
Hidden	Network:	Detecting	Hidden	Networks	
created	with	USB	Devices	

	
Pablo	González	Pérez:	pablo@11paths.com	

Francisco	José	Ramírez	Vicente:	franciscojose.ramirezvicente@telefonica.com	
	
	
	
	

Executive	Summary	
	
Many	 companies	 and	 government	 agencies	 today	 have	 communications	 isolated	
networks	 or	with	 data	 flow	 restricted	 through	 different	 networks.	 These	 computers	
networks	 are	 created	 for	 particular	 situations,	 as	 these	 can	 be	 very	 special	 or	 have	
critical	 information	 such	 as,	 factory	 control	 system,	 highly-secured	 environments	 for	
processing	 of	 certain	 data,	 or	 networks	 complying	with	 a	 safety	 standard.	 In	 recent	
Cyber-security	history,	 it	has	been	proven	how	this	malicious	software	called	Stuxnet	
infiltrated	 into	 an	 isolated	 network	 at	 a	Nuclear	 Power	 Plant.	 In	 light	 of	 this	 fact,	 it	
could	be	seen	that	having	a	computers	network	not	connected	through	Ethernet	cable	
or	 WiFi	 to	 other	 networks	 is	 not	 enough.	 Any	 type	 of	 external	 connection	 for	
computers	may	constitute	a	threat.	This	paper	reflects	the	possibilities	provided	by	the	
so-called	Hidden	Network	and	how	these	can	be	identified	and	focused	on	protection	
of	these	issues	inside	a	corporate	network.		
	 	

1.	The	risks	of	the	connections	
	
Regarding	the	safety	of	data	networks,	there	is	a	trend	to	sketch	networks	through	the	
connections	at	links	level,	such	as	Ethernet,	WiFi	connections,	etc.	Corporate	networks	
are	 much	 more	 complex	 than	 this	 and	 they	 require	 analysis	 from	 different	
perspectives.		
	
The	 traffic	 analysis	 on	 a	 corporate	 data	 network	 is	 the	 major	 tool	 provided	 to	
understand	what	 is	going	on	with	 it.	 In	addition,	 it	 is	 the	more	consistent	option	 for	
searching	network	nodes	seizing	the	most	used	protocols,	which	are	nodes	conformed	
by	 the	 most	 essential	 services	 or	 those	 who	 act	 as	 bottlenecks.	 Given	 these	
statements,	it	can	be	extrapolated	that	a	risks-based	network	analysis	provides	a	great	
deal	of	data	and	information	based	on	different	guidelines.		
	
Mapping	 a	 network	 in	 an	 aesthetically	manner	 is	 right	 for	 understanding	 the	 nodes	
and	 network	 settings,	 therefore,	 a	 telemetry	 analysis	 is	 critical	 to	 contain	 and	 be	
prepared	for	such	hazards.	Due	to	these	deal	of	data,	we	can	achieve	a	greater	level	of	
understanding	regarding	the	network	and	the	threats	inside	it.	
	

	
	

Figure	1:	A	network	map	simulation	with	different	nodes	and	connections	between	them	
	
Nodes	representation	and	connection	structures	are	vital	to	comprehend	all	different	
borders	 inside	 the	 network	 in	 order	 to	 mitigate	 intrusions,	 detecting	 attacks,	 or	
preventively	carry	out	the	implementation	of	safety	measures.		
	
The	problem	is	more	a	case	of	understanding	that	this	is	a	network.	In	many	cases,	a	
network	 is	 defined	 as	 a	 group	 of	 computers	 connected	 with	 the	 possibility	 to	
communicate	with	 each	 other	 across	 different	 technologies	 and	 protocols.	 On	most	
occasions,	users	or	system	and	network	administrators	consider	a	good	thing	having	a	
network	 connected	 through	 Ethernet	 or	WiFi	 connection	 on	 different	 organization	
computers.	This	is	not	the	case	here,	as	one	organization	not	implementing	prevention	
measures	 regarding	 the	 use	 of	 USB	 devices,	 may	 enforce	 what	 is	 known	 as	Hidden	

Networks.	 These	 networks	 are	 created	 through	 the	 use	 of	 USB	 devices	 and	 allow	
communication	between	physically	or	logically	isolated	computers.		
	

1.1. Network	Isolation	and	USB	Connection	
	
To	 understand	 the	 hazards	 about	 Hidden	 Networks,	 which	 are	 created	 from	 USB	
devices,	here	is	a	simple	example.	Assuming	an	organization	have	a	network	formed	by	
3	types	of	VLANs.	The	first	VLAN	contains:	

• A	computer	called	A.	This	computer	has	connectivity	with	others	computers	of	
the	same	VLAN.	

• A	computer	called	B.	This	computer	has	connectivity	with	others	computers	of	
the	same	VLAN.	

	
The	second	VLAN	contains:	

• A	computer	called	C.	This	computer	has	connectivity	with	others	computers	of	
the	same	VLAN.	

• A	computer	called	D.	This	computer	has	connectivity	with	others	computers	of	
the	same	VLAN.	

• A	computer	called	E.	This	computer	has	connectivity	with	others	computers	of	
the	same	VLAN.	

	
The	third	VLAN	contains:	

• A	computer	called	F.	This	computer	has	connectivity	with	others	computers	of	
the	same	VLAN.	

	
If	we	observe	the	networks	outline	on	the	 image	below,	we	can	see	how	computers	
are	 isolated	 through	 different	 VLANs.	 Assuming	 employees	 of	 this	 organization	
exchange	data	by	means	of	USB	devices,	there	is	a	high	probability	for	this	information	
to	pass	from	one	VLAN’s	computer	to	another.	Adding	the	USB	device	is	itself	a	source	
of	threats,	a	hidden	network	is	being	created	inside	the	organization.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

Figure	2:	Network	outline	with	computers	connected	to	different	VLANs	
	
Assuming	that	users	of	computers	F	and	E	are	exchanging	information	through	a	USB	
device,	a	hidden	network	is	being	created	between	both	computers.	This	information	
can	 be	 represented	 with	 two	 nodes,	 E	 and	 F	 ,	 and	 an	 arc	 projected	 between	 the	
computer	first	introduced	the	USB	device	and	the	second	computer.		
	
	

	
	

Figure	3:	Hidden	network	overlapping	on	the	previous	network	outline	
	

2. USB	Device	Connections	in	the	Computer	System	
	
When	a	USB	device	is	connected	from	one	computer	to	another,	the	term	“Pollination”	
emerge.	 This	 concept	 is	 similar	 to	 the	 one	 used	 on	 other	 areas	 and	 is	 related	with	
carrying	 the	 threat	 or	 risk	 from	 one	 USB	 device	 among	 different	 computers,	 even	
when	these	are	connected	to	different	networks.			
	
When	a	user	connects	a	USB	device,	a	series	of	entries	are	created	in	the	system	of	the	
Windows	 registry.	 This	 type	 of	 information	 is	 valuable,	 for	 example,	 in	 a	 forensic	
analysis,	in	order	to	know	where	the	information	leakage	comes	from	or	where	did	the	
threat	enter	in	a	Post-Mortem.		
	
The	USBStor	key	created	in	the	Windows	system	registry	save	information	regarding	all	
different	 devices	 inserted	 in	 the	 computer.	 If	 USB	 N	 devices	 were	 inserted	 in	 a	 N	
computer,	 such	 N	 devices	 will	 be	 found	 at	 the	USBStor	 key,	 which	 contains	 all	 the	
information	needed	to	identify	the	device.	
	

	
	

Figure	4:	Registry	visualization	of	the	USB	devices	inserted	
	
The	 following	 information	 can	 be	 collected	 from	 USB	 devices	 connected	 to	 one	
computer:	

• Device	name.	
• Class.	
• ClassGUID.	
• HardwareID.	
• Service	provided	by	the	device,	e.g.	a	hard	disk.	
• Driver.	
• Etc.	

	

2.1. Hidden	Links:	Detection	of	These	Kind	of	Networks	
	
By	 knowing	 where	 and	 how	 the	 information	 of	 one	 USB	 device	 is	 stored	 within	 a	
Microsoft	operative	system,	you	could	know	who	is	sharing	the	USB	device,	and	with	
whom.	In	this	way,	we	can	generate	two	nodes	representing	two	computers	and	one	
arc	 which	 identifies	 the	 connection	 between	 both	 computers.	 A	 hidden	 network	 is	
being	 uncovered	 thanks	 to	 the	 Hidden	 Link.	 Besides,	 you	 can	 identify	 in	 which	
computer	was	connected	a	priori,	as	a	result	of	the	many	events	that	can	be	obtained	
from	an	operative	system.	This	is	how	the	arc	between	nodes	is	directed.		
	
To	perform	an	automation	of	the	Hidden	Links	detection,	the	following	plan	has	been	
proposed:		

	

	
	

Figure	5:	Script	release	diagram	in	an	AD	(Active	Directory)	
	
In	the	above	image,	 it	can	be	seen	how	the	application	 is	executed	in	a	central	node	
and	 how	 this	 is	 able	 to	 use	 several	Microsoft	 technologies	 to	 execute	 commands	 in	
each	of	 the	 computers	within	 the	domain.	The	examined	 technologies,	which	 fit	 the	
solution	design	are	as	follows:	

• WinRM.	
• SMB	(Server	Message	Block).	
• WMI.	

	
Powershell	is	an	object-oriented	command	line	from	Microsoft,	which	has	a	simple	and	
powerful	interaction	with	any	structure	inside	a	Microsoft	operative	system.		
	

	
	

Figure	6:	Collection	of	USB	devices	connected	to	Powershell	
	
	
	

2.2. USB	Hidden	Networks	for	WinRM	
	
The	 script	 WinRM	 version	 in	 PowerShell	 requires	 the	 activation	 of	 the	 Windows	
Remote	 Management	 (WinRM)	 service	 in	 each	 of	 the	 network	 computers	 to	 be	
audited:	
	

	
	

Figure	7:	WinRM	Service	
	
Furthermore,	 the	 script	 has	 been	 tested	on	 a	 single-Domain	 network	with	 an	Active	
Directory	 (AD)	 to	 automate	 the	 information	 collection	 as	much	 as	 possible.	 Domain	
administrator	credentials	are	used	to	approve	execution	on	remote	computers	in	the	
local	network.	Credentials	will	be	required	when	executing	the	script.		
	

	
	

Figure	8:	Credentials	requirement	regarding	the	script	usage	

The	 script	 primary	 implementation	 is	 performed	 through	 the	
“LaunchUSBHiddenNetworks.ps1”	program,	 which	 connects	 remote	 computers	 using	
the	 script	 known	 as	 “RecollectUSB.ps1”,	 which	 is	 passed	 as	 parameter	 to	 collect	
information	from	USB	devices.	Thus,	the	script	shall	be	executed	individually	in	each	of	
the	computers	assigned.	
	
2.2.1. Script:	LaunchUSBHiddenNetworks	
	
The	 execution	 of	 this	 command	 is	 based	 on	 the	 PowerShell’s	 command	 “Invoke-
Command”.	This	command	allows	to	connect	with	a	computer	in	the	network	passing	
the	FQDN,	 computer	name	or	 IP	address	as	parameters,	and	on	 the	other	hand,	 the	
script	of	PoweShell	to	be	executed:	
	
$salida=invoke-command -ComputerName (Get-Content servers.txt) -FilePath
'PathToScript\RecollectUSBData.ps1'-Credential testdomain\administrador
	
With	 the	 –ComputerName	 parameter,	 the	 name	 of	 computer(s)	 to	 be	 audited	 is	
assigned	 inside	 our	 AD.	 It	 is	 possible	 to	 directly	 introduce	 the	 name	 of	 computers	
followed	 by	 commas,	 but	 in	 this	 case,	 a	 TXT	 (servers.txt)	 file	 with	 a	 list	 of	 the	
computers	has	been	used	and	passed	as	parameter.	
	
The	 -FilePath	 parameter	 assign	 the	 path	 for	 the	 script	 on	 PowerShell	 that	 will	 be	
performing	 the	 data	 collection.	 Finally,	 the	–Credential	parameter	 allows	 the	 use	 of	
domain	 administrator	 credentials	 to	 approve	 the	 execution	 of	 remote	 computer,	 in	
which	case,	domain	is	“testdomain”	and	user	“administrator”.	
	
The	outcome	of	the	run	is	stored	in	the	object	$salida.	The	information	retrieved	will	
be	stored	likewise	in	a	CSV	file	called	“USBDATA.csv”	as	follows:	
	
$salida | Out-File USBDATA.csv
	
The	formatting	of	CSV	file	has	the	following	structure	after	running	the	script:	
	
Name	of	the	computer,	IP	(on	IPv4	format),	USB	name,	ID	(unique	identifier)	
	

	
	

Figure	9:	Results	obtained	in	CSV	format		
	
With	 this	 information,	 we	 could	 create	 a	 graph	 like	 the	 one	 shown	 below	with	 the	
Gephi	application:	
	

	
	

Figure	9:	Graph	representing	hidden	connections	of	USB	devices	in	a	network	
	
2.2.2. Script:	RecollectUSBData	
	
This	 script	 is	 responsible	 for	 gathering	 all	 information	 referring	 the	 USB	 devices	
connected	to	the	computer	and	it	runs	locally	in	the	computers	to	be	audited.	The	data	
is	retrieved	from	a	particular	branch	of	the	Windows	registry.		
	
$USBDevices = @()
$USBContainerID = @()
$USBComputerName = @()
$USBComputerIP = @()
$SubKeys2 = @()
$USBSTORSubKeys1 = @()
	
The	 matrixes,	 where	 information	 related	 to	 the	 audited	 computer	 is	 going	 to	 be	
stored,	 and	 for	 the	data	 referred	 to	USB	devices	 stored	 in	 the	 registry	 or	 that	were	
connected	at	some	point	in	time	to	the	computer,	are	launched.		
	
$Hive = "LocalMachine"
$Key = "SYSTEM\CurrentControlSet\Enum\USBSTOR"
	
$Hive	and	$Key	store	the	complete	path	for	the	registry	branch	where	the	data	search	
related	 to	USB	devices	 is	 taking	place.	The	variable	$Hive	with	“LocalMachine”	value	
equals	to	HKLM	or	HKEY_LOCAL_MACHINE.	
	
$ComputerName = $Env:COMPUTERNAME
$ComputerIP = $localIpAddress=((ipconfig | findstr [0-9].\.)[0]).Split()[-1]

The	 name	 of	 local	 computer	 is	 stored,	 as	 well	 as	 the	 IP	 address	 and	 variables	
$ComputerName	and	$ComputerIP.	
	
$Reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($Hive,$Computer)
$USBSTORKey = $Reg.OpenSubKey($Key)
$nop=$false
	
On	$Reg	 object,	 the	 registry	 query	 is	 run	 using	 the	 command	OpenRemoteBaseKey,	
using	 variables	$Hive	 y	$Computer	 as	 parameters,	 which	 establish	 the	 branch	 to	 be	
consulted.	The	variable	$nop	will	be	used	later	to	control	the	execution	flow.	
	
Try {
 $USBSTORSubKeys1 = $USBSTORKey.GetSubKeyNames()
}
Catch
{
 Write-Host "Computer: ",$ComputerName -foregroundcolor "white" -
backgroundcolor "red"
 Write-Host "No USB data found"
 $nop=$true
}
	
The	 Try	 –	 Cath	 block	 is	 responsible	 for	 managing	 errors	 in	 case	 no	 information	
regarding	 USB	 devices	 can	 be	 found.	 If	 no	 information	 is	 found,	 the	 value	 $true	 is	
assigned	 to	 the	 $nop	 variable	 in	 order	 to	 avoid	 execution	 of	 the	 whole	 process	 of	
identification	and	retrieving	of	USB	device	data.	
	
if(-Not $nop)
	
In	 case	 there	 is	 any	 entry	 associated	with	 the	USB	 device	 connection,	$nop	 a	$true	
variable,	the	following	blocks	will	be	run:	
	
Block	1:	
	
ForEach($SubKey1 in $USBSTORSubKeys1)
 {
 $Key2 = "SYSTEM\CurrentControlSet\Enum\USBSTOR\$SubKey1"
 $RegSubKey2 = $Reg.OpenSubKey($Key2)
 $SubkeyName2 = $RegSubKey2.GetSubKeyNames()
 $Subkeys2 += "$Key2\$SubKeyName2"
 $RegSubKey2.Close()

 }
	
Each	of	the	existing	items	in	the	registry	branch	where	the	search	is	taking	place	is	a	
different	USB	device.	Each	item	is	stored	in	the	matrix	@Subkeys2.	
	
Block	2:	
	
ForEach($Subkey2 in $Subkeys2)
 {
 $USBKey = $Reg.OpenSubKey($Subkey2)
 $USBDevice = $USBKey.GetValue('FriendlyName')

 $USBContainerID = $USBKey.GetValue('ContainerID')

 If($USBDevice)
 {
 $USBDevices += New-Object -TypeName PSObject -Property @{
 USBDevice = $USBDevice
 USBContainerID = $USBContainerID
 USBComputerName= $ComputerName
 ComputerIP = $ComputerIP
 }
 }

 $USBKey.Close()
 }
	
This	block	explore	every	USB	device	previously	identified	in	the	Block	1	and	stored	at	
the	@Subkeys2	matrix.	For	every	item	having	a	value	at	the	$USBDevice	field,	the	USB	
device	 ID	 is	 being	 retrieved;	 USBContainerID.	 The	 name	 and	 IP	 address	 of	 the	
computer	it	is	also	assigned	in	order	to	add	this	later	to	the	output	CSV	file.		
	

	
	

Figure	10:	Registry	branch	where	the	USB	devices	are	
	
	
Block	3:	
	
for ($i=0; $i -lt $USBDevices.length; $i++) {
 $IDUnico=$USBDevices[$i] | Select -ExpandProperty "USBContainerID"
 $USBNombre=$USBDevices[$i] | Select -ExpandProperty "USBDevice"
 Write-Host "Computer: ",$ComputerName -foregroundcolor "black" -
backgroundcolor "green"
 Write-Host "IP: ",$ComputerIP

 Write-Host "USB found: ",$USBNombre
 Write-Host "USB ID: ",$IDUnico
 Echo "$ComputerName,$ComputerIP,$USBNombre,$IDUnico"
 }
	
Finally,	this	block	displays	pertinent	information	obtained	from	the	remote	computer.	
The	Write-Host	print	command	is	used	on	the	server	screen,	where	the	script	was	run.	
The	Echo	command	is	used	as	data	output	to	subsequently	write	the	data	in	the	CSV	
file.	
	

	
	

Figure	11:	Output	after	the	script	running	
	

2.3. USB	Hidden	Networks	for	SMB	con	PSExec	
	
In	order	to	run	the	script	through	SMB,	it	will	be	necessary	to	have	PSTools	previously	
installed,	specifically	to	execute	the	PSExec	command	in	the	computers	to	be	checked.	
The	operating	philosophy	will	be	practically	the	same	of	the	WinRM	version.	It	will	be	
connected	from	the	server	to	the	remote	computer	and	the	script	should	be	run	from	
the	server	with	domain	administrator	account,	then	the	USB	data	collection	script	will	
be	executed.		
	
The	 main	 script	 LaunchUSBHiddenNetworks.ps1	 will	 have	 a	 few	 modifications	 to	 fit	
with	 this	 new	 type	 of	 connection.	 The	 primary	 modification	 is	 that	 this	 time,	 the	
command	 Invoke-Command	 is	 not	 used	 to	 remotely	 run	 the	 script.	 A	 shell	 from	
Powershell	will	now	be	opened,	and	the	script	should	be	run	from	it.	The	script	will	be	
downloaded	 from	 the	 network	 location,	 preferably	 from	 a	 web	 server	 that	 would	
execute	 download	 through	 some	 HTTP	 protocol.	 In	 this	 way,	 subsequent	 problems	
with	execution	policy	and	permits,	which	you	may	 find	by	accessing	 the	 local	 shared	
resource,	are	avoided.	
	
Similar	 to	 the	 previous	 version	 of	WinRM,	 results	 should	 be	 stored	 in	 a	 CSV	 file.	 To	
avoid	synchronization	problems	and	allow	time	for	the	program	to	run	on	the	remote	
computer,	some	delays	have	been	included	as	described	in	the	code	analysis	below:	
	
	
	

2.3.1. Script:	LaunchUSBHiddenNetworks	
	
$computers = gc
"C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_for_SMB\servers.txt"
$url = "http://192.168.1.14/test/RecollectUSBData.ps1"
$sincro = 40	
	
Several	variables	are	assigned.	The	matrix	where	the	server	names	or	IP	addresses	will	
be	 stored,	 $computers,	 which	 are	 at	 the	 servers.txt	 file,	 the	 $url	 variable	 showing	
where	the	script	RecollectUSBData.ps1	is	and,	ultimately,	the	waiting	time	to	sync	the	
operation.	 It	 should	 also	 be	 taken	 into	 consideration	 that	 this	 number	 may	 vary	
depending	on	the	environment	where	the	script	is	run.	The	following	is	an	example	of	
execution:	
	

	
	

Figure	12:	Powershell	and	script	running	through	the	PSEXEC	tool.	
	
The	servers.txt	file	will	have	the	computers	names	or	directly	the	IP	addresses	stored	
as	we	can	see	below:		
	

	
	

Figure	13:	List	of	computers	to	be	analyzed	
	
foreach ($computer in $computers) {
 $Process = [Diagnostics.Process]::Start("cmd.exe","/c psexec.exe
 \\$computer powershell.exe -C IEX (New-Object
 Net.Webclient).Downloadstring('$url') >>
 C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_for_SMB\
 usbdata.csv")
 $id = $Process.Id
 sleep $sincro

 Write-Host "Process created. Process id is $id"
 taskkill.exe /PID $id
}
	
In	 this	 loop,	each	of	 the	computers	 to	be	analyzed	 is	checked,	which	also	have	been	
loaded	with	$computers	variables	from	the	servers.txt	file.	The	execution	main	body	is	
focused	 in	the	object	$Process.	 In	 it,	a	remote	computer	console	 is	opened,	which	 in	
turn	 will	 launch	 other	 Powershell	 console,	 passing	 the	 file	 RecollectUSBData.ps1	 as	
parameter,	which	is	at	the	location	designated	by	the	$url	variable.	 Is	critical	to	have	
properly	configured	the	location	paths	for	each	of	the	files	before	running	the	script.	
	
Before	moving	on	to	the	following	computer	in	the	list,	it	will	be	necessary	to	be	sure	
about	termination	of	the	information	collection	process.	There	are	several	manners	to	
optimize	this	operation,	but	in	this	illustration	the	choice	is	simply	adding	an	X	seconds	
delay	between	each	running	by	means	of	the	sleep	command.	Once	the	data	collection	
of	 the	computer	to	be	audited	 is	 terminated,	we	erase	the	execution	process	before	
moving	on	 to	 the	next	with	 taskkill	 command.	 For	 information	purposes,	 the	 ID	and	
result	of	this	operation	is	screen-printed,	as	pictured	in	the	following	snapshot:	
	

	
	

Figure	14:	Script	running	in	Powershell	
	
2.3.2. Script:	RecollectUSBData	
	
This	 script	 has	 only	 been	modified	 at	 the	 last	 block	 (Block	 3)	 in	 order	 to	 adapt	 the	
output	to	the	new	execution	type.	As	can	be	seen	in	the	code	shown	below,	command	
Echo	has	been	replaced	for	a	Write-Host	with	variables,	eliminating	the	screen	output:	
	
 for ($i=0; $i -lt $USBDevices.length; $i++) {
 $IDUnico=$USBDevices[$i] | Select -ExpandProperty "USBContainerID"
 $USBNombre=$USBDevices[$i] | Select -ExpandProperty "USBDevice"
 Write-Host "$ComputerName,$ComputerIP,$USBNombre,$IDUnico"
 }
The	generated	USBData.CSV	file	will	be	exactly	the	same	as	the	one	previously	shown.	
	
2.4. Historical	Information	

It	 is	 also	 possible	 to	 get	 the	 registration	 of	 the	 dates	 of	 first	 connection	 in	 the	
computer,	 in	 case	we	need	more	 information	 regarding	 the	 route	of	 the	USB	device	

inside	 the	 HiddenNetwork.	 At	 the	 event	 log,	 the	 branch	 capable	 of	 offering	 more	
information	is	disabled	by	default	in	all	Windows	versions.	Such	branch	is	as	follows:	
	
Windows	 Logs	 ->	Applications	and	Services	 Logs	 ->	Windows	 ->	DriverFrameworks-
UserMode	->	Operational	
	
Thus,	the	way	we	obtain	the	first	connection	date	of	the	USB	device	in	the	computer,	
without	accessing	 the	computer	assessment,	 is	by	analyzing	 the	 following	 file	on	the	
system:	
	
C:\Windows\inf\setuoapi.dev.log	
	
Within	this	file,	the	time	of	first	connection,	among	other	data,	has	been	recorded.	To	
properly	locate	the	USB	device	inserted,	it	will	be	necessary	to	store	a	new	value	while	
running	the	“RecollectUSBData.ps1”	script,	and	this	field	value	would	be	DiskID:	
	

	
	

Figure	15:	DiskID	key	search	
	
This	 value	 is	 unique	 within	 the	 current	 Windows	 system,	 but	 it	 changes	 when	
connected	to	another	computer,	unlike	ContainerId	field,	which	is	the	same	on	each	of	
the	Windows	 computers.	 The	USB	 can	be	 identified	 inside	 the	 setupoapi.dev.log	 file	
with	this	value.	In	the	illustration	below,	its	location	can	be	shown	by	using	the	DiskID	
and	the	date	of	first	insertion	within	the	audited	system:	

	
	

Figure	16:	Obtaining	the	connection	date	of	the	USB	device	

2.5. Hidden	Links	in	OS	X	
	
On	 computer	 systems	 running	Mac	OS	 X	 or	macOS,	 theses	 have	 a	 file	 with	 a	 PLIST	
extension,	 which	 store	 this	 information	 over	 the	 USB	 devices	 connected	 to	 the	
computer.	 The	 file	 is	 named	 com.apple.finder.plist.	 On	 image	 below,	 an	 example	 of	
information	capture	in	OS	X	or	macOS	environments	can	be	seen.		
	

	
	

Figure	17:	Data	collection	in	USB	devices	connected	to	OS	X	systems	
	
	

2.6. Mitigation	
	
One	way	to	prevent	this	“Pollination”	between	computers	in	a	corporate	network	is	to	
restrict	 the	 use	 of	 USB	 devices	 in	 computers.	Mitigation	 or	 prevention	 through	 the	
forced	 use	 due	 to	 Active	 Directory	 policies,	 which	 restrict	 connection	 in	 a	 user	
computer	 to	 devices	 only	 approved	 by	 one	 user.	 The	 implementation	 of	 the	 safety	
policy	 along	with	 a	white	 list	 of	 approved	devices	 for	 each	user	 allows	 to	 avoid	 this	
kind	of	Hidden	Links,	but	it	is	complex	and	expensive	to	maintain.		
	

	

Figure	18:	The	use	of	the	USB	device	is	forbidden	on	this	computer	due	to	company	policy	
	
	

3. Conclusions	
	
Beyond	 the	 possible	 leakage	 of	 corporate	 information,	 a	 Hidden	 Network	 is	 also	 a	
problem	 for	 our	 computer’s	 integrity.	 Such	 USB	 devices	 may	 spread	 a	 malware	
towards	different	 sections	within	 the	 infrastructure,	where,	 in	 theory,	 the	 security	 is	
higher.	 Having	 networks	 disconnected	 from	 the	 Internet	 provides	 this	 false	 security	
feeling	regarding	a	higher	level	of	protection	before	any	incident,	which	increases	the	
system	vulnerability.		
	
The	malware	infection	through	USB	devices	is	a	real	and	underlying	problem,	not	only	
regarding	 the	 historic	 Stuxnet	 case,	 but	 with	 others	 of	 greatest	 relevance	 such	 as	
Brutal	Kangaroo	used	by	the	CIA.		
	
Due	 to	 the	 major	 impact	 such	 infections	 and	 information	 leakage	 may	 have	 in	 our	
infrastructure,	we	have	created	this	paper	to	help	in	identifying	these	hidden	networks	
and	to	offer	a	tool	for	their	control.	Thus,	it	will	be	easier	to	prevent	incidents	and	also	
to	provide	a	utility	containing	useful	information	for	forensic	analysis	cases.	

References	
	
https://blogs.technet.microsoft.com/heyscriptingguy/2012/05/18/use-powershell-to-find-the-
history-of-usb-flash-drive-usage/	
	
http://www.elladodelmal.com/2017/06/brutal-kangaroo-y-la-infeccion-por-usb.html	
	
https://github.com/ElevenPaths/USBHiddenNetworks		
	

