

FORENSICS
Analyzing an Unknown Image

Submitted by

PRAVEEN DARSHANAM

praveen_recker@sify.com

http://www.darshanams.blogspot.com/

KNOWLEDGE IS NOT AN OBJECT. IT'S A FLOW.

This is not a highly technical document but wrote with a notion that this document

might help someone somewhere gain some knowledge and pave path to delve deep

into forensics depending on the interest.

This Whitepaper is written for Educational Purpose only. Can be distributed,

Copied, Shared as per users interest. Author shall not bear any responsibility for

any damages watsoever.

Thanks to str0ke, All Andhra Hackers and All Indian Hackers !!!

Grabbing the image for analyzing

I extracted this image under analysis from a Virtual Machine with Windows 2000 Server

Running.

Many open source and commercial tools are available to take the image of a drive, hard

disk, partition etc. Few tools which can be used are dd, windd etc.

I used dd command for taking the image of the running virtual machine.

First, lets list all the available drives/partitions on the VM.

Figure: Available drives/partitions on the VM

\\.\a: A Drive, Floppy Drive

\\.\c: C Drive

\\.\d: C Drive, CD ROM Drive

\\.\e: C Drive, USB Drive

Extracted the image using dd.exe.

Figure. Snapshot of the dd command usage for extracting the VM image

if input drive name which is used for analysis

of output path to save the image

bs block size

--progress shows the progress of the image

P.S. Couldn't get the full image as there is no sufficient space on my machine.

By conducting investigations on the disk image, we could unearth any hidden intrusions

since the image captures the invisible information as well. The advantages of analyzing

disk images are that the investigators can:

 a) preserve the digital crime-scene

 b) obtain the information in slack space

 c) access unallocated space, free space, and used space

 d) recover file fragments, hidden or deleted files and directories

 e) view the partition structure and

 f) get date-stamp and ownership of files and folders.

Lets check the md5 hash of the image under analysis for integrity purposes. The md5

hash algorithm produces a 128 bit “fingerprint” of a file, also known as a message digest.

This ensures non-repudiation integrity of the file. To view the md5 hash value assigned to

a given file, the md5sum utility can be used.

Figure. md5sum of the image

Lets check the file type of the image under analysis by using file command. The file

command works by testing “arguments” within a file, and will then classify the file as

whichever file type the file command sees fit. We see from the output of the file

command that the image file contains an x86 boot sector. The boot sector of a computer

is a primary starting point for an OS. The operating system will start at the boot loader,

and the machine will read the first 512 bytes of the disk, which is known as the boot

sector. The first 512 Bytes (boot sector) will be loaded into memory and will then be

executed. This will initiate the boot process.

The x86 boot sector type message was obtained because the magic number 0xAA55

value is located at the 0x1FE offset within the image; defined in the file

“/usr/share/file/magic” which is used by file command.

The x86 boot sector type message was obtained because the magic number 0xAA55

value is located at the 0x1FE offset within the image; defined in the file

“/usr/share/file/magic” which is used by file command.

Lets run mmls utility to determine the File system type of the given image extracted by

using dd command.

-t Specify the media management type (dos, mac, bsd etc)

-b partition sizes in bytes

-r Recurse into DOS partitions and look for other partition tables.

-v verbose

We see above that the NTFS (New Technology File System) partition begins at sector 63

(to see this look at the last column in the row where it says NTFS (0x07). Now look to

the left in the start column of the row NTFS and we can see the value 0000000063). So

for all the Sleuth Kit commands we need to specify an offset of 63 if the file used is raw

image.

MMLS is a forensics utility that query’s an image file, and prints the partition tables and

disk labels. This command is very useful when attempting to determine at which sector a

partition begins and ends. We see that there is a NTFS file system on this image. We use

the –t dos switch to tell mmls to utilize a dos based architecture for the file system.

NTFS Structure

This structure is before separating Physical File System from the Logical File system or

Raw Image.

[root@localhost pgdis]# hexdump -C vm_forensics |more

Structure of Sector 1 (MBR)

Byte Offset Field Length Field Name

0x00 3 bytes Jump Instruction (0xeb5290)

0x03 LONGLONG OEM ID (4e 54 46 53 20 20 20 20)

0x0B 25 bytes BPB

0x24 48 bytes Extended BPB

0x54 426 bytes Bootstrap Code

0x01FE WORD End of Sector Marker (55 aa)

eb 52 JMP 82 //Jump 82 (dec) bytes

90 NOP

On NTFS volumes, the data fields that follow the BPB form an extended BPB. The data

in these fields enables Ntldr (NT loader program) to find the master file table (MFT)

during startup. On NTFS volumes, the MFT is not located in a predefined sector, as on

FAT16 and FAT32 volumes. For this reason, the MFT can be moved if there is a bad

sector in its normal location. However, if the data is corrupted, the MFT cannot be

located, and Windows NT/2000 assumes that the volume has not been formatted.

Bytes 0x00- 0x0A are the jump instruction and the OEM ID

Bytes 0x0B-0x53 are the BPB and the extended BPB.

The remaining code is the bootstrap code and the end of sector.

Extracting the File System from the image

File system is extracted using dd.exe command. Input file is the raw image collected from

the machine which is under forensic investigation. Block size used to extract File system

is 512 bytes and skipped 62 sectors because our NTFS File System is starting after those

sectors.

Calculating md5 of the extracted NTFS file system image

Analysis of different Layers

Layers Sleuth Kit Commands

Physical Layer m*-commands: mmls

File System Layer fs*-commands: fsstat

File Name Layer f*-commands: fls

Metadata Layer i*-commands: icat

Data Layer d*-commands: dcat

fsstat command output of the image is

-f type of file system (fat12, ext2, ntfs, mac etc)

-o sector offset where the file system starts in the image

[root@localhost pgdis]# fsstat vm_forensics_ntfs

FILE SYSTEM INFORMATION

--

File System Type: NTFS

Volume Serial Number: E284727584724BD3

OEM Name: NTFS

Version: Windows 2000

METADATA INFORMATION

--

First Cluster of MFT: 4

First Cluster of MFT Mirror: 1030164

Size of MFT Entries: 1024 bytes

Size of Index Records: 4096 bytes

Range: 0 - 19693

Root Directory: 5

CONTENT INFORMATION

--

Sector Size: 512

Cluster Size: 4096

Total Cluster Range: 0 - 2060327

Total Range in Image: 0 - 1048567

Total Sector Range: 0 - 16482625

$AttrDef Attribute Values:

Error loading attribute definitions

[root@localhost pgdis]#

To investigate how intrusions result in data hiding, data deletion and other obfuscations,

it is essential to understand the physical characteristics of the Microsoft NTFS file

system. Master File Table (MFT) is the core of NTFS since it contains details of every

file and folder on the volume and allocates two sectors for every MFT entry. Hence, a

good knowledge of the MFT layout structure also facilitates the disk recovery process.

In NTFS, everything on disk is a file. Even the metadata is stored as a set of files.
The Master File Table (MFT) is an index of every file on the volume. For each file, the

MFT keeps a set of records called attributes and each attribute stores a different type of

information. Each MFT entry has a fixed size which is 1 KB (at byte offset 64 in the boot

sector one could identify the MFT record size).

The $Boot metadata file structure is located in MFT entry 7 (inode) and contains the boot

sector of the file system. It contains information about the size of the volume, clusters

and the MFT. The $Boot metadata file structure has four attributes, namely,

$STANDARD_INFORMATION, $FILE_NAME, $SECURITY_DESCRIPTION and

$DATA. The $STANDARD_INFORMATION attribute contains temporal information

such as flags, owner, security ID and the last accessed, written, and created times.

The $FILE_NAME attribute contains the file name in UNICODE, the size and temporal

information as well. The $SECURITY_DESCRIPTION attribute contains information

about the access control and security properties. Finally, the $DATA attribute contains

the file contents. These attributes values for the test sample are shown in above snapshot

as an illustration. To achieve this, we used the following TSK command tools:

 [root@localhost pgdis]# istat -f ntfs vm_forensics_ntfs 7

istat utility displays details of a meta-data structure i.e. inode. -f ntfs says File System

type of the image is NTFS, inode number 4 gives the information of $AttrDef file.

NTFS includes several system files, all of which are hidden from view on the NTFS

volume. A system file is one used by the file system to store its metadata and to

implement the file system. System files are placed on the volume by the Format utility.

Table explaining Metadata Stored in the Master File Table

SYSTEM

FILE

FILE

NAME

MFT

RECORD

PURPOSE OF THE FILE

Master file

table
$Mft 0 Contains one base file record for each file and

folder on an NTFS volume. If the allocation

information for a file or folder is too large to fit

within a single record, other file records are

allocated as well.

Master file

table 2
$MftMirr 1 A duplicate image of the first four records of

the MFT. This file guarantees access to the

MFT in case of a single-sector failure.

Log file $LogFile 2 Contains a list of transaction steps used for

NTFS recoverability. Log file size depends on

the volume size and can be as large as 4 MB. It

is used by Windows NT/2000 to restore

consistency to NTFS after a system failure.

Volume $Volume 3 Contains information about the volume, such as

the volume label and the volume version.

Attribute

definitions
$AttrDef 4 A table of attribute names, numbers, and

descriptions.

Root file

name index
$ 5 The root folder.

Cluster

bitmap
$Bitmap 6 A representation of the volume showing which

clusters are in use.

Boot sector $Boot 7 Includes the BPB used to mount the volume

and additional bootstrap loader code used if the

volume is bootable.

Bad cluster

file
$BadClus 8 Contains bad clusters for the volume.

Security file $Secure 9 Contains unique security descriptors for all

files within a volume.

Upcase table $Upcase 10 Converts lowercase characters to matching

Unicode uppercase characters.

NTFS

extension file
$Extend 11 Used for various optional extensions such as

quotas, reparse point data, and object

identifiers.

 12-15 Reserved for future use.

Quota

management

file

$Quota 24 Contains user assigned quota limits on the

volume space.

Object Id file $ObjId 25 Contains file object IDs.

Reparse point

file
$Reparse 26 This file contains information about files and

folders on the volume include reparse point

data

Figure. Showing contents at inode 1000 (picked randomly)

Following commands are not giving output when ran on vm_forensics image

[root@localhost pgdis]# fls -f ntfs -o 63 -aD vm_forensics

[root@localhost pgdis]# fls -f ntfs -o 63 -a vm_forensics

[root@localhost pgdis]# fls -f ntfs -o 63 vm_forensics

[root@localhost pgdis]# blkstat -vvf ntfs -o 63 vm_forensics 20

tsk_parse_offset: Offset set to 32256

tsk_img_open: Type: 0 NumImg: 1 Img1: vm_forensics

tsk_img_read: Loading data into cache 3 (32256)

raw_read: byte offset: 32256 len: 65536

ntfs_dinode_lookup: Processing MFT 0

tsk_img_read: Read found in cache 3

ntfs_dinode_lookup: upd_seq 1 Replacing: 0068 With: 0000

ntfs_dinode_lookup: upd_seq 2 Replacing: 0068 With: 0000

ntfs_proc_attrseq: Processing entry 0

ntfs_proc_attrseq: Resident Attribute in 0 Type: 16 Id: 0 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 0 Type: 48 Id: 3 Name: N/A

ntfs_proc_attrseq: Non-Resident Attribute in 0 Type: 128 Id: 1 Name: $Data Start VCN:

0

ntfs_make_data_run: Len idx: 0 cur: 60 (3c) tot: 60 (3c)

ntfs_make_data_run: Len idx: 1 cur: 19 (13) tot: 4924 (133c)

ntfs_make_data_run: Off idx: 0 cur: 4 (4) tot: 4 (4)

ntfs_make_data_run: Signed addr_offset: 4 Previous address: 0

ntfs_proc_attrseq: Non-Resident Attribute in 0 Type: 176 Id: 5 Name: N/A Start VCN: 0

ntfs_make_data_run: Len idx: 0 cur: 1 (1) tot: 1 (1)

ntfs_make_data_run: Off idx: 0 cur: 2 (2) tot: 2 (2)

ntfs_make_data_run: Signed addr_offset: 2 Previous address: 0

ntfs_dinode_lookup: Processing MFT 3

ntfs_dinode_lookup: Found in offset: 4 size: 4924 at offset: 3072

ntfs_dinode_lookup: Entry address at: 19456

tsk_img_read: Read found in cache 3

ntfs_dinode_lookup: upd_seq 1 Replacing: 0068 With: 0000

ntfs_dinode_lookup: upd_seq 2 Replacing: 0068 With: 0000

ntfs_proc_attrseq: Processing entry 3

ntfs_proc_attrseq: Resident Attribute in 3 Type: 16 Id: 0 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 3 Type: 48 Id: 1 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 3 Type: 64 Id: 6 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 3 Type: 80 Id: 2 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 3 Type: 96 Id: 4 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 3 Type: 112 Id: 5 Name: N/A

ntfs_proc_attrseq: Resident Attribute in 3 Type: 128 Id: 3 Name: $Data

ntfs_dinode_lookup: Processing MFT 6

ntfs_dinode_lookup: Found in offset: 4 size: 4924 at offset: 6144

ntfs_dinode_lookup: Entry address at: 22528

tsk_img_read: Read found in cache 3

ntfs_dinode_lookup: upd_seq 1 Replacing: 003b With: 0000

ntfs_dinode_lookup: upd_seq 2 Replacing: 003b With: 0000

ntfs_make_data_run: Len idx: 0 cur: 63 (3f) tot: 63 (3f)

ntfs_make_data_run: Off idx: 0 cur: 95 (5f) tot: 95 (5f)

ntfs_make_data_run: Off idx: 1 cur: 226 (e2) tot: 57951 (e25f)

ntfs_make_data_run: Off idx: 2 cur: 15 (f) tot: 1040991 (fe25f)

ntfs_make_data_run: Signed addr_offset: 1040991 Previous address: 0

tsk_img_read: Loading data into cache 2 (4263931392)

raw_read: byte offset: 4263931392 len: 65536

ssize: 512 csize: 8 serial: e284727584724bd3

mft_rsize: 1024 idx_rsize: 4096 vol: 2060328 mft: 4 mft_mir: 1030164

tsk_img_read: Loading data into cache 1 (114176)

raw_read: byte offset: 114176 len: 65536

Cluster: 20

Allocated

[root@localhost pgdis]#

[root@localhost pgdis]# ils -rf ntfs vm_forensics_ntfs

class|host|device|start_time

ils|localhost.localdomain||1274610996

st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_crtime|st_mode|st_nlink|st_size

16|f|0|0|0|0|0|0|0|0|0

17|f|0|0|0|0|0|0|0|0|0

18|f|0|0|0|0|0|0|0|0|0

19|f|0|0|0|0|0|0|0|0|0

20|f|0|0|0|0|0|0|0|0|0

21|f|0|0|0|0|0|0|0|0|0

22|f|0|0|0|0|0|0|0|0|0

23|f|0|0|0|0|0|0|0|0|0

[root@localhost pgdis]#

string Analysis

Extracted all the strings from image, vm_forensics_ntfs using strings utility. Was able to

extract different Username/ Password combinations shown below.

#define HOST_USER_DEFAULT "tornado"

#define HOST_PASSWORD_DEFAULT "tornado+"

#define LOGIN_USER_NAME "target"

#define LOGIN_PASSWORD "bReb99RRed"

/* $Id: bedrock.h,v 1.1 2003/03/14 20:12:20 keith Exp $

 * This file is subject to the terms and conditions of the GNU General Public

 * License. See the file "COPYING" in the main directory of this archive

 * for more details.

 * Copyright (C) 1992 - 1997, 2000-2002 Silicon Graphics, Inc. All rights reserved.

#ifndef _ASM_IA64_SN_SN1_BEDROCK_H

#define _ASM_IA64_SN_SN1_BEDROCK_H

/* The secret password; used to release protection */

#define HUB_PASSWORD 0x53474972756c6573ull

Lets analyze using MountImagePro v4.12

Downloaded Mount Image Pro v4.12 (Trial) and tried to mount vm_forensics_ntfs image

but vm_forensics_ntfs was not mounting properly so renamed to vm_forensics_ntfs.dd

Mounting procedure:

1. "Add Image" to add a forensic image file

2. Select the device or image that you wish to mount and then press the "Mount

Filesystem" button

3. The device or image will then mount and display

4. If the drive is mounted with a drive letter, you should then be able to browse to the

drive using Windows. Double click on the drive letter to open Windows Explorer.

Figure: Mount snapshot on MountImagePro v4.12

Figure: Mounted drive J and it's Directories as seen in Windows Explorer

References:

http://en.wikipedia.org/wiki/Computer_forensics

http://www.sleuthkit.org/

http://www.ntfs.com/

http://www.volatilesystems.com/

http://www.mountimage.com/encase-image-mount.php

http://www.forensicfocus.com/dissecting-ntfs-hidden-streams

http://blogs.sans.org/computer-forensics/2009/12/18/ntfs-an-introduction/

http://www.darshanams.blogspot.com/

