

CYBER SECURITY AND IT GOVERNANCE SERVICES

ISMAIL ONDER KAYA [OSCP]

10 / 20 / 2020

Capturing MSSQL Credentials

from an Executable

“With Dynamic Analysis”

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

1

Contents

How to capture MSSQL credentials dynamically? 2

What if the executable connects the Database Server

with its IP address? ... 11

How did it happen? .. 14

How to defend against this attack (from a developer’s

perspective)? .. 25

What happens if the client executable uses Windows

Authentication? .. 29

Result ... 34

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

2

How to capture MSSQL credentials

dynamically?

Suppose during a penetration testing we found a file share that we could access. In that share we

discovered an enterprise database application executable (a .Net forms application to be precise)

and its corresponding libraries and config files. Is this a possibility in a real penetration testing

engagement? Yes, in 1 out of 15 – 20 penetration tests you may encounter that situation, desktop

apps are not dead yet. What we would probably be doing would be in the following order:

• Looking through the config files if we could find any database connection string in the open.

• Retrieving the strings within the executable files to find a connection string or any other

interesting information.

• Decompiling / disassembling the executables and using our reversing skills to recover any

information hidden from plain sight (perhaps by encoding / encrypting the connection

strings and other interesting information)

However, there is another way to reap the benefits of our discovery: Making the executable send us

the MSSQL username and password to connect to the database server (which would be us in this

case). It is much easier than you might thing with today’s tools and resources.

Below is a very tiny forms application which connects to a database server once the user hits the

“Login” button.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

3

Decompiling a .Net executable and pointing the connection string or finding the decoding /

decryption routine for the encoded / encrypted connection string in it would be no problem for a

penetration tester with minimum development skills. However, in a rare occasion, the developer

could have been used a commercial obfuscator to make reversers’ job complicated. So, you may still

need to resort to the dynamic analysis method which I will describe below.

Our setup for the dynamic analysis of the database connection is not complicated. One machine

(VM-1 in our case) is to run the executable (with its accompanying libraries and data files of course).

Another machine (VM-2 in our case) to act as a honeypot to attract all the traffic from the other

machine to itself, and to provide an MSSQL server simulator waiting to respond to a connection

request. That’s all (well, if the executable is trying to connect to the MSSQL server with its FQDN

anyways).

We used a Windows 10 (it could be any Windows version as long as the executable runs on it with

no problem) and a Kali Linux (since we don’t want to deal with installation problems for the tools

that we need).

The IP address of the Kali machine is as below in my case (I will need this to use as a DNS server

address on the Windows machine):

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

4

While I’m on the Kali machine I can configure my honeypot in accordance with my needs. What I

need are:

• To bind the DNS service to the machine’s external network interface (0.0.0.0, meaning all

interfaces actually)

• To respond to all name queries with the IP address of the Kali machine (you’ll understand

why in a few moments)

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

5

Let’s start the “inetsim” to start the DNS service. It will start a myriad of other services, but they will

not hurt us so I wouldn’t bother disabling them.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

6

The real hero here is Metasploit as it is in many cases. Let’s start the Metasploit console first.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

7

Use the following module to act as an MSSQL simulator. This module’s sole purpose is to get the

MSSQL server logon request and nothing else (we’ll get into the internals later).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

8

We don’t mess with the config parameters and run with the defaults. At this point our Kali machine

will be accepting the MSSQL connection requests. So, let’s make the client executable try to

communicate this service.

On the VM-1 (the Windows machine) we simply define the VM-2’s (the Kali machine) IP address as

the DNS server address. Remember this service will respond to any address resolution requests with

its IP address.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

9

Let’s run the application and get done with our job.

I push the Login button to initiate the connection process (in many cases you wouldn’t need to do

this since the application would try to connect to the database server on application start).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

10

We magically see the database user name and password which the executable used to connect to

the database (you may be asking what is the database server’s FQDN, well you can use Wireshark to

track the DNS query and find the server address easily).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

11

What if the executable connects the

Database Server with its IP address?

One other obstacle with analyzing your prey application could be that the developer could be using a

hardcoded IP address as the MSSQL database server address. In that case, the DNS trap we used

would be meaningless obviously, but we still have tricks to make the client come to us, instead of

the real database server (thanks to the conveniences provided by Linux).

In this case we will use the same machines again but will trick the client to come to us with our

ancient Man In The Middle technique: Arp Poisoning. Well, not only that, we will also use the routing

and port forwarding utilities on the Kali Linux machine.

There are other tools to start our Arp Poisoning campaign but most of them make MITM and other

staff. We don’t need all that fuss, so we will stick to the simple arpspoof tool. First, we need to install

it with the “dsniff” package. Then run the following two arpspoof commands to poison the ARP

caches of the gateway and the Windows machine (you need to change the IP addresses in

accordance with your environment of course):

apt install dsniff

arpspoof -i eth0 -t 192.168.231.130 192.168.231.2

arpspoof -i eth0 -t 192.168.231.2 192.168.231.130

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

12

The next thing you should do to make the Windows application to talk to the MSSQL simulator on

the Kali Linux machine to enable routing and port forwarding with the following two commands:

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -I PREROUTING --dst 172.16.4.30 -p tcp --dport 1433 -j

REDIRECT --to-ports 1433

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

13

From this point on you will have the same results as before.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

14

How did it happen?

In order to understand how did the Metasploit module achieved that we can first look at the

network traffic. We can read the module code to get better insight about the process later.

First, we see the DNS query for the MSSQL server address (Remember the question I mentioned

before, here you can see the address of the MSSQL server. Obviously, we need it to proceed our

reconnaissance further during our penetration test.)

The response suggests the IP address to be the Kali Linux’s IP address (since we configured inetsim

to do this).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

15

Below is the pre login request to the MSSQL server (which would be our malicious simulator service

started from Metasploit).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

16

Below I highlighted that the client did not insist on an encrypted logon session. That knowledge will

give us a hint to prevent the problem of stealing MSSQL login credentials (from the developer’s

perspective).

Below is the response of the malicious MSSQL simulator. We can compare this response data later to

our static analysis of the MSSQL capture module.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

17

The essence of the credential capture tactic used is here, the malicious MSSQL simulator informs the

client that it DOES NOT have support for the ENCRYPTION.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

18

That results in the client not to use encryption. An astute reader might notice that the raw data is

not clear text really. However, as we will see from the module code later, the password is encoded

(not encrypted) somehow and obviously Wireshark is intelligent enough to decode it and show it to

us.

Our malicious MSSQL simulator service just says that the credentials are not correct. This suggests

that the service did not intend to relay the traffic to the real server at all, just steal the credentials.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

19

To understand the internals of our MSSQL service simulator we can look for the files named

“mssql.rb” in our Kali Linux machine. There it is.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

20

One of the things we can see in the code is the password decoding algorithm (although the function

name is mssql_tds_decrypt).

This is where the decoder is called.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

21

The pre-login response function includes the response data that we had seen earlier while we were

analyzing the network packets in Wireshark (we’ll see the constant’s below).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

22

This is where different phases and kinds of client requests are handled.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

23

The benefit of searching the internals of a tool is to discover its other capabilities. Here we can see

that our simulator module is also capable of stealing LM and NTLM authentication credentials

(hashes to be precise).

We can also see that the collected credentials can be recorded into the files with right format for

two password cracker tools (i.e. Cain and JTR).

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

24

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

25

How to defend against this attack (from a

developer’s perspective)?

The root cause of this problem is that the application is developed with a 2-tier architecture. Thus,

the client must have MSSQL server credentials on the client side (whether in a config file, in its code

or use user credentials to access the MSSQL server). However, if we were stuck with this

architecture (i.e. we cannot switch to a 3 tier application because of the operational dependencies

to the application, financial constraints or for another reason) we can do the following to protect

ourselves from the kind of dynamic test attack described in this article.

We can use the “Encrypt” attribute to refuse the client to connect to the MSSQL server without

encryption.

Below is the change we implemented in our existing connection string. We added “Encrypted=true”

parameter and value to the connection string.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

26

Let’s try the new code to see if it will fall victim to our attack.

This time our executable specifically requires encryption, it is not optional anymore.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

27

The MSSQL simulator service responds as usual indicating that it does not want encryption.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

28

However, this time the client does not care and tears down the TCP connection immediately. Hence,

we (the attacker) do not have the chance to discover the password.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

29

What happens if the client executable uses

Windows Authentication?

To impersonate the connecting user, we need to start the process as a different user. In order to

keep things simple and just discover our tools extra capabilities we will try to connect to the

database server as the PC user. To do this we change the connection string as below:

The PC username we use (i.e. the user we used to login to the Windows 10 machine) is “btrisk”. That

user’s password is “123456”.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

30

This time we will try to crack the NTLM password hashes. The capture mssql module prints out the

captured password hash and other information, but we can use the recording feature of the tool for

practicality. We set the prefix for the password hash file “sqlwindowsuser”.

We start our module to imitate the MSSQL service and wait for the victim.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

31

After we run the new client executable, we find the NTLM hash and challenge information both in

the console output and the file for which we provided the prefix information before.

We can see that two files were created for LM and NTLM hashes (although the LM hash file has no

information in it).

We can give the rockyou wordlist a go with the JTR tool and see that the “123456” password is

cracked.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

32

If we analyze the network packets for the Windows authentication trial, we see that the NTLM

challenge response packets took place.

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

33

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

CYBER SECURITY AND IT GOVERNANCE SERVICES

34

Result

During a penetration test if we capture a database application, we have a myriad ways to retrieve

database credentials from it. The method explained here with the Metasploit module is another

effective method in our tool belt.

Obfuscation and encrypted connection options might mitigate the risk here, but we should not

forget that no controls on the client side can be hundred percent effective. We should always

suggest a 3-tier architecture as a long-term solution for these kinds of problems.

