODE EXECUTION (RCE) 25

10. PHP OBJECT INJECTION 27

10. OTHER THINGS TO TEST FOR 29

 of 3 32

1. INTRODUCTION

WordPress is by far the most popular Content Management
System (CMS) in existence today. W3Techs.com estimates
WordPress’s market share, compared to other CMSs, to be
almost 65% in June 2021. And that WordPress is run on 41.6%
of all websites on the web. This upwards trend doesn’t seem
to be slowing down either, with WordPress’s market share
continually growing and hitting new market share milestones.

One of WordPress’s key strengths is its ability to install third-
party plugins. The official WordPress plugin repository has
almost 60,000 Open Source plugins written in PHP, which
amounts to over 157 million lines of code. And there are also
many other plugin repositories, such as Envato, that host and
sell many more. At WPScan, we track over 90,000 plugins in
our database. That should give you a good idea of the scope
of the attack surface, it’s huge!

WordPress themes can also be a source of vulnerabilities,
and the methods discussed in this book can also be applied
to them.

It shouldn’t be surprising that the majority of vulnerabilities
found in the WordPress ecosystem today are within the
plugins. According to our vulnerability database statistics,
88% of our vulnerabilities affect plugins, while only 5% affect
WordPress core.

 of 4 32

https://themeforest.net/
https://wpscan.com/statistics

If you want to find vulnerabilities in a WordPress website, a
good place to look is in the plugins. And in this book we are
going to show you how to find them, whether you are a
penetration tester, a bug bounty hunter, a security researcher,
or want to test your own WordPress plugin for security issues.

If you do find some vulnerabilities after reading this book,
please submit them to our vulnerability database. We can
help you in the vulnerability disclosure process by contacting
the author of the plugin, provide you with a CVE number, give
you credit, ensure the vulnerability information is spread as
far and wide as possible, and you can also win prizes, such as
OSCP courses, swag, Amazon vouchers and more.

You can submit new vulnerabilities to us via our submission
page:

https://wpscan.com/submit

“SUBMIT VULNERABILITIES TO OUR
DATABASE TO BE IN WITH A CHANCE TO
WIN MONTHLY GIVEAWAYS!”

 of 5 32

https://wpscan.com/submit

2. TESTING
ENVIRONMENT

One of the first steps to finding WordPress plugin
vulnerabilities is by setting up a testing environment. But first!
You are going to need some tools to help you with your
testing. We highly recommend Burp Suite Professional or
OWASP ZAP Proxy. These tools will act as a proxy between
your web browser and the WordPress application, allowing
you to view all the raw HTTP requests and responses.

Once you have installed one of the above testing tools, it’s
time to install your WordPress testing website. To make this
step as easy and quick as possible we would recommend
Local by Flywheel or DevKinsta.

 of 6 32

https://portswigger.net/burp/pro
https://www.zaproxy.org/
https://localwp.com/
https://kinsta.com/devkinsta/

Once you have your WordPress testing website up and
running, let’s install some plugins to help us find
vulnerabilities and make some configuration changes.

The Log HTTP Requests WordPress plugin by FacetWP, LLC,
will help you view any HTTP requests that are made from the
WordPress website. This can be helpful if the plugin that you
are testing calls out to an API on the web.

You can also configure WordPress to send all HTTP requests
through a proxy, but this can be tricky when you are working
with virtual machines, which Local and DevKinsta use.
Nevertheless, here is the configuration needed in the wp-
config.php file to proxy all of the WordPress websites server-
side HTTP requests through your web proxy, Burp or ZAP:

 of 7 32

https://wordpress.org/plugins/log-http-requests/

define('WP_PROXY_HOST', ‘127.0.0.1');
define('WP_PROXY_PORT', '8080');
define('WP_PROXY_BYPASS_HOSTS', 'localhost,
www.example.com, *.wordpress.org');

The most important WordPress configuration change we are
going to make to the wp-config.php file is to prevent
WordPress Administrator and Editor user roles from being
able to inject HTML, which in WordPress those user roles are
allowed to do by default. This will decrease the chances of
Cross-Site Scripting (XSS) false positives. This trips a lot of
people new to WordPress security testing up!

To disable unfiltered html add the following configuration to
the wp-config.php file:

define('DISALLOW_UNFILTERED_HTML', true);

For further details about the UNFILTERED_HTML user
capability and others, check out the official documentation
here;

 https://wordpress.org/support/article/roles-and-capabilities/

The second configuration change we are going to make to
WordPress is to enable debug logging, this will help you both
identify potential vulnerabilities as well as debug them.

To enable debug logging add the following configuration to
the wp-config.php file:

define('WP_DEBUG', true);
define('WP_DEBUG_LOG', true);

 of 8 32

https://wordpress.org/support/article/roles-and-capabilities/

All PHP errors will now be logged to the /wp-content/
debug.log file. To create your own logs for researching
potential vulnerabilities, you can add the following code to
the plugin that you are testing:

error_log('This is a log');

Another popular tool used for debugging vulnerabilities is
Xdebug, which allows you to step through the PHP code
while it is executing.

 of 9 32

https://xdebug.org/

3. TESTING
METHODOLOGY

There are two main ways to find vulnerabilities in web
applications such as WordPress and its plugins, and they are
automated and manually. And these can both be split into
dynamic and static testing.

We can use automated web vulnerability scanning tools, like
the ones included in Burp Suite and OWASP ZAP. These tools
will crawl the site’s pages, find forms and other inputs, and try
to find vulnerabilities within them. These tools are not perfect,
so if the scanner finds a vulnerability then you have to verify
that it is not a false positive.

Another automated way of finding vulnerabilities is through
static code analysis. The best way to do this is to use
WordPress’s official coding standard CodeSniffer rules, which
contain some security checks.

Getting PHP CodeSniffer setup with the WordPress rules can
be cumbersome, but once you have it installed and setup,
you can run the following command to just run the security
checks against the plugin you are testing:

 of 10 32

https://github.com/WordPress/WordPress-Coding-Standards

./vendor/bin/phpcs --standard=WordPress --
sniffs=WordPress.CSRF.NonceVerification,WordPress.DB.
PreparedSQL,WordPress.DB.PreparedSQLPlaceholders,Word
Press.DB.RestrictedClasses,WordPress.DB.RestrictedFun
ctions,WordPress.Security.NonceVerification,WordPress
.Security.PluginMenuSlug,WordPress.Security.SafeRedir
ect,WordPress.Security.ValidatedSanitizedInput,WordPr
ess.Security.EscapeOutputSniff,WordPress.WP.PreparedS
QL,WordPress.XSS.EscapeOutput -p -d memory_limit=256M
--colors /path/to/plugin/

Running the above command against a WordPress plugin is
likely to produce a lot of false positives. You will have to go
through each finding and manually verify it before submitting
the vulnerability to our database.

Finally, another static analysis technique to find vulnerabilities
in WordPress plugins is to manually read through the plugin’s
code to try to spot vulnerabilities. You can use Linux
command line tools such as Grep to help, as well as a
development environment such as Sublime Text, or others.

Another great way of finding vulnerabilities in WordPress
plugins is by manually tampering with the HTTP requests that
are intercepted by your testing proxy of choice; Burp or ZAP.
This technique is great for finding Cross-Site Request Forgery
(CSRF) vulnerabilities, authorisation vulnerabilities, Insecure
Direct Object Reference (IDOR) vulnerabilities and business
logic vulnerabilities.

Some techniques are better than others at finding certain
types of vulnerabilities. To increase your chances of finding
WordPress plugin vulnerabilities you should use a
combination of all of the techniques discussed above.

 of 11 32

You can also use the WP Directory Searcher online tool by
Peter Booker to grep for vulnerabilities across the entire
WordPress plugin repository. This can be great if you find a
vulnerability in one plugin and want to check if others are
affected by the same issue.

 of 12 32

https://wpdirectory.net/

4. CROSS-SITE
SCRIPTING (XSS)

Cross-Site Scripting (XSS) is when an attacker can inject
malicious JavaScript into the WordPress plugin, which could
then potentially be executed in another user’s web browser.
This is easily the most widespread vulnerability affecting web
applications.

Here are some common inputs to get you started that can
lead to XSS vulnerabilities that you can grep for:

- $_GET

- $_POST

- $_REQUEST

- $_SERVER['REQUEST_URI']

- $_SERVER['PHP_SELF']

- $_SERVER['HTTP_REFERER']

- $_COOKIE

There’s also two WordPress functions that are commonly
used that can lead to XSS vulnerabilities, those are:

- add_query_arg()

- remove_query_arg()

 of 13 32

These functions add or remove query arguments from URLs.
They are insecure because they use $_SERVER[‘PHP_SELF']
if the supplied second or third parameter is not a URL.

There’s one “XSS gotcha!” that trips up a lot of new security
researchers that are not familiar with the WordPress security
ecosystem. And that is that WordPress by default allows
Administrator and Editor users to inject arbitrary JavaScript
into pages, posts, comments and widgets. This leads to a lot
of false positive submissions to our database, which ends up
with disappointed security researchers.

The user capability responsible for allowing users to inject
arbitrary JavaScript is called unfiltered_html.

To reduce the chances of a Cross-Site Scripting (XSS)
vulnerability false positive, you can disable the
unfiltered_html capability for all users, as discussed in the
Testing Environment chapter. Another way to check if your
finding is a false positive is to test the XSS vulnerability with a
non Administrator or Editor user, such as an Author user.

Some example XSS vulnerabilities:

➡ Photo Gallery < 1.5.69 - Multiple Reflected Cross-Site
Scripting (XSS)

➡ WPBakery Page Builder Clipboard < 4.5.6 - Subscriber+
Stored Cross-Site Scripting (XSS)

➡ Patreon WordPress < 1.7.2 - Reflected XSS on Login Form

 of 14 32

https://wordpress.org/support/article/roles-and-capabilities/#unfiltered_html
https://wpscan.com/vulnerability/cfb982b2-8b6d-4345-b3ab-3d2b130b873a
https://wpscan.com/vulnerability/cfb982b2-8b6d-4345-b3ab-3d2b130b873a
https://wpscan.com/vulnerability/3bc0733a-b949-40c9-a5fb-f56814fc4af3
https://wpscan.com/vulnerability/3bc0733a-b949-40c9-a5fb-f56814fc4af3
https://wpscan.com/vulnerability/7a5fadb1-3f1c-4779-8ff6-356fccb5269b

5. SQL INJECTION

SQL Injection is when user input is mixed within a SQL query,
which allows the attacker to modify the SQL query. This can
lead to the WordPress user password hashes being leaked,
the site’s content being modified, or even complete server
compromise.

WordPress and its plugins protect against SQL Injection
vulnerabilities by using the $wpdb->prepare() function. If you
find a SQL query that is not passed through this function,
unless it is within a safe API method listed below, and it has
unvalidated user input within it, then it is likely vulnerable to
SQL Injection.

The WordPress functions below need to be passed through
the $wpdb->prepare() function, otherwise they are potentially
vulnerable to SQL Injection:

- $wpdb->query()

- $wpdb->get_var()

- $wpdb->get_row()

- $wpdb->get_col()

- $wpdb->get_results()

- $wpdb->replace()

The following functions are considered as being safe from
SQL Injection vulnerabilities:

 of 15 32

- $wpdb->insert()

- $wpdb->update()

- $wpdb->delete()

Sometimes, even though the plugin developer did not use
the $wpdb->prepare() function, you will notice that the plugin
developer had attempted to secure their SQL query by using
one of the functions below.

- esc_sql()

- escape()

- esc_like()

- like_escape()

However, don’t let the function names fool you! They do not
adequately protect against SQL Injection, because they will
only escape values to be used in strings in the query. If the
user input is not surrounded by quotes, then it will be
vulnerable to SQL Injection.

The WordPress documentation for the esc_sql() function
gives a great explanation of this:

 of 16 32

https://developer.wordpress.org/reference/functions/esc_sql/

The best tool for exploiting SQL Injection vulnerabilities is
called sqlmap by Bernardo Damele and Miroslav Stampar. It
can automate the exploitation and make it much easier.

Some example SQL Injection vulnerabilities:

➡ WP Statistics < 13.0.8 - Unauthenticated SQL Injection
➡ wpDataTables < 3.4.2 - Blind SQL Injection
➡ RSVPMaker < 7.8.2 - Unauthenticated SQL Injection

 of 17 32

https://sqlmap.org/
https://wpscan.com/vulnerability/d2970cfb-0aa9-4516-9a4b-32971f41a19c
https://wpscan.com/vulnerability/5c98c2d6-d002-4cff-9d6f-633cb3ec6280
https://wpscan.com/vulnerability/7abffced-fa65-4cea-945a-3e67cd12c373

6. CROSS-SITE REQUEST
FORGERY (CSRF)

Cross-Site Request Forgery (CSRF) is a vulnerability that can
allow an attacker to force an authenticated user into taking
some kind of action. That action could be to add a new user,
for example. To successfully exploit the vulnerability the
attacker needs for an authenticated user to click a link, or visit
a web page that they control. A CSRF attack works by forcing
the authenticated user into submitting a HTTP request.

There are a few different ways to prevent CSRF attacks, but
WordPress uses the cryptographic nonce method (a number
that can only be used once). CSRF vulnerabilities can affect
forms and URLs; POST or GET methods. The following
WordPress functions add or verify the nonce value:

- wp_nonce_field()

- wp_nonce_url()

- wp_nonce_field()

- wp_verify_nonce()

- check_admin_referer()

- check_ajax_referer()

The best way to test a WordPress plugin for CSRF
vulnerabilities is to use a web proxy such as Burp or ZAP,

 of 18 32

submit a form or click a link, then check if the HTTP request
has a CSRF nonce parameter when submitted. If the HTTP
request does not have a CSRF nonce then it is likely to be
vulnerable to a CSRF attack.

Even if the HTTP request does have a CSRF nonce, we often
find that the nonce is not checked by the plugin, which
defeats the whole purpose of having a cryptographic nonce
in the first place. If the HTTP request does have a CSRF
nonce, you can try removing the CSRF nonce value, removing
the parameter altogether, or just changing the CSRF nonce
value. If WordPress does not throw an error when doing one
of those, then the plugin is likely to be vulnerable to CSRF
attacks.

By default, the WordPress nonce parameters are named
_wpnonce or _ajax_nonce, but these can be changed by the
WordPress plugin author.

Another thing to note is that WordPress CSRF nonces are
user specific, so one user cannot use the nonce of another.

For further details about CSRF and WordPress nonces we
recommend the following resources:

- https://codex.wordpress.org/WordPress_Nonces

- https://css-tricks.com/wordpress-front-end-security-csrf-
and-nonces/

Some example CSRF vulnerabilities:

➡ Database Backups <= 1.2.2.6 - CSRF to Backup Download
➡ NextGen Gallery < 3.5.0 - CSRF allows File Upload
➡ Ninja Forms < 3.4.24.2 - CSRF to Stored XSS

 of 19 32

https://codex.wordpress.org/WordPress_Nonces
https://css-tricks.com/wordpress-front-end-security-csrf-and-nonces/
https://css-tricks.com/wordpress-front-end-security-csrf-and-nonces/
https://wpscan.com/vulnerability/350c3e9a-bcc2-486a-90e6-d1dc13ce1bd5
https://wpscan.com/vulnerability/7e1f1083-4c41-41c8-bbf0-640484384196
https://wpscan.com/vulnerability/3d15050c-cd43-4fe0-bf89-4ccfc170d23a

7. AUTHORISATION

Authentication is handled by WordPress core so it is generally
not something that we have to test or even worry about.
However, authorisation is a different matter. Authorisation
vulnerabilities are when one user can access plugin
functionality that they are not supposed to have access to.
This can be either two users of the same role, such as
changing another user’s avatar for example. Or, two users of
different roles, allowing an Author user to edit the plugin’s
settings for example, which should only be available to
Administrator users.

One common pitfall for WordPress plugin developers is the
is_admin() and is_user_admin() functions. If you thought that
these functions checked that your user was an admin then
you’d be wrong! These functions merely check that the
request was made from a WordPress admin page, which
other non-admin WordPress users have access to.

In WordPress, the current_user_can() function should be used
to properly check a user’s roles and capabilities.

Another common mistake that we see often is the
do_action("wp_ajax_nopriv_{$action}") function being
applied to sensitive functionality. This action allows
unauthenticated AJAX requests to the functionality in
question. Sometimes developers accidentally use this

 of 20 32

function without realising this. Or, they may think that
attackers won’t find out that it is used; security through
obscurity.

A quick grep for wp_ajax_nopriv_ in the plugin’s code is
always worthwhile. If you do find some uses of this action,
see if any of the functionality is sensitive enough to warrant
only being exposed to authenticated users.

Something we often see is authorisation vulnerabilities
allowing for other vulnerabilities to be exploited. For example,
perhaps the plugin developer thought that they did not need
to secure that piece of code because they assumed it could
only be accessed by Administrator users.

A good way to test for authorisation vulnerabilities is to use
the Autorize Burp Suite extension. You can configure it to
swap your Administrator user cookie for another users’ and
easily see the results.

 of 21 32

https://portswigger.net/bappstore/f9bbac8c4acf4aefa4d7dc92a991af2f

Some example authorisation vulnerabilities:

➡ MStore API < 3.2.0 - Authentication Bypass With Sign In
With Apple

➡ GiveWp < 2.5.5 - Authentication Bypass
➡ WP Database Reset < 3.15 - Unauthenticated Database

Reset

 of 22 32

https://wpscan.com/vulnerability/bf5ddc43-974d-41fa-8276-c1a27d3cc882
https://wpscan.com/vulnerability/bf5ddc43-974d-41fa-8276-c1a27d3cc882
https://wpscan.com/vulnerability/12b672bd-5c7a-47b9-a232-17fed88595a9
https://wpscan.com/vulnerability/8cb84b6c-f0cd-410d-8a85-90c031dea2c8
https://wpscan.com/vulnerability/8cb84b6c-f0cd-410d-8a85-90c031dea2c8

8. REMOTE COMMAND
EXECUTION (RCE)

Remote Command Execution (RCE) is probably one of the
most dangerous vulnerabilities that can affect a WordPress
plugin as it allows attackers to run commands on the
Operating System (OS).

The PHP functions below all allow arbitrary commands to be
run on the OS. If a WordPress plugin allows user input to be
passed to one of these, without first being sanitised then it
can lead to RCE.

- system()

- exec()

- passthru()

- shell_exec()

These functions can be grepped for within the plugin’s code.
They are generally not so commonly used as plugin
developers know of their dangers. But they do come across
from time to time!

 of 23 32

Some example Remote Command Execution vulnerabilities:

➡ Plainview Activity Monitor <= 20161228 - Remote
Command Execution (RCE)
➡ Cool Video Gallery <= 1.9 - Authenticated Command
Injection
➡ Form Manager <= 1.7.2 - Authenticated Remote
Command Execution (RCE)

 of 24 32

https://wpscan.com/vulnerability/ab749b6c-c405-40e0-8417-0fe1bdb8537c
https://wpscan.com/vulnerability/ab749b6c-c405-40e0-8417-0fe1bdb8537c
https://wpscan.com/vulnerability/2b852da5-1790-400c-b36f-fe70bbdf03eb
https://wpscan.com/vulnerability/2b852da5-1790-400c-b36f-fe70bbdf03eb
https://wpscan.com/vulnerability/e8d959f1-c72b-4bb6-a670-7d3a1390170e
https://wpscan.com/vulnerability/e8d959f1-c72b-4bb6-a670-7d3a1390170e

9. REMOTE PHP CODE
EXECUTION (RCE)

Remote PHP Code Execution (RCE) is again probably one of
the most dangerous vulnerabilities that can affect a
WordPress plugin as it allows attackers to arbitrary PHP code
on the web server.

The PHP functions below all allow arbitrary PHP to be run on
the web server. If a WordPress plugin allows user input to be
passed to one of these, without first being sanitised then it
can lead to RCE.

- eval()

- assert()

- preg_replace()

- php://input

- call_user_func()

These functions can be grepped for within the plugin’s code.
They are generally not so commonly used as plugin
developers know of their dangers. But they do come across
from time to time!

 of 25 32

Some example Remote Code Execution vulnerabilities:

➡ Social Warfare <= 3.5.2 - Unauthenticated Remote Code
Execution (RCE)

➡ WP Super Cache < 1.7.2 - Authenticated Remote Code
Execution (RCE)

➡ Secure File Manager < 2.8.2 - Authenticated Remote
Code Execution

 of 26 32

https://wpscan.com/vulnerability/7b412469-cc03-4899-b397-38580ced5618
https://wpscan.com/vulnerability/7b412469-cc03-4899-b397-38580ced5618
https://wpscan.com/vulnerability/733d8a02-0d44-4b78-bbb2-37e447acd2f3
https://wpscan.com/vulnerability/733d8a02-0d44-4b78-bbb2-37e447acd2f3
https://wpscan.com/vulnerability/47c1639f-4558-4cb6-8f50-e5e8564663c2
https://wpscan.com/vulnerability/47c1639f-4558-4cb6-8f50-e5e8564663c2

10. PHP OBJECT
INJECTION

PHP Objection Injection is arguably one of the more difficult
vulnerabilities to exploit in the real world. But they are still
relatively easy to discover with the right tools and
methodologies. Over the past few years the vulnerability has
gained in popularity, with many WordPress plugins, and even
WordPress itself, being affected.

The two functions to look out for in WordPress that can cause
an Object Injection vulnerability are:

- unserialize()

- maybe_unserialize()

If user supplied input is passed to either of these functions
without any prior validation, then it is likely that you have
found a PHP Object Injection vulnerability.

The other way of finding Object Injection vulnerabilities within
WordPress is to use this Burp Suite extension along with this
WordPress plugin.

Once the Burp Suite Extension and the WordPress plugin is
installed, you can use Burp’s automated Scanner to scan the

 of 27 32

https://gist.github.com/ethicalhack3r/7c2618e5fffd564e2734e281c86a2c9b
https://www.pluginvulnerabilities.com/2017/07/24/wordpress-plugin-for-use-in-testing-for-php-object-injection/

plugin. If a PHP Object Injection is found it will appear in
Burp’s findings.

There’s a great YouTube video linked below by IppSec titled
“Intro to PHP Deserialization / Object Injection” if you want to
learn more about how the vulnerability works and how to
exploit it.

https://www.youtube.com/watch?v=HaW15aMzBUM

Some example PHP Object Injection vulnerabilities:

➡ WordPress 3.7 to 5.7.1 - Object Injection in PHPMailer
➡ Ultimate Reviews < 2.1.33 - Unauthenticated PHP Object

Injection
➡ GDPR CCPA Compliance Support < 2.4 - Unauthenticated

PHP Object Injection

 of 28 32

https://www.youtube.com/watch?v=HaW15aMzBUM
https://wpscan.com/vulnerability/4cd46653-4470-40ff-8aac-318bee2f998d
https://wpscan.com/vulnerability/75ad8726-09a5-49b7-9534-61371a543764
https://wpscan.com/vulnerability/75ad8726-09a5-49b7-9534-61371a543764
https://wpscan.com/vulnerability/92f1d6fb-c665-419e-a13b-688b1df6c395
https://wpscan.com/vulnerability/92f1d6fb-c665-419e-a13b-688b1df6c395

10. OTHER THINGS TO
TEST FOR

Privilege Escalation

User supplied input passed to either of these WordPress
functions can lead to privilege escalation vulnerabilities.

- update_option()

- do_action()

There’s an example vulnerability that was identified in the WP
GDPR Compliance Plugin by Wordfence linked below:

https://www.wordfence.com/blog/2018/11/privilege-escalation-
flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/

File Inclusion

PHP allows multiple ways to include files, these could be
vulnerable to Local or Remote File Inclusion vulnerabilities if
unvalidated user supplied input is passed to any of the
following functions:

- include()

- require()

 of 29 32

https://www.wordfence.com/blog/2018/11/privilege-escalation-flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/
https://www.wordfence.com/blog/2018/11/privilege-escalation-flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/

- include_once()

- require_once()

- fread()

File Upload

The sanitize_file_name() WordPress function can help in
bypassing filename validation in some circumstances. For
example, passing “test.(php)” would return the valid filename
“test.php”.

- sanitize_file_name()

File Download

The following functions can lead to arbitrary file download if
user supplied input is passed to them without proper
validation:

- file()

- readfile()

- file_get_contents()

Open Redirects

The wp_redirect() WordPress function does not validate the
host and therefore can be vulnerable to Open Redirects. It is
recommended that the wp_safe_redirect() function be used
instead, which does validate hosts.

- wp_redirect()

 of 30 32

SSL/TLS Issues

It is important to check if any communications made by the
plugin are using secure transport standards.

- CURLOPT_SSL_VERIFYHOST if set to 0 then does not
check name in the host certificate.

- CURLOPT_SSL_VERIFYPEER if set to FALSE then does
not check if the certificate (inc chain), is trusted. A Man-in-
the-Middle (MitM) attacker could use a self-signed
certificate.

Also, check if plaintext HTTP is used to communicate with
backend servers or APIs. A grep for "http://" should be
sufficient.

 of 31 32

We hope that you have enjoyed this book and that it has helped you find
WordPress plugin vulnerabilities, either in your own code, or as part of a bug
bounty or penetration test.

This e-book will be constantly updated with subsequent versions as new research
and findings around WordPress security come to light. So keep an eye out for new
versions!

https://twitter.com/_wpscan_

https://www.facebook.com/WPScan

https://www.linkedin.com/company/wpscan/

 of 32 32

https://twitter.com/_wpscan_
https://www.facebook.com/WPScan
https://www.linkedin.com/company/wpscan/

