

tsvwg M. Larsen
Internet-Draft Ericsson
Intended status: Standards Track F. Gont
Expires: August 15, 2007 UTN/FRH
 February 11, 2007

 Port Randomization
 draft-larsen-tsvwg-port-randomization-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 15, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Larsen & Gont Expires August 15, 2007 [Page 1]

Internet-Draft Port Randomization February 2007

Abstract

 Recently, awareness has been raised about a number of "blind" attacks
 that can be performed against the Transmission Control Protocol (TCP)
 and similar protocols. The consequences of these attacks range from
 throughput-reduction to broken connections or data corruption. These
 attacks rely on the attacker's ability to guess or know the four-
 tuple (Source Address, Destination Address, Source port, Destination
 Port) that identifies the transport protocol instance to be attacked.
 This document describes a simple and efficient method for random
 selection of the client port number, such that the possibility of an
 attacker guessing the exact value is reduced. While this is not a
 replacement for cryptographic methods, the described port number
 randomization algorithms provide improved security/obfuscation with
 very little effort and without any key management overhead.

Table of Contents

 1. Introduction . 3
 2. Ephemeral Ports . 4
 2.1. Traditional Ephemeral Port Range 4
 2.2. Ephemeral port selection 4
 3. Randomizing the Ephemeral Ports 6
 3.1. Ephemeral port number range 6
 3.2. Ephemeral Port Randomization Algorithms 6
 3.3. Secret Key . 11
 3.4. Choosing Algorithm . 11
 4. Security Considerations 13
 5. Acknowledgements . 14
 6. References . 15
 6.1. Normative References 15
 6.2. Informative References 15
 Appendix A. Survey of the algorithms in use by some popular
 implementations 17
 A.1. FreeBSD . 17
 A.2. Linux . 17
 A.3. NetBSD . 17
 A.4. OpenBSD . 17
 Appendix B. Changes from previous versions of the draft 18
 B.1. Changes from draft-larsen-tsvwg-port-randomization-00 . . 18
 B.2. Changes from draft-larsen-tsvwg-port-randomisation-00 . . 18
 Authors' Addresses . 19
 Intellectual Property and Copyright Statements 20

Larsen & Gont Expires August 15, 2007 [Page 2]

Internet-Draft Port Randomization February 2007

1. Introduction

 Recently, awareness has been raised about a number of "blind" attacks
 that can be performed against the Transmission Control Protocol (TCP)
 [RFC0793] and similar protocols. The consequences of these attacks
 range from throughput-reduction to broken connections or data
 corruption [I-D.ietf-tcpm-icmp-attacks] [I-D.ietf-tcpm-tcp-antispoof]
 [Watson].

 All these attacks rely on the attacker's ability to guess or know the
 four-tuple (Source Address, Source port, Destination Address,
 Destination Port) that identifies the transport protocol instance to
 be attacked.

 Services are usually located at fixed, 'well-known' ports [IANA] at
 the host supplying the service (the server). Client applications
 connecting to any such service will contact the server by specifying
 the server IP address and service port number. The IP address and
 port number of the client are normally left unspecified by the client
 application and thus chosen automatically by the client networking
 stack. Ports chosen automatically by the networking stack are known
 as ephemeral ports [Stevens].

 While the server IP address and well-known port and the client IP
 address may be available to the attacker, the ephemeral port of the
 client is usually unknown and must be guessed.

 This document describes a method for random selection of the client
 ephemeral port, thereby reducing the possibility of an off-path
 attacker guessing the exact value. This is not a replacement for
 cryptographic methods such as IPsec [RFC4301] or the TCP MD5
 signature option [RFC2385]. However, the proposed algorithm provides
 improved obfuscation with very little effort and without any key
 management overhead.

 The mechanism described is a local modification that may be
 incrementally deployed, and does not violate the specifications of
 any of the transport protocols that may benefit from it [RFC0793]
 [RFC0768] [RFC2960] [RFC4340].

 Since the mechanism is an obfuscation technique, focus has been on a
 reasonable compromise between level of obfuscation and ease of
 implementation. Thus the algorithm must be computationally
 efficient, and not require substantial data structures.

Larsen & Gont Expires August 15, 2007 [Page 3]

Internet-Draft Port Randomization February 2007

2. Ephemeral Ports

2.1. Traditional Ephemeral Port Range

 The Internet Assigned Numbers Authority (IANA) assigns the unique
 parameters and values used in protocols developed by the Internet
 Engineering Task Force (IETF), including well-known ports [IANA].
 IANA has traditionally reserved the following use of the 16-bit port
 range of TCP and UDP:

 o The Well Known Ports, 0 through 1023.

 o The Registered Ports, 1024 through 49151

 o The Dynamic and/or Private Ports, 49152 through 65535

 The range for assigned ports managed by the IANA is 0-1023, with the
 remainder being registered by IANA but not assigned.

 The ephemeral port range has traditionally consisted of the 49152-
 65535 range.

2.2. Ephemeral port selection

 As each communication instance is identified by the four-tuple {local
 IP address, local port, remote IP address, remote port}, selection
 ephemeral port numbers must result in a unique four-tuple.

 Selection of ephemeral ports such that they result in unique four-
 tuples is handled by some operating systems by having a global 'next
 ephemeral port' variable that is equal to the previously chosen
 ephemeral port + 1, i.e. the selection process is:

Larsen & Gont Expires August 15, 2007 [Page 4]

Internet-Draft Port Randomization February 2007

 next_ephemeral_port = 1024; /*initialization, could be random */

 /* Ephemeral port selection */
 count = max_ephemeral - min_ephemeral + 1;

 do {
 port = next_ephemeral;
 if (next_ephemeral == max_ephemeral) {
 next_ephemeral = min_ephemeral;
 } else {
 next_ephemeral++;
 }

 if (four-tuple is unique)
 return port;

 } while (count > 0);

 return ERROR;

 Figure 1

 We will refer to this as 'Algorithm 1'.

 This algorithm works well provided that the number of connections
 (globally, across all four-tuples) that has a life-time longer than
 it takes to exhaust the total ephemeral port range is small, so that
 four-tuple collisions are rare.

 However, this method has the drawback that the 'next_ephemeral'
 variable and thus the ephemeral port range is shared between all
 connections and the next ports chosen by the client are easy to
 predict. If an attacker operates an "innocent" server to which the
 client connects, it is easy to obtain a reference point for the
 current value of the 'next_ephemeral' variable.

Larsen & Gont Expires August 15, 2007 [Page 5]

Internet-Draft Port Randomization February 2007

3. Randomizing the Ephemeral Ports

3.1. Ephemeral port number range

 As mentioned in Section 2.1, the ephemeral port range has
 traditionally consisted of the 49152-65535 range. However, it should
 also include the range 1024-49151 range.

 Since this range includes user-specific server ports, this may not
 always be possible, though. A possible workaround for this potential
 problem would be to maintain an array of bits, in which each bit
 would correspond to each of the port numbers in the range 1024-65535.
 A bit set to 0 would indicate that the corresponding port is
 available for allocation, while a bit set to one would indicate that
 the port is reserved and therefore cannot be allocated. Thus, before
 allocating a port number, the ephemeral port selection function would
 check this array of bits, avoiding the allocation of ports that may
 be needed for specific applications.

 Transport protocols SHOULD use the largest possible port range, since
 this improves the obfuscation provided by randomizing the ephemeral
 ports.

3.2. Ephemeral Port Randomization Algorithms

 In order to address the security issues discussed in Section 2.2, a
 number of systems have implemented simple ephemeral port number
 randomization, as follows:

Larsen & Gont Expires August 15, 2007 [Page 6]

Internet-Draft Port Randomization February 2007

 next_ephemeral = min_ephemeral + random()
 % (max_ephemeral - min_ephemeral + 1);

 count = max_ephemeral - min_ephemeral + 1;

 do {
 if(four-tuple is unique)
 return next_ephemeral;

 if (next_ephemeral == max_ephemeral) {
 next_ephemeral = min_ephemeral;
 } else {
 next_ephemeral_port++;
 }

 count--;
 } while (count > 0);

 return ERROR;

 Figure 2

 We will refer to this algorithm as 'Algorithm 2'.

 Since the the chosen port may already be in use with identical IP
 addresses and server port, the resulting four-tuple might not be
 unique. Therefore, multiple ports may have to be tried and verified
 against all existing connections before a port can be chosen.

 Although carefully chosen random sources and optimized four-tuple
 lookup mechanisms (e.g., optimized through hashing), will mitigate
 the cost of this verification, some systems may still not want to
 incur this unknown search time.

 Systems that may be specially susceptible to this kind of repeated
 four-tuple collisions are those that create many connections from a
 single local IP address to a single service (i.e. both IP addresses
 and server port are fixed). Gateways such as proxy servers are an
 example of such a system.

 Since this algorithm performs a completely random port selection
 (i.e., without taking into account the port numbers previously
 chosen), it has the potential of reusing port numbers too quickly.
 Even if a given four-tuple is verified to be unique by the port
 selection algorithm, there four-tuple might still be in use at the
 remote system. In such a scenario, the connection request would
 possible fail ([Silbersack] describes this problem in detail).
 Therefore, it is desirable to keep the port reuse frequency as low as

Larsen & Gont Expires August 15, 2007 [Page 7]

Internet-Draft Port Randomization February 2007

 possible.

 We would like to achieve the port reuse properties of Algorithm 1,
 while at the same time achieve the obfuscation properties of
 Algorithm 2.

 Ideally, we would like a 'next_ephemeral' value for each set of
 (local IP address, remote IP addresses, remote port), so that the
 port reuse frequency is the lowest possible. Each of these
 'next_ephemeral' variables should be initialized with random values
 within the ephemeral port range and would thus separate the ephemeral
 port ranges of the connections entirely. Since we do not want to
 maintain in memory all these 'next_ephemeral' values, we propose an
 offset function F(), that can be computed from the local IP address,
 remote IP address, remote port and a secret key. F() will yield
 (practically) different values for each set of arguments, i.e.:

 /* Initialization code */
 next_ephemeral = 0; /* could be random */

 /* Ephemeral port selection */
 offset = F(local_IP, remote_IP, remote_port, secret_key);
 count = max_ephemeral - min_ephemeral + 1;

 do {
 port = min_ephemeral + (next_ephemeral + offset)
 % (max_ephemeral - min_ephemeral + 1);
 next_ephemeral++;
 count--;

 if(four-tuple is unique)
 return port;

 } while (count > 0);

 return ERROR;

 Figure 3

 We will refer to this algorithm as 'Algorithm 3'.

 In other words, the function F() provides a per-connection fixed
 offset of the global ephemeral port range controlled by
 'next_ephemeral'. Both the 'offset' and 'next_ephemeral' variables
 may take any value within the storage type range since we are
 restricting the resulting port similar to that shown in Figure 2.
 This allows us to simply increment the 'next_ephemeral' variable and

Larsen & Gont Expires August 15, 2007 [Page 8]

Internet-Draft Port Randomization February 2007

 rely on the unsigned integer to simply wrap-around.

 The function F() should be a cryptographic hash function like MD5
 [RFC1321]. The function should use both IP addresses, the remote
 port and a secret key value to compute the offset. The remote IP
 address is the primary separator and must be included in the offset
 calculation. The local IP address and remote port may in some cases
 be constant and not improve the connection separation, however, they
 should also be included in the offset calculation.

 Cryptographic algorithms stronger than e.g. MD5 should not be
 necessary, given that port randomization is simply an obfuscation
 technique. The secret should be chosen as random as possible, see
 [RFC4086] for recommendations on choosing secrets.

 Note that on multiuser systems, the function F() could include user
 specific information, thereby providing protection not only on a host
 to host basis, but on a user to service basis.

 A tradeoff between maintaining a single global 'next_ephemeral'
 variable and maintaining 2**N 'next_ephemeral' variables (where N is
 the width of of the result of F()) could be achieved as follows. The
 system would keep an array of, TABLE_LENGTH short integers, which
 would provide a separation of the increment of the 'next_ephemeral'
 variable. This improvement could be incorporated into Algorithm 3 as
 follows:

Larsen & Gont Expires August 15, 2007 [Page 9]

Internet-Draft Port Randomization February 2007

 /* Initialization code */
 for(i = 0; i < TABLE_LENGTH; i++) /* Initialization code */
 table[i] = random % 65536;

 /* Ephemeral port selection */
 offset = F(local_IP, remote_IP, remote_port, secret_key);
 index = G(offset);
 count = max_ephemeral - min_ephemeral + 1;

 do {
 port = min_ephemeral + (offset + table[index])
 % (max_ephemeral - min_ephemeral + 1);

 table[index]++;
 count--;

 if(four-tuple is unique)
 return port;

 } while (count > 0);

 return ERROR;

 Figure 4

 'table[]' could be initialized with random values, as indicated by
 the initialization code in Figure 4. G() would return a value
 between 0 and (TABLE_LENGTH-1) taking 'offset' as its input. G()
 could, for example, perform exclusive-or (xor) operation between all
 the bytes in 'offset', or could be another cryptographic hash
 function such as that used in F().

 The array 'table[]' assures that succesive connections to the same
 end-point will use increasing ephemeral port numbers. However,
 incrementation of the port numbers is separated into TABLE_LENGTH
 different spaces, and thus the port reuse frequency will be
 (probabilistically) lower than that of Algorithm 2. That is, a
 connection established for a given for-tuple will not necessarily
 cause the 'next_ephemeral' variable corresponding to other four-
 tuples to be incremented.

 It is interesting to note that the size of 'table[]' does not limit
 the number of different port sequences, but rather separates the
 increments into TABLE_LENGTH different spaces. The actual port
 sequence will result from adding the corresponding entry of 'table[]'
 to the variable 'offset', which actually selects the actual port
 sequence (as in Algorithm 3).

Larsen & Gont Expires August 15, 2007 [Page 10]

Internet-Draft Port Randomization February 2007

3.3. Secret Key

 Every complex manipulation (like MD5) is no more secure than the
 input values, and in the case of ephemeral ports, the secret key. If
 an attacker is aware of which cryptographic hash function is being
 used by the victim (which we should expect), and the attacker can
 obtain enough material (e.g. ephemeral ports chosen by the victim),
 the attacker may simply search the entire secret key space to find
 matches.

 To protect against this, the secret key should be of a reasonable
 length. Key-lengths of 32-bits should be adequate, since a 32-bit
 secret would result in approximately 65k possible secrets if the
 attacker is able to obtain a single ephemeral port (assuming a good
 hash function). If the attacker is able to obtain more ephemeral
 ports, key-lengths of 64-bits or more should be used.

 Another possible mechanism for protecting the secret key is to change
 it after some time. If the host platform is capable of producing
 reasonable good random data, the secret key can be changed.

 Changing the secret will cause abrupt shifts in the chosen ephemeral
 ports, and consequently collisions may occur. Thus the change in
 secret key should be done with consideration and could be performed
 whenever one of the following events occur:

 o Some predefined/random time has expired.

 o The secret has been used N times (i.e. we consider it insecure).

 o There are few active connections (i.e., possibility of collision
 is low).

 o There is little traffic (the performance overhead of collisions is
 tolerated).

 o There is enough random data available to change the secret key
 (pseudo-random changes should not be done).

3.4. Choosing Algorithm

 Algorithm 1 is the traditional ephemeral port selection algorithm
 implemented in BSD-derived systems. It generates a global sequence
 of ephemeral port numbers, which makes it trivial for an attacker to
 predict the port number that will be used for a future transport
 protocol instance.

 Algorithm 2 has the advantage that it provides complete

Larsen & Gont Expires August 15, 2007 [Page 11]

Internet-Draft Port Randomization February 2007

 randomization. However, it may increase the chances of port number
 collisions, which could lead to failure of the connection
 establishment attempts.

 Algorithm 3 provides complete separation in local and remote IP
 addresses and remote port space, and only limited separation in other
 dimensions (See Section Section 3.3), and thus scales better than
 Algorithm 2. However, implementations should consider the
 performance impact of computing the cryptographic hash used for the
 offset.

 Algorithm 4 improves Algorithm 3, usually leading to a lower port
 reuse frequency, at the expense of more processor cycles used for
 computing G(), and additional kernel memory for storing the array
 'table[]'.

 Finally, a special case that precludes the utilization of Algorithm 3
 and Algorithm 4 should be analyzed. There exist some applications
 that contain the following code sequence:

 s = socket();
 bind(s, IP_address, port = *);

 Figure 5

 This code sequence results in the selection of an ephemeral port
 number. However, as neither the remote IP address nor the remote TCP
 port will be available to the ephemeral port selection function, the
 hash function F() used in Algorithm 3 and Algorithm 4 will not have
 all the required arguments, and thus the result of the hash function
 will be impossible to compute.

 Transport protocols implementing Algorithm 3 or Algorithm 4 should
 consider using Algorithm 2 when facing the scenario just described.
 This policy has been implemented by Linux [Linux].

Larsen & Gont Expires August 15, 2007 [Page 12]

Internet-Draft Port Randomization February 2007

4. Security Considerations

 Randomizing ports is no replacement for cryptographic mechanisms,
 such as IPsec [RFC4301].

 An eavesdropper, which can monitor the packets that correspond to the
 connection to be attacked could learn the IP addresses and port
 numbers in use (and also sequence numbers etc.) and easily attack the
 connection. Randomizing ports does not provide any additional
 protection against this kind of attacks. In such situations, proper
 authentication mechanisms such as those described in [RFC4301] should
 be used.

 If the local offset function F() results in identical offsets for
 different inputs, the port-offset mechanism proposed in this document
 has no or reduced effect.

 If random numbers are used as the only source of the secret key, they
 must be chosen in accordance with the recommendations given in
 [RFC4086].

 If all ports available in the ephemeral port range are in use,
 randomization provides no obfuscation.

 If an attacker uses dynamically assigned IP addresses, the current
 ephemeral port offset (Algorithm 3 and Algorithm 4) for a given four-
 tuple can be sampled and subsequently be used to attack an innocent
 peer reusing this address. However, this is only possible until a
 re-keying happens as described above. Also, since ephemeral ports
 are only used on the client side (e.g. the one initiating the
 connection), both the attacker and the new peer need to act as
 servers in the scenario just described. While servers using dynamic
 IP addresses exist, they are not very common and with an appropriate
 re-keying mechanism the effect of this attack is limited.

Larsen & Gont Expires August 15, 2007 [Page 13]

Internet-Draft Port Randomization February 2007

5. Acknowledgements

 The offset function was inspired by the mechanism proposed by Steven
 Bellovin in [RFC1948] for defending against TCP sequence number
 attacks.

 The authors would like to thank Alfred Hoenes and Carlos Pignataro
 for their valuable feedback on earlier versions of this document.

 The authors would like to thank FreeBSD's Mike Silbersack for a very
 fruitful discussion about ephemeral port selection techniques.

Larsen & Gont Expires August 15, 2007 [Page 14]

Internet-Draft Port Randomization February 2007

6. References

6.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
 RFC 1948, May 1996.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

6.2. Informative References

 [Watson] Watson, P., "Slipping in the Window: TCP Reset attacks",
 december 2003.

 [IANA] "IANA Port Numbers",
 <http://www.iana.org/assignments/port-numbers>.

 [Stevens] Stevens, W., "Unix Network Programming, Volume 1:
 Networking APIs: Socket and XTI, Prentice Hall", 1998.

 [Silbersack]
 Silbersack, M., "Improving TCP/IP security through
 randomization without sacrificing interoperability.",
 EuroBSDCon 2005 Conference , 2005.

Larsen & Gont Expires August 15, 2007 [Page 15]

Internet-Draft Port Randomization February 2007

 [I-D.ietf-tcpm-tcp-antispoof]
 Touch, J., "Defending TCP Against Spoofing Attacks",
 draft-ietf-tcpm-tcp-antispoof-05 (work in progress),
 October 2006.

 [I-D.ietf-tcpm-icmp-attacks]
 Gont, F., "ICMP attacks against TCP",
 draft-ietf-tcpm-icmp-attacks-01 (work in progress),
 October 2006.

 [Linux] The Linux Project, "http://www.kernel.org".

 [FreeBSD] The FreeBSD Project, "http://www.freebsd.org".

 [NetBSD] The NetBSD Project, "http://www.netbsd.org".

 [OpenBSD] The OpenBSD Project, "http://www.openbsd.org".

Larsen & Gont Expires August 15, 2007 [Page 16]

Internet-Draft Port Randomization February 2007

Appendix A. Survey of the algorithms in use by some popular
 implementations

A.1. FreeBSD

 FreeBSD implements Algorithm 2. with a 'min_port' of 49152 and a
 'max_port' of 65535. If the selected port number is in use, the next
 available port number is tried next [FreeBSD].

A.2. Linux

 Linux implements Algorithm 3. If the algorithm is faced with the
 corner-case scenario described in Section 3.4, Algorithm 2 is used
 instead [Linux].

A.3. NetBSD

 NetBSD does not randomize ehemeral port numbers. It selects
 ephemeral port numbers from the range 49152-65535, starting from port
 65535, and decreasing the port number for each ephemeral port number
 selected [NetBSD].

A.4. OpenBSD

 OpenBSD implements Algorithm 2. with a 'min_port' of 1024 and a
 'max_port' of 49151. If the selected port number is in use, the next
 available port number is tried next [OpenBSD].

Larsen & Gont Expires August 15, 2007 [Page 17]

Internet-Draft Port Randomization February 2007

Appendix B. Changes from previous versions of the draft

B.1. Changes from draft-larsen-tsvwg-port-randomization-00

 o Fixed a bug in expressions used to calculate number of ephemeral
 ports

 o Added a survey of the algorithms in use by popular TCP
 implementations

 o The whole document was reorganizaed

 o Miscellaneous editorial changes

B.2. Changes from draft-larsen-tsvwg-port-randomisation-00

 o Document resubmitted after original document by M. Larsen expired
 in 2004

 o References were included to current WG documents of the TCPM WG

 o The document was made more general, to apply to all transport
 protocols

 o Miscellaneous editorial changes

Larsen & Gont Expires August 15, 2007 [Page 18]

Internet-Draft Port Randomization February 2007

Authors' Addresses

 Michael Vittrup Larsen
 Ericsson
 Skanderborgvej 232
 Aarhus DK-8260
 Denmark

 Phone: +45 8938 5100
 Email: michael.vittrup.larsen@ericsson.com

 Fernando Gont
 Universidad Tecnologica Nacional / Facultad Regional Haedo
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fernando@gont.com.ar

Larsen & Gont Expires August 15, 2007 [Page 19]

Internet-Draft Port Randomization February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Larsen & Gont Expires August 15, 2007 [Page 20]

