

Beating an SEH/VEH

based CrackMe :

Deep Analysis Is The Key To Beat A Crackme :

By : Souhail Hammou

(Dark-Puzzle)

http://www.itsecurity.ma/

Introduction :
In this paper , I will try to show how to beat an advanced crackme that is using an
interesting way to calculate the length and it’s generating exceptions to be dealed
with in order to return values into 32-bit registers such as EAX register , the key to
beat a crackme is deep analysis through what it dœs under the hood especially
when it’s using mixed methods to confuse,stop or slow the reverser.
Let’s Start :

This Crackme was taken from a very popular challenge website that I will not
mention , I edited the strings printed in the interface in memory not to spot the

website . I was also the 16th person to validate it (Validation rate 1%).
Let’s start by opening the CrackMe and see what it’s waited from us to do !!

It asks us politely to type a pass or to Crack it I guess.
Open your mind and carry on .

Now we need to take a quick look on what routines are exactly dealing with the
user input . Let’s switch to Immunity and take a quick look.

You can see that it is taking a user input then calling an adresse sepcified by EBX

register after that it’s deciding weither printing the success or fail message.
We are now interested in what’s directly going after getting the user input using

scanf so let’s see what EBX holds and step into that call.

EBX isn’t taking us farther but just below this code a little bit.
The instructions which EBX will take us to are the ones responsible for checking the
user input and deciding weither it’s right or not.
The responsible routine is a little bit long and it’s splitted into 4 main parts each
part ends with a JE (Jump If Equal) instruction.

So let’s take care of each part alone :

1st Part – Checking the length :

Here are the instructions :

00CC107F 90 NOP
00CC1080 BE DD657A22 MOV ESI,227A65DD

00CC1085 . 31ED XOR EBP,EBP
00CC1087 . BB BEBAADDE MOV EBX,DEADBABE

00CC108C . 01DE ADD ESI,EBX
00CC108E . F9 STC
00CC108F . BF D9697A22 MOV EDI,227A69D9

00CC1094 . FD STD
00CC1095 . B9 00040000 MOV ECX,400

00CC109A . D6 SALC
00CC109B . 01DF ADD EDI,EBX

00CC109D . F3:AE REPE SCAS BYTE PTR ES:[EDI]
00CC109F . FC CLD
00CC10A0 . 83E9 0F SUB ECX,0F

00CC10A3 . 74 03 JE SHORT SomeChal.012810A8

We can see that DEADBABE will be added to 227A65DD which will make ESI
holding the memory address that specifies the user-input, then the next instruction
will try to set the CarryFlag which is already set , the next instruction that may

attract your attention is at address 00CC109D this is the address that will actually
calculate the input string length . How did I know it ? I will explain.

You can see that the value 400 is moved to ECX , you can also remark that
227A69D9 is moved to EDI then EBX is added to it , the result will be stored at EDI
for sure. Before the ADD instruction we have a VERY important instruction which is

SALC , this instruction will Set the AL value to FF if the CF is set or to 00 if the CF is
cleared . In our case CF is set , so the value of AL will be FF , this value is very

important because the SCASB instruction will try to find all bytes that aren’t
matching AL starting at ES:[(E)DI] . In addition, here we have the REPE instruction
that is accompaigned with the SCASB instruction so it will try to use the ECX

register to specify a search « array » , you can clearly see that ECX register was set
to 400. Now , go and check what EDI is holding after the ADD instruction you will

see that it’s holding the value 00CC2497 . Follow this value in dump and you will
find yourself in front of a bunch of «FF » , you see now that ECX holds the value
400 , this means that the search array will go to zero in other words and in theory

the search will end when ECX will hold the value 00000000 , which make us figure
out that the instruction will search for the first value that is different from « FF »

from 00CC2497 until (00CC2497 – 400) = 00CC2097 and if no different values
from FF were found ECX will just hold 00000000 . When following 00CC2097 in
dump you will find what follows :

Here, the REPE SCASB instruction will stop in the last highlighted NULL byte in blue

« 00 » because it is different from « FF » here ECX will hold the length from
00012097 until the value before the null byte. In my case here (input 123456) ECX
will hold the value 9 because we should begin the counting from 0 then 1 then 2

until reaching 9 means reaching 000120A0.

Now that we know how the length is calculated we should figure out what length
this crackme needs. In this phase we don’t care about if the serial is right or not
because we just want to get throught the first condition in a right way.

You can see in the last two lines that we will substract 0F from ECX then Jump if
ZF=1 or not jump if ZF=0 , in other words if the ECX = 00000000 after the

substruction the ZF will be set if not it will still equal 0.
So basically after the REPE SCASB instruction ECX should hold 0F which equals 15
in decimal . So we just need to insert a string with 12 charachter length and he

jump will be taken .

2nd Part – First 4 bytes of the flag :

00CC10A5 . 83CD 01 OR EBP,1

00CC10A8 > AD LODS DWORD PTR DS:[ESI]
00CC10A9 . BA 5930645A MOV EDX,5A643059

00CC10AE . 31D0 XOR EAX,EDX
00CC10B0 . 3D 0E030816 CMP EAX,1608030E

As the conditional jump was taken you will fall directly into the second instruction
which is LODS DWORD PTR DS:[ESI], this instruction will basically load the DWORD

DS:[ESI] value into EAX register this value should be the first 4 characters that we
wrote in our flag in decimal and also converted to little endian so if the first 4

characters that you entered were 1234 then EAX should hold after this instruction
34333231. After that we see that a DWORD is moved to EDX then EAX is Xored
with it , this is almost the same case that I coded in CrackMe#3 at Hackathon

Challenge . The right value of EAX after xoring it with EDX should be 1608030E so
the first DWORD of our flag is 1608030E Xored with EDX . Which will give you that

value : XOR 1608030E, 5A643059 = 4C6C3357 you will just have to convert it to
big endian and you will have the first 4-bytes of the flag : 57336C4C which is
« W3lL » in ASCII.

Now just type W3lL and type 8 random characters after it and you will see that ZF
will be set after the compare and the jump will be taken.

3rd part – Second 4-bytes of the flag (SEH) :

The 2 first parts were fun , now m0re . Let’s see the instructions :

00CC10B7 . 83CD 01 OR EBP,1
00CC10BA > 8B1D 8F20CC00 MOV EBX,DWORD PTR DS:[CC208F]
00CC10C0 . 81EB 00100000 SUB EBX,1000

00CC10C6 . 53 PUSH EBX
00CC10C7 . 64:FF35 000000> PUSH DWORD PTR FS:[0]

00CC10CE . 64:8925 000000> MOV DWORD PTR FS:[0],ESP
00CC10D5 . AD LODS DWORD PTR DS:[ESI]
00CC10D6 . BB 65425F49 MOV EBX,495F4265

00CC10DB . CD 01 INT 1
00CC10DD . 31D8 XOR EAX,EBX

00CC10DF . 3D D786D318 CMP EAX,18D386D7
00CC10E4 . 74 03 JE SHORT SomeChal.00CC10E9

Like the last part, we will fall directly into the second instruction which will move a
DWORD from memory to EBX register , after that a substruction of 1000 will be

done to EBX which will carry now 00CC1530 . This adress is the new adresse of the
exception handler which will be set in a while , EBX will be pushed then the new
exception handler will be completely created when moving ESP into DWORD PTR

FS:[0] . After that the second 4 bytes of the user-input will be placed into EAX
register in little endian format , then a value that will xor EAX is moved into EBX.

Here where the TRAP is : the « INT 1 » instruction.
We can see here that when we will step over this instruction using « F8 » the EIP
will just hold directly the adresse 00CC10DF , so we don’t have to step over this
instructions but let run normally the crackme as it was executed outside a debugger
. Basically the INT 01 instruction is called single-step break it will run after each

instruction if the TrapFlag is set . Nevertheless, here it’s invoked directly inside the
code and the TF is cleared which will generate an exception and never set the TF.
Let me explain to you what is exactly happening when the « INT 1 » is passed

through in normal execution and not by single stepping through it , keep in mind
that this INT instruction will generate an exception that will be handeled by the SEH

newly created . Basically when we will trigger this interrupt the processor will go
into the 1st location in the Interrupt Vector Table which starts in memory location
0x00 and ends at 0x3FF simply because interrupts can take a number which is

between 0 and 255. After that the IP will be saved and also the CS , this basically
will store 4 bytes (IP = 2 bytes & CS = 2 bytes) , before the interrupt will hand

back the flow of execution to the program normally it will return using an « iret »
instruction . Here the IMPORTANT PART that the CS:IP and all FLAGS are restored
again.

So basically when the instruction PUSH EBX at 00CC10C6 is executed it will indicate

the current SE Handler which means the instructions that will deal with an
exception , the exception here is triggered by the « INT 1 » instruction and the

execution flow is moved directly into 00CC1530 , after returning the exception will
be handeled and the execution flow will continue normally . The only thing you
need to do is just set a breakpoint on the instruction after the « INT 1 » instruction

because the EIP will be incremented by 2 and it will skip that instruction. After we
will return from the Exception handling routines we will see that EAX will hold a

return value that is ADDed to the previous value that was holded by EAX.

Now let’s work on finding that god damn second part of the validation flag. Pretend
that I didn’t say that the return value stored in EAX isn’t added to its previous value
so here you can just see after stepping over the « INT 1 » that the value of EAX will

change. So we need to figure out if the EAX holds an adresse that have been
moved , added or substracted to it. In order to do it let’s rerun our Crackme inside
a debugger for sure . Now we will enter this input for example : W3lL11119876 the

DWORD that will be treated in this part is 31313131 (111 in ASCII) so let’s step
over the LODSD instruction and you will see that EAX is filled now with 31313131.

As I said previously , you have to set a bp at 00CC10DD then step over it using
<shift + F8> BUT we don’t want to do that now because this will make the value of
EAX change and we will need to figure out what arithmetic operation is done when

the value that is returned by interrupt will be Moved , added , substracted ,
multiplicated by the current value of EAX. So here what I’ve done is that I went and
edited the value of EAX just before executing the interrupt to NULL , EAX =
00000000 So I will not need to bruteforce each arithmetic operation if it’s an ADD
so EAX will hold a value if it’s a multiplication EAX will still hold 0 , division either 0
or an exception … etc
So , after executing the Interrupt I realized that EAX holds the value 21486553 ,

let’s covert this to big endian and to ASCII cause it’s printable =) … we will finally
have 53654821 = SeH!
If you want to be more sure if the operation is an addition just go and change EAX

to 00000001 and you will get 21486554 which is in big endian + ASCII : TeH! .
Okey so now after we knew what is the value returned by the interrupt we must

know what is the right value that EAX should hold before the XOR instruction.
That’s simple , we see that EAX is compared to 18D386D7 after being Xored and
it’s Xored with 495F4265 , so just before the XOR and just after « INT 1 » EAX

should hold :
518CC4B2 (Xoring 18D386D7 with 495F4265) . Okey now we found what value EAX

should hold just after the « INT 1 » instruction and we know that after the interrupt
21486553 is added to EAX register . Sooo the right value of EAX after the LODSD
instruction is 518CC4B2 – 21486553 = 30445F5F int big endian 5F5F4430 and in

ASCII : __D0 . So now the 8 first characters of the flag are W3lL__D0 . Let’s try to
rerun the crackme and enter this serial : W3lL__D09876 . By stepping throught

instructions until the Jump if equal in this part (don’t forget the bp) , you will see
that the ZF will be set and the jump will be taken simply because the comparison
went true and those 4 bytes are the correct ones.

4th part – The last 4 bytes of the flag (VEH) :

Here are the instructions :

00CC10E6 . 83CD 01 OR EBP,1
00CC10E9 > 8B1D 9320ED00 MOV EBX,DWORD PTR DS:[ED2093]

00CC10EF . 81EB 00100000 SUB EBX,1000
00CC10F5 . 53 PUSH EBX
00CC10F6 . 6A 01 PUSH 1

00CC10F8 . E8 151F0000 CALL 00CC3012 ; Add VEH
00CC10FD . A3 9720ED00 MOV DWORD PTR DS:[ED2097],EAX

00CC1102 . 54 PUSH ESP
00CC1103 . 5F POP EDI

00CC1104 . AD LODS DWORD PTR DS:[ESI]
00CC1105 . BB 53664074 MOV EBX,74406653
00CC110A . 895D 00 MOV DWORD PTR SS:[EBP],EBX

00CC110D . 31D8 XOR EAX,EBX
00CC110F . 3D F332768E CMP EAX,8E7632F3

00CC1114 . 74 03 JE SHORT SomeChal.00ED1119
00CC1116 . 83CD 01 OR EBP,1
00CC1119 > FF35 9720ED00 PUSH DWORD PTR DS:[ED2097]

00CC111F . E8 F41E0000 CALL 00CC3018 ; Remove VEH
00CC1124 . 64:8F05 000000> POP DWORD PTR FS:[0]

00CC112B . 83C4 04 ADD ESP,4
00CC112E . C3 RETN

We can see from a general view that these instructions are building a Vectored
Exception Handler (VEH) which will deal with an exception executing a routine

present at the instruction pointed by EBX , pushing a second Nonzero argument
indicates that the VEH is inserted into the very head of the list then it’s Removed
after executing a bunch of instructions that will check how is the last DWORD of the

user-input is correct , those instructions are containing an exception at adresse
00CC110A.

But first what is a Vectored Exception Handler . According to MSDN :

– Vectored Exception Handling is new as of Windows XP.

– All information about VEH are stored in the Heap.
– Vectored exception handlers are explicitly added by your code, rather than as a

byproduct of try/catch statements.
– Handlers aren't tied to a specific function nor are they tied to a stack frame.

So basically to be sure that an excpetion is trigerred and dealed with we have to
put a breakpoint on the first instruction that is executed by the VEH which will be

the EBX register pushed adresse for sure. While running the code we will see that
the last DWORD is loaded in little endian format again into EAX register then a
value is moved to EBX which is the value that we will use for Xoring. But just after

this we have a MOV instruction which will move EBX to the current DWORD in the
memory location pointed by EBP , while stopping in that instruction you will see

that EBP is holding the value 00000001 so an exception should be triggered as it’s
impossible to move EBX to that location . If you put a bp on the pushed EBX in the
stack you will see that the execution flow will be taken by the instructions at

00CC1960 (pushed EBX as an arg to create the VEH) . Those routines will handle
this exception and return also a value to EAX register which will be added as

happened in the previous part of checking the flag.
So we will need to figure out what is that added value again , all we need to do is to
change the value of EAX register after the LODSD instruction to 00000000 then put

a breakpoint on 00CC110D and press « F9 » so we don’t skip that instruction as
happened last time. Now all we have to do is look at what EAX is holding : it’s
holding D9150F32 . So after the handling the exception this value (D9150F32) will
be added to EAX register , now we need to figure out what should be the right
value of EAX just after handling the exception means :

(D9150F32+ LastFlagDwordLittleEndian)
You will just have to XOR 8E7632F3 with EBX , and you will have this value :

FA3654A0 .
So the right last DWORD of the flag in little endian should be :
FA3654A0 – D9150F32 =2121456E –> Big Endian = 6E452121 –> ASCII =nE!!

So the last 4 characters of the flag are : nE!! …

5 – Regrouping the 3 parts :

So the complete flag to validate the challenge is : W3lL__D0nE!!
Now just try to provide the flag to the Crackme and you will see that :

Finally , this was a really GOOD crackme that I actually enjoyed discovering and

cracking because it uses many handlers to deal with exceptions then return some
values that will be added and also uses a very interesting method to check for the
length .

See you soon guys …

Regards,

Souhail Hammou (Dark-Puzzle) from www.itsecurity.ma

Follow me : http://www.facebook.com/dark.puzzle.sec

 : http://twitter.com/dark_puzzle
Download The CrackMe : http://www.mediafire.com/?5661n2z4w44664f

www.itsecurity.ma
http://www.facebook.com/dark.puzzle.sec
http://twitter.com/dark_puzzle
http://www.mediafire.com/?5661n2z4w44664f

