
Exploiting CAN-Bus using Instrument Cluster

Simulator

Anjali Prakash

University of Delhi , Lucideus Technologies

fav.anjaliprakash@gmail.com

Automotive security is really exciting and is an interesting topic of study for many

security researchers. Automotive and hardware, for the most part, has always been

off the radar. These hacks are always more difficult to pull off and at the same time,

they are potentially more devastating. With the arrival of Self Driving cars like

Tesla, Automotive security will only become more important.

When you are driving a car today, you are driving a hugely powerful computer

that happens to have wheels and steering.

Today, when you drive a car, there’s nothing that is not mediated by a computer. And

at the core of all this is the Controller Area Network or simply called CAN or

sometimes CAN Bus, a central nervous system of a car responsible for intravehicular

communication. This tutorial is going to be a guide for car hacking as safely as

possible on reverse engineering CAN packets.

Keywords:

• Car hacking

• Cybersecurity

• CAN bus

• Controller area network

• Automotive security

To practice CAN-Bus exploitation we will be using an ICSim package from

Craig Smith. ICSim includes a dashboard with speedometer, door lock

indicators, turn signal indicators and a control panel. The control panel allows

the user to interact with the simulated automobile network, applying

acceleration, brakes, controlling the door locks and turn signals.

Introduction to CAN:

CAN (Control Area Network) This is a central nervous system this enables

communication between all/some parts of the Car/Vehicle. Before CAN was

originally developed by BOSCH in 1985 as an intra-vehicle System automotive

Manufacturers used point to point wiring System, as we started adding more and

more this become bulky and to expensive to maintain. CAN allows various

electronic units in car to communicate and share data with each other.

Working of CAN = The main motive proposing CAN was that it allow multiple

ECU to be communicative with only a single wire. A modern car can have as

much as ECU (Depends on Car Model).

• A car Can have multiple nodes that are able to send or receive message,

this message consist of essentially the ID which is the priority of the

message and also it can contain CAN message that can be of 8 byes or

less at a time.

• If 2 or more begin sending message at the same time the message sent

with the dominant ID will overwrite the less dominant msg.

▪ Note: This is called priority-based BUS arbitration

• Message with numerically small value ID’s are a higher priority and are

always transmitted first.

CAN Message Frames:

So what does a CAN message actually look like? The original ISO standard laid

out what is called Standard CAN. Standard CAN uses an 11-bit identifier for

different messages, which comes to a total of 211, i.e. 2048, different message

IDs. CAN was later modified; the identifier was expanded to 29 bits, giving

229 identifiers. This is called Extended CAN. CAN uses a multi-master bus,

where all messages are broadcast on the entire network. The identifiers provide

a message priority for arbitration.

CAN uses a differential signal with two logic states, called recessive and

dominant. Recessive indicates that the differential voltage is less than a

minimum threshold voltage. Dominant indicates that the differential voltage is

greater than this minimum threshold. Interestingly, the dominant state is

achieved by driving a logic '0' onto the bus, while the recessive state is achieved

by a logic '1'. This is inverted from the traditional high and low used in most

systems. These two states will be detailed later on in the article. The important

thing is that a dominant state overrides a recessive during arbitration.

Standard CAN

The standard CAN message frame consists of a number of bit fields. These are

shown in Figure

The first bit is the start of frame (SOF). This dominant bit represents the start of

a CAN message. Next is the 11-bit identifier, which establishes the priority of

the CAN message. The smaller the identifier, the higher the priority of the

message.

The remote transmission request (RTR) bit is normally dominant, but it goes

recessive when one node is requesting data from another. The identifier

extension (IDE) bit is dominant when a standard CAN frame is being sent and

not an extended one. The r0 bit is reserved and not currently used. The data

length code (DLC) nibble signifies how many bytes of data are in this message.

Next is the data itself, being as many bytes as represented in the DLC bits. The

cyclic redundancy check (CRC) is a 16-bit checksum for detecting errors in the

transmitted data. If the message is properly received, the receiving node

overwrites the recessive acknowledge bit (ACK) with a dominant bit. The ACK

also contains a delimiter bit to keep things synchronized. The end of frame

(EOF) signifies the end of the CAN message and is 7 bits wide, for detecting

bit-stuffing errors. The last part of a CAN message is the interframe space

(IFS), used as a time delay. This time delay is precisely the amount of time

needed for a CAN controller to move the received message into a buffer for

further processing.

Extended CAN

Extended CAN uses a 29-bit identifier along with a few additional bits. An

extended message has a substitute remote request (SRR) bit after the 11-bit

identifier, which acts as a placeholder to keep the same structure as standard

CAN. This time the identifier extension (IDE) should be recessive, indicating

that the extended identifier follows it. The RTR bit is after the 18-bit ID and is

followed by a second reserve bit, r1. The rest of the message remains the same.

CAN Message Types

Now that you know what a CAN message looks like, you might be wondering

what kinds of messages are passed along the bus. CAN allows for four different

message types. They are the data frame, remote frame, overload frame, and

error frame.

A standard CAN data frame makes use of the identifier, the data, and data

length code, the cyclic redundancy check, and the acknowledgment bits. Both

the RTR and IDE bits are dominant in data frames. If the recessive acknowledge

bit at the receiving end is overwritten by a dominant bit, both the transmitter

and receiver recognize this as a successful transmission.

A CAN remote frame looks similar to a data frame except for the fact that it

does not contain any data. It is sent with the RTR bit in a recessive state; this

indicates that it is a remote frame. Remote frames are used to request data from

a node

Practical

Prerequisite

If you decide to practice this tutorial, you would need:

• Any Linux distributions (I’m using Kali Linux)

• can-utils

• ICSim (ICSim is an opensource Instrumentation Cluster Simulator)

Can be downloaded from https://github.com/zombieCraig/ICSim

Setting up the virtual Environment

The best and inexpensive way to practice car hacking is by running an

instrumentation cluster simulator. Thanks to Craig Smith and his open-source

repo called ICSim. Using ICSim, it’s pretty easy to set up and inexpensive to

learn CAN-Bus exploitation.

Let’s do the setup.

Instrument Cluster Simulator requires SDL libraries

SDL is a cross-platform development library for computer graphics and audio.

Since ISCim draws and animates a virtual dashboard, this is required. This can

be installed via apt-get.

sudo apt-get install libsdl2-dev libsdl2-image-dev -y

https://github.com/zombieCraig/ICSim

After the LibSDL libraries are installed, add the CAN utilities. CAN is short for

controller area network, the primary network in modern automobiles. The CAN

utilities are included in some Linux distributions, but not in Kali as of this

writing. The CAN utilities can be installed using the command:

 sudo apt-get install can-utils

 Once the LibSDL and CAN utilities software dependencies are in place, as

shown, we can proceed to download and install the ICSim car hacking tools.

After installing LibSDL and CAN Utilities software dependencies, we can

download and install the ICSim software

Downloading and Installing ICSim

Download and expand the ICSim project files using git with the command:

git clone https://github.com/zombieCraig/ICSim.git

Git will download the project files for ICSim into a folder labeled ICSim in

your home directory. Change into the ICSim folder and list the contents:

https://github.com/zombieCraig/ICSim.git

cd ICSim/

 ls

 You should see several files, including two executable files labeled controls

and icsim, inside the ICSim folder, as shown in Figure

Preparing the Virtual CAN Network

View the contents of the shell script setup_vcan.sh by typing the more

command:

You should see the following four lines of shell commands:

The modprobe command is used to load kernel modules, like the CAN and

vCAN network modules from the CAN utilities library, and the first two lines of

the script will load these two modules to be able to communicate using CAN

protocols on a virtual controller area network (vCAN) for our car-hacking

simulator. The final two lines will create a new network device called vcan0 of

type vCAN and turn the link on.

Either type and run those four lines above, or run the shell script by typing:

sh setup_vcan.sh

You can verify that the vcan0 network link is active by typing ifconfig

Running the ICSim Software

The standard setup for running ICSim includes at least two components, the

icsim Instrument Cluster Simulator program file, which simulates an

automobile’s dashboard instrument panel, and the controls executable, which

gives the user control of the virtual automobile, including acceleration, steering,

door locks, and turn signals. For a first experience for beginning car hackers,

it’s also instructive to open a third terminal window running a network sniffer to

view packets on this new virtual CAN network.

 Open three terminal windows. In the first window, open the Instrument Cluster

Simulator application, icsim, on the vcan0 virtual CAN network interface we

created:

~/ICSim/icsim vcan0

That’s vcan0, with a zero, denoting the virtual CAN network we created by

running setup_vcan.sh above. The dashboard instrument panel simulator will

appear as shown

Nothing on the dashboard will light up, and the speedometer will remain fixed,

because there’s no traffic on the vcan0 network yet. We’ll address that by

starting the ICSim’s controls.

 In a second terminal window, open the controls app

: ~/ICSim/controls vcan0

The CANBus Control Panel application will appear on the screen

Once the control panel has been started, you can use keyboard keys in

order to simulate traffic.

Using the key combinations below, you can make changes in the

ICSim Dashboard.

Once I press the up arrow key and left arrow key, this is what you can

observe.

Sniffing the CAN frames generated by ICSim:

We will use cansniffer, a utility provided by can-utils, to sniff the

packets. You can open up a new terminal and start cansniffer by
cansniffer -c vcan0

The -c option is used to indicate the change in bytes of the frame.

Reference

• https://www.allaboutcircuits.com/technical-articles/introduction-to-can-

controller-area-network

• https://en.wikipedia.org/wiki/CAN_bus

• https://www.ni.com/en-in/innovations/white-papers/06/controller-area-

network--can--overview.html

https://www.allaboutcircuits.com/technical-articles/introduction-to-can-controller-area-network
https://www.allaboutcircuits.com/technical-articles/introduction-to-can-controller-area-network
https://en.wikipedia.org/wiki/CAN_bus
https://www.ni.com/en-in/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/en-in/innovations/white-papers/06/controller-area-network--can--overview.html

