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1 Introduction
Identifying vulnerabilities in software has long been an important research problem in the field of 
information security. Over the last decade, improvements have been made to programming languages, 
compilers and software engineering methods aimed at reducing the number of vulnerabilities in software 
[26]. In addition, exploit mitigation features such as Data Execution Prevention (DEP) [65] and Address 
Space Layout Randomisation (ASLR) [66] have been added to operating systems aimed at making it more 
difficult to exploit the vulnerabilities that do exist. Nevertheless, it is fair to say that all software applications 
of any significant size and complexity are still likely to contain undetected vulnerabilities and it is also 
frequently possible for skilled attackers to bypass any defences that are implemented at the operating system 
level [6, 7, 12, 66]. 

There are many classes of vulnerabilities that occur in software [64]. Ultimately they are all caused by 
mistakes that are made by programmers. Some of the most common vulnerabilities in binaries are stack 
based and heap based buffer overflows, integer overflows, format string bugs, off-by-one vulnerabilities, 
double free and use-after-free bugs [5]. These can all lead to an attacker hijacking the path of execution and 
causing his own arbitrary code to be executed by the victim. In the case of software running with elevated 
privileges this can lead to the complete compromise of the host system on which it is running.

Techniques for identifying software vulnerabilities can be divided firstly into two different approaches; static
analysis and dynamic analysis. Static analysis of software involves ways of examining the source code or 
compiled binary without executing it. Dynamic analysis involves examining the software at runtime, 
typically after attaching some kind of debugger. Both of these approaches have their relative advantages and 
disadvantages [69].

For static analysis a number of automated tools exist that can be combined with manual code review by a 
skilled analyst. The less sophisticated tools essentially just scan the target source code looking for known 
dangerous functions such as strcpy() in C programs [31]. The more advanced tools often work using some 
kind of taint analysis [29]. These tools will identify and 'taint' any variable that has its value set from input 
that enters the target application from a user. This tainted input and its effect on other data will then be traced
as it propagates through the source code. Whenever it is seen that tainted data could reach a 'sink' or 
potentially dangerous function this will be flagged for further investigation. Static analysis, although useful, 
often produces many false positives that cannot be exploited in practice and requires a lot of manual 
verification work to identify which issues are genuine vulnerabilities [69]. It does, however, allow for 
complete code coverage with the entire application being inspected.

For dynamic analysis the most common automated technique for finding vulnerabilities is the process of fuzz
testing or fuzzing. In essence this consists of repeatedly giving an application invalid input and monitoring 
for any sign of this triggering a bug, such as the application crashing or hanging [67]. There are many 
advantages to this approach such as the ease of automation and the ability to test even very large applications
where code review would be too time consuming. It is also the case that each bug discovered by fuzzing 
automatically comes with its own 'proof of concept' test case proving that the bug can definitely be triggered 



by a user. In practice many serious and high profile memory corruption vulnerabilities today are discovered 
through fuzzing. 

In order to fully test an application using fuzzing, it is important to somehow ensure that the combination of 
test cases being used execute as large a proportion of the application as possible. That is to say, it is 
necessary to maximise code coverage [71]. If large sections of code are not executed during the fuzzing 
process, it is certain that any vulnerabilities that do exist in those areas will not be found. 

It is possible to fuzz any application that accepts input from the user, whether this is in the form of opening a 
file, reading from a network socket, reading environment variables or any other form of input that can be 
modified. 

The motive for fuzzing related work, and indeed any research involving methods for discovering 
vulnerabilities, can be either defensive or offensive. Software companies use these techniques to identify 
vulnerabilities in their own products before release as part of the development lifecycle [26]. Whitehat 
security researchers also use these techniques to find vulnerabilities in both open source and proprietary 
software and then typically follow the established practice of responsible disclosure to publish the details 
after first notifying the vendor and giving them time to release a patch. On the other hand, various 
intelligence agencies, military units, defence contractors, and even organised crime groups also use the very 
same techniques to gain an advantage for their work compromising the networks of their targets. This type of
organisation keeps the details of any vulnerabilities that they discover private rather than disclosing them to 
the affected vendors. Exclusive knowledge of vulnerabilities for which no patch exists (so called zero day or 
0day vulnerabilities) is extremely useful when carrying out offensive work such as CNE (Computer Network
Exploitation) [16].

The rest of this paper reviews fuzzing and its context within the field of information security research. We 
firstly examine how vulnerabilities come to exist in software and how security researchers find them. After a 
brief overview of common vulnerability types and methods of static analysis, we look in more depth at the 
field of fuzzing. Competing approaches to fuzzing are examined, from simple random inputs all the way to 
using genetic algorithms and taint analysis. The importance of measuring code coverage to evaluate the 
completeness of a fuzzing campaign is examined. Finally, previous work on fuzz testing of web browsers is 
reviewed. 

2 Software Vulnerabilities
Modern software applications are often complex and can consist of hundreds of thousands or even millions 
of lines of code. Not surprisingly, mistakes are made that can lead to situations where attackers can cause 
software to behave in a way that was not intended by the developers.

For a very simple example, consider the following piece of C code:

Figure 1: Vulnerable C code example



There are (at least) two things wrong with the small program shown in Figure 1. 

The first and most obvious mistake is that we have allocated 20 bytes on the stack for user_buffer but we do 
not check how much input the user has entered before writing it to this buffer. The string will be null 
terminated and so if the user enters any more than 19 characters we will write more than 20 bytes to the 
buffer. The stack can thus be corrupted by the user simply typing a longer string than we expected, a typical 
example of a stack based buffer overflow [62].

If we compile this program with gcc using the -fsanitize=address option to activate AddressSanitizer [17] 
and then run it and enter 20 characters we see the following.

Figure 2: Stack based buffer overflow being triggered

It can be seen that AddressSanitizer has identified a stack based buffer overflow as our input in this case 
causes data to be written out of bounds past the end of user_buffer.

The second problem is a little more subtle. Because strlen() returns the length of the user's string excluding 
the null terminator at the end, we are always allocating one byte too little for buffer2 on the heap with 
malloc(). This means that whatever string is entered by the user it will always result in a heap overflow [63]. 

Running the program a second time and this time entering “hello” gives the following result.

Figure 3: Heap based buffer overflow being triggered

This time AddressSanitizer has identified a heap based buffer overflow as our 6 byte string (“hello\0”) is 
written to our 5 byte heap buffer.

Heap-based buffer overflows occur in a similar way to stack-based, except this affects buffers that have been 
dynamically allocated at runtime using heap memory. Rather than aiming to overwrite a function's return 
address, the aim when exploiting a heap overflow is to overwrite the metadata of other heap structures.

When the first crash, the stack based buffer overflow, is examined in GNU Debugger (gdb) using the 
exploitable plugin [39] from CERT we see it is classed as exploitable. So it is not just a bug, but an 
exploitable security vulnerability that can lead to execution of arbitrary code by an attacker.



Figure 4: Stack buffer overflow classified as exploitable

These two very simple examples serve to illustrate how potentially exploitable bugs can arise in software 
through oversights or misunderstanding on the part of the programmer. It is these kinds of mistakes that we 
are interested in detecting when fuzzing.

As well as the stack based and heap based buffer overflows that we just saw, there are many other types of 
vulnerabilities that are found in software [64]. We now briefly describe four more of the most common types 
that are encountered during binary analysis and that are likely to be encountered during fuzzing. 

Use-after-free (UAF) vulnerabilities occur when a buffer on the heap is accessed by mistake after it has 
already been released by the free() command [20]. This can happen when a program has multiple pointers to 
the same heap buffer, or to different offsets within it. One pointer may get used for a free() operation and if 
all the other pointers are not then set to NULL then one of them may later be mistakenly used to write to the 
memory and thus cause corruption. An example of this vulnerability in the real world is CVE-2014-0322 
which is a UAF vulnerability in Microsoft Internet Explorer 9 and 10 [21]. This allows attackers to get 
arbitrary code execution via malicious JavaScript.

Double-free vulnerabilities occur when a buffer that has already been freed is mistakenly freed a second 
time, after that piece of memory has in fact already been reallocated to something else [23]. This results in an
area of memory being marked as unused and hence available to be allocated, even though it is still in use by 
some other data structure. An example of this is CVE-2015-0058 which is a double free vulnerability in 
win32k.sys on Microsoft Windows 8.1 and Windows Server 2012 R2 that can be exploited to perform 
privilege escalation and execute commands as SYSTEM [22].

Integer overflows happen whenever an integer is increased or decreased past the range of values that it can 
hold [19]. For example, an unsigned 16 bit integer cannot hold a value greater than 65,535. If it has a value 
of 65,535 and then 1 is added, the value becomes 0 rather than 65,536. Similar issues can occur when 
converting between integers of different sizes. For example, converting from a 32 bit integer to a 16 bit 
integer results in the first 16 bits being truncated. Sometimes this behaviour is an expected part of how a 
program functions and does not cause any problem. In other cases though, it is an oversight on the part of the
developer and it does cause problems. An attacker exploiting such an issue could for example cause a buffer 
to be allocated with less space than it actually needs and thus lead on to a buffer overflow. An example of a 
real world integer overflow is CVE-2010-2753 which is a vulnerability in the Mozilla Firefox web browser 
that leads to attackers being able to execute arbitrary code [18].

Off-by-one vulnerabilities occur when a miscalculation has been made that results in some value being one 
more or one less than it should be [25]. For example this could result in a buffer being one byte smaller than 
it should be or a loop being executed one more time than it should. This is actually quite a common mistake. 
The heap buffer overflow example presented earlier was also a good example of an off-by-one bug. The 
memory allocated on the heap to buffer2 was always one byte too small due to forgetting about the null at the
end of the input string. This always resulted in the writing of a null byte out of bounds. A real world example
of an off-by-one vulnerability is CVE-2012-5144 which allowed remote attackers to cause a denial of service
condition against users of the Google Chrome web browser [24].



All of the vulnerabilities described so far can potentially lead to arbitrary code execution when exploited. 
They are also all typical vulnerabilities that are good candidates to be discovered by fuzzing as we shall see 
later. 

A range of efforts have been made to reduce the frequency of programmers making mistakes such as these. 
Modern compilers check for many issues. For example, when compiling the buffer overflows C program 
example given in Figure 1 earlier, gcc 4.9.2 actually warned that “the gets function is dangerous and should 
not be used”. 

Choice of programming language also has an impact on the likelihood of vulnerabilities being present as 
newer programming languages often make a considerable effort to prevent developers accidentally 
introducing vulnerabilities. For example, compiled C programs do not automatically perform bounds 
checking at runtime whereas Python, Ruby and C# programs all do. For applications programmed in the 
latter group of languages it is not possible to cause the software to write past the end of an array and cause a 
buffer overflow as an exception will automatically be raised. However, C or C++ is often chosen when speed
and efficiency are important and so many key applications, including operating system internals and also 
web browsers, are written in that language. This means that plenty of the vulnerabilities that were described 
earlier are still present and waiting to be discovered in modern software.

Frameworks of best practices have been developed for programmers and software engineers to help make 
security a core requirement throughout the entire software creation process. One of the more popular 
examples of this is the Microsoft SDL (Security Development Lifecycle) [26]. This guides the creation of a 
set of processes from providing programmers with training to attack surface reduction to creating an incident
response plan. Fuzzing is also included as part of the SDL.

3 Detection of Vulnerabilities
Now that we have set the scene by providing a brief introduction to how vulnerabilities arise we can shift our
attention to how to discover them. 

Techniques for detecting software vulnerabilities can be divided into two main categories; static analysis and 
dynamic analysis [69]. 

3.1 Static Analysis
Although the focus of this paper is fuzzing, a form of dynamic analysis, it is worthwhile briefly examining 
static analysis techniques first. The reason for this is that some fuzzing research has already made advances 
by taking techniques that are usually part of static analysis and integrating them into the fuzzing process [3, 
4]. It is therefore useful to have some knowledge of static analysis while working on fuzzing.

Static Code Analysis (SCA) techniques usually involve examination of the source code of an application or 
the disassembly of the compiled binary. The important point is that the software under examination is not 
executed [72]. Analysing the source code or binary statically allows complete code coverage. It is possible to
examine absolutely all of the program. The downside of this is that issues are often flagged up that cannot be 
reached by the user at runtime. From a security point of view these bugs are of no interest because they 
cannot be exploited. There is therefore the problem of triage; it is frequently necessary to sort through a large
number of bugs to identify the small percentage that are of interest to a security researcher [69]. It is also the 
case that some vulnerabilities cannot be detected or understood without knowing about the runtime 
environment and thus are unlikely to be detected during static analysis. Another potential issue with static 
analysis is that vulnerabilities in third party libraries that are imported by the target program will be missed if
these libraries are not also analysed. None of these problems exist when fuzzing as we shall examine later.



Some of the more popular free Static Code Analysis tools are Cppcheck [33] and FlawFinder [31] for finding
vulnerabilities in C/C++ source code, RIPS [29] for PHP, and FindBugs [13] for Java. Popular commercial 
solutions, which can deal with software in multiple programming languages, include VeraCode [14] and 
Fortify [15]. Some tools are stand-alone while others (for example FindBugs) can integrate into common 
development environments such as Eclipse or Visual Studio. 

SCA tools rely on a variety of methods to identify potential vulnerabilities. At the simpler end of the 
spectrum are tools that essentially just search for specific function names or other occurrences from a 
blacklist. The FlawFinder tool [31] works in this way. The tool has a database of C/C++ functions that are 
associated with buffer overflows, format string problems, race conditions and other known issues. The 
presence of any of these blacklisted functions in source code is flagged by the tool and presented to the user 
with an explanation of the likely vulnerability in each case. The Jslint tool, described by the developers in 
[30], detects vulnerabilities in Java source code by checking for compliance with a  list of 12 best practices 
of secure programming. Such tools are useful for finding the 'low hanging fruit' but are unlikely to detect 
more complex issues.

A more sophisticated technique is taint analysis which is used by RIPS [29] and is also discussed in [34] in 
the context of testing Java applications. This process involves first labelling every piece of input to the 
program that can be modified by a user as a 'source' and marking any such input data as 'tainted'. Any data 
that is then derived from such tainted input is also tainted. The flow of tainted data can then be traced 
statically through the program and whenever it is seen to reach a dangerous function, labelled a 'sink', this 
fact is flagged. Such occurrences can then be checked to make sure that adequate sanitisation of the data is 
being carried out prior to it reaching the sink. Taint analysis has also been applied to fuzzing as we will 
examine later.

3.2 Dynamic Analysis
In contrast to the static analysis techniques that we have examined, dynamic analysis involves examining the 
application at runtime. This should be seen as complimentary to static analysis rather than something that 
should be done instead. While dynamic analysis does not have the drawbacks that we described for static 
analysis, it does have some of its own. The main shortcomings are the difficulty of getting full code 
coverage, the length of time required to perform a comprehensive test, and also the fact that we can only ever
examine the application states resulting from a finite set of inputs rather than all possible inputs [73].

One dynamic analysis technique, fault injection, was first used as a hardware testing method and later 
applied to software. Fault injection is a close predecessor to fuzzing and involves testing a system's tolerance
to having faulty states induced at runtime [74]. In a hardware context this could involve varying the voltage 
being supplied to a circuit beyond the range that it expects or placing it in a magnetic field. In a software 
context it could involve placing a system on a network between a client and server, and corrupting the traffic 
between the two to see how well they deal with this. Fault injection was originally aimed more at quality 
assurance than security research, and this brings us on to the technique of fuzzing.

4 Fuzzing
The term fuzzing was first used in 1988 by Professor Barton Miller at the University of Wisconsin. Whilst 
connected to a University terminal via a dial-up connection during a storm, Miller noticed that line noise was
causing extra, random characters to be added to the commands that he was sending [9]. In addition to the 
obvious usability problems that one would expect from this, it was observed that the corrupted inputs often 
caused the various UNIX utilities that he was using to crash and 'core dump'. 



This experience motivated Miller and other researchers at the University to create a tool for generating 
random strings and then pipe its output into the input of a range of UNIX utilities. The group tested almost 
ninety different UNIX utilities this way on seven different UNIX distributions and found that they were able 
to crash over 24% of them. These experiments were described in detail in [9] and gave birth to a relatively 
simple way to supplement the formal verification and software testing techniques that already existed.

Since Miller's early work, fuzzing has become steadily both more popular and more sophisticated. One 
important step forwards for the popularity of fuzzing was the 2001 public release of the SPIKE fuzzing tool 
by Dave Aitel followed by his presentation of it at the Black Hat USA conference in 2002 [10]. The SPIKE 
framework was an API and set of tools for network protocol fuzzing. It allowed the user to create a model of 
any network protocol and then use this model to create and send traffic that almost complied with the 
specification, but not quite. It proved quite successful at finding vulnerabilities in servers and lowered the 
barrier to entry for people interested in running their own fuzzing campaigns.

A successful fuzzing framework consists of more than just a way to repeatedly create invalid inputs and pass 
them to the target application. Some way of instrumenting the target is required in order to monitor what is 
happening internally as each test case is processed. Crashes and other misbehaviour must be detected and 
also logged and reported to the user along with as much data as would be necessary for further manual 
investigation. There must also be a test harness that can automatically restart the application as necessary so 
that the fuzzing campaign can run unsupervised. Better frameworks will also handle issues such as crash 
deduplication [97], crash triage based on suspected exploitability [39], and test case minimisation [38].

In [40] and [102] we see two different studies in which a number of popular free fuzzing tools are evaluated 
and compared to each other. This work illustrates well that there are many different kinds of fuzzers and they
are suitable for different situations. There is no single tool that provides the best solution in every situation. 

We will now look in more detail at the different aspects of creating a successful fuzzing tool and the different
approaches that can be used.

4.1 Instrumentation
Fuzzing cannot be successful without some form of instrumentation being applied to the target application. 
At the very least, there must be some way of detecting when the program crashes and logging which test case
caused the crash. However, far more than this can be achieved using more advanced instrumentation. It is 
possible to detect subtle forms of memory corruption and other errors even when they do not cause the 
program to crash outright [68]. This allows the detection of vulnerabilities that would otherwise be missed. It
is also possible to measure code coverage and therefore know which parts of the target application have been
tested so far and which have not [71]. This can be simply for informational purposes for the user or can 
actually be acted upon by the fuzzer itself when creating new test cases.

Instrumentation can be provided directly by the fuzzing framework or by using a separate third party tool. If 
a fuzzing framework does not have its own built-in instrumentation, a range of existing tools can be made 
use of whether the target's source code is available or not.

When no source code is available it is common to use dynamic analysis tools such as Valgrind [36], 
DynamoRIO [75] or PaiMei [37]. It would also be possible to simply attach a debugger such as IDA Pro [79]
to detect when the target crashes. These tools can all attach themselves to an already running process and add
instrumentation on the fly.

Valgrind runs on Linux and contains its own memory error detector and two thread error detectors [76]. This 
allows it to be used during fuzzing to detect memory corruption even when it does not cause the program to 
crash. DynamoRIO can run on Windows as well as Linux and can be used to extract code coverage 



information among many other things [75]. PaiMei is a reverse engineering framework that can also be used 
for monitoring code coverage of Windows applications through its Pstalker module [37] and Flayer is a tool 
built on top of Valgrind which allows taint analysis to be performed at runtime [77]. All of these tools can be 
made use of for instrumentation needs when fuzzing a target for which no source code is available.

If source code is available then instrumentation can be added at compile time. For example, on Linux 
systems AddressSanitizer allows instrumentation for detecting memory errors such as buffer overflows and 
use-after-free to be added as the application is compiled [68]. If at any point during execution of an Asan 
instrumented program there is any memory corruption detected, the program will be terminated and a crash 
trace will be logged along with an automatic diagnosis of what occurred. This has two benefits. 
Vulnerabilities will be detected that may not ordinarily have crashed the program, and also further 
investigation for the purpose of either fixing the problem or developing an exploit will be aided by the data 
provided by Asan.

Some fuzzers, notably AFL (American Fuzzy Lop), add their own custom instrumentation at compile time 
[41]. This allows the fuzzer to get precise feedback from the target application during the execution of each 
test case. The creation of future test cases can then be based on this feedback. Such evolutionary based 
fuzzing is explained in more depth in section 4.3.

Finally, it should be noted that all forms of instrumentation slow the target program down, often significantly
[78]. It is therefore important to consider what is needed for each specific fuzzing scenario as there is a trade-
off between more speed and better instrumentation.

4.1.1 Code Coverage
As already mentioned, code coverage refers to tracking which parts of a program have been executed. This is
a very important type of instrumentation to have during a fuzzing session as it makes it possible to see how 
much of the target has actually been tested. Vulnerabilities cannot be found in a section of a program if that 
section does not get executed by any of the test cases. 

In [94] research was carried out showing that measuring the code coverage of an initial corpus and adding 
new test cases to it until no further coverage can be gained, then minimising the corpus before a fuzzing 
campaign starts is highly beneficial and increases the number of vulnerabilities discovered. This was 
confirmed in [98]. Further, specific to browser fuzzing it was documented in both [61] and [100] that code 
coverage for an initial web browser test corpus can be increased by including existing conformance test 
suites from the browser vendors as these are designed to test as many parts of the browser as possible.

There are three common approaches to measuring code coverage; line, branch and path coverage [71].

Line coverage keeps track of which individual lines of source code have been executed. This is the most 
basic kind of coverage information that can be collected. The shortcoming is that for example a conditional 
statement can be marked as executed as soon as the condition is tested, whether or not it evaluated to true, if 
it is all on one line. To give a pseudo code example, take the following line.

If (x < 10) then y=8 else z=9

This line will be marked as executed whatever the value of x is, and therefore we will not know whether the 
bit of code that assigns a value to y or to z was actually executed and thus tested.

Branch coverage deals with this by keeping track of which branches have been taken for each conditional 
jump in the program. In the pseudo code example above, two different test cases would be required to get 
full branch coverage; one where x is less than 10 and one where it is not. If only one branch had been 
executed during our testing we would know this fact if using branch coverage and we would know which 



branch had not been tested.

Path coverage is even more detailed and keeps track of which different paths have been taken through the 
program, meaning which sequences of lines and branches have been executed and in which order.

It obviously takes more test cases to achieve full path coverage than full branch coverage, and more test 
cases to achieve full branch coverage than full line coverage. “In general, a program with n reachable 
branches will require 2n test cases for branch coverage and 2^n test cases for path coverage” [71].

The gcov tool on Linux is a popular tool for adding code coverage instrumentation when the target's source 
code is available. It is now built in to the gcc compiler and can be activated by using the “-fprofile-arcs 
-ftest-coverage” option when compiling [107]. Additionally there is a tool called lcov that takes the output of
gcov and produces user friendly HTML reports from it including annotated source code. Using gcov 
provides line, function and branch coverage data but not path coverage. The report from lcov will show how 
many times each line, function and branch was executed and will flag up code that did not get executed.

As mentioned in section 4.1 various tools such as Valgrind can be used to get coverage data when the source 
code is not available. In that case we would be reasoning about lines of assembly language from a 
disassembled binary rather than lines of source code.

We will return to the subject of code coverage when we examine evolutionary fuzzing in section 4.3 but it is 
clear that we can only find vulnerabilities in the segments of code that we actually execute during our 
fuzzing and this depends entirely on the test cases that we make use of.

4.2 File Format and Protocol Fuzzing
It is possible to apply fuzzing to any kind of input that the application being tested can consume. For 
example, environment variables, strings passed in on the command line, or even file metadata [104] can be 
fuzzed. Typically though, most fuzzers are either file format fuzzers or protocol fuzzers.

File format fuzzers are used for fuzzing any application that receives a file as an input. Image viewers, movie
players, PDF readers, word processors and audio file players are common examples of applications that are 
fuzzed in this way. A series of slightly malformed files generated by the fuzzer would be opened in the target 
application one after the other, while monitoring for error states. An example of a file format fuzzer is 
American Fuzzy Lop [43].

Protocol fuzzers are used to fuzz clients and servers that communicate over a network, typically using 
TCP/IP although any protocol stack can be fuzzed. Malformed packets are repeatedly sent to the target and 
its state is monitored. Mail servers, web servers and FTP clients are all examples of targets that would be 
fuzzed in this way. An example of a protocol fuzzer is SPIKE [10].

Some targets actually lend themselves to being fuzzed by either type of fuzzer. For example, web browsers 
can receive input over the network as a response to a HTTP request, or as a file opened from the filesystem. 
In the former case the HTTP headers could be included as part of the testing as well as the actual web page 
content.

4.3 Synthesis of Test Cases
Although issues such as instrumentation and efficiency are important, probably the most crucial aspect of a 
successful fuzzing campaign is creating good test cases that will interact with the target in a way likely to 
expose any defects. There are three main approaches to creating the test cases or inputs for use in a fuzzing 
campaign; mutation, generation and evolution [71, 99]. 



Mutation fuzzing works by starting with a corpus of one or more valid input samples. For example, when 
fuzzing an image viewer one might start with a number of valid JPEG files. These are then repeatedly 
modified or corrupted to produce new test cases that are each given as input to the software being tested. 
This is sometimes referred to as 'dumb fuzzing' as the fuzzer has no specific knowledge of the program being
fuzzed or the correct format or syntax to use for inputs. 

There are many ways in which the test cases can be mutated. Walking bit flipping and byte flipping involves 
inverting sequences of bits at different places in the test case [81]. Deleting segments of the test case and also
splicing in sections from other test cases are common mutation approaches [80]. Another approach is to 
select sections of the test case and repeat them by inserting copies at random positions [100]. A recent 
example of a mutation fuzzer is Zulu from NCC Group [81].

Generation fuzzing works by creating test cases based only on some kind of model that describes a valid 
input, such as a grammar of a programming language or a specification of a binary format. Continuing with 
the image viewer example, with a specification for the PNG image format it would be possible to repeatedly 
generate slightly invalid PNG files to use as test cases without needing to use any samples of existing files. 
This is sometimes referred to as 'smart fuzzing' as the fuzzer is applying detailed knowledge of the format or 
protocol being fuzzed. This generally results in better code coverage and deeper testing of the target program
[2]. An example of a generation fuzzing framework is Sulley [84].

Evolutionary fuzzing creates new test cases based on the response of the target program to previous test 
cases [103, 105]. This can be an extension of either mutation or generation fuzzing, as either technique can 
be guided to create the new test cases. In either case, the difference with evolutionary fuzzing is the way in 
which test cases are created based on feedback from the instrumentation so that they evolve towards a 
specific goal [99]. Based on that goal and also the precise way in which it is achieved, evolutionary fuzzing 
can itself be subdivided into three common approaches; coverage-based , taint-based and symbolic-assisted 
fuzzing.

Coverage-based evolutionary fuzzing attempts to evolve test cases that result in new lines, branches or paths 
being executed in the target. Test cases that exercise new code are favoured over those that do not. An 
example of a popular coverage-based evolutionary fuzzer is AFL (American Fuzzy Lop) [43]. AFL carries 
out file format mutation fuzzing and so is initially seeded with examples of valid input files. It then measures
code coverage for each test case and uses Genetic Algorithms [108] to evolve a population of test cases that 
cover the maximum amount of code. This approach has proved extremely successful in real world fuzzing 
campaigns with AFL discovering many serious vulnerabilities in many popular applications [41]. In addition,
an experiment was carried out that involved fuzzing the djpeg utility on Linux with AFL using only a simple 
text file containing the word “hello” as its initial corpus. This text file was seen to evolve into a valid JPEG 
file over a couple of days, simply by AFL observing how different mutations to the original test case resulted
in different code paths being executed in the target [42]. In effect, the fuzzer was able to learn the JPEG file 
format from scratch.

Taint-based evolutionary fuzzing attempts to evolve test cases that exercise specific known dangerous code 
paths. Instead of simply aiming for maximum code coverage, the aim is to evolve test cases that will 
propagate user input into specific target functions within the program [96]. The taint analysis can either be 
performed beforehand as a static technique or can be performed dynamically during the fuzzing. Lanzi et al 
created a prototype system that first uses static analysis to identify specific paths of execution that lead to 
dangerous functionality and hence potential vulnerabilities [3]. The fuzzing stage is then guided by this 
information in an attempt to reduce the test space and choose inputs that will exercise those specific code 
paths thus “driving the program into corner states suitable to memory attacks” [3]. 

Similar to this, Sofia Bekrar et al worked on a system that uses dynamic taint analysis to assist fuzzing [4, 



85]. The idea behind this is to allow a mutation fuzzer to focus its mutations on the areas of the test cases that
are most likely to expose a vulnerability. These areas can be identified by tainting all user input and then 
tracing which inputs reach dangerous or potentially vulnerable sinks. The work carried out in [3] and [4] is 
therefore quite similar in concept, the main difference being that the former applied the taint analysis to the 
binary without executing it whilst the latter carried out the analysis on the binary at runtime.

Symbolic-assisted evolutionary fuzzing combines symbolic execution [82] with fuzzing in an attempt to 
enjoy the strengths of both. As with coverage-based fuzzing, its goal while generating new test cases is to 
increase code coverage. However, while coverage-based fuzzing can monitor code coverage and increase it 
through some form of trial and error (even using genetic algorithms falls into this category), symbolic-
assisted fuzzing goes further. Test cases are modified using a dynamic symbolic execution engine to make 
changes that are known to result in the execution of specific segments of previously uncovered code [83]. An
example of a symbolic-assisted fuzzer is SAGE (Scalable Automated Guided Execution) which is a 
proprietary tool that Microsoft uses in-house to search for vulnerabilities in their own software [1].

There are strengths and weaknesses to be considered for all of the approaches that we have examined. 
Creating a mutation fuzzer is generally quicker and easier than creating a generation fuzzer as far less 
knowledge is needed about the target application. Additionally, this means that one mutation fuzzer can often
be used to fuzz a range of different target applications without modification [99]. A generation fuzzer 
however will either need modifying for each target or at least a new input model or grammar will need to be 
specified each time. It is also the case that as long as a sample of valid input can be obtained, even if the 
specification is proprietary and unavailable it is possible to carry out mutation fuzzing, whereas it may be 
impossible (or at least require a lot of reverse engineering skills) to carry out generation fuzzing.

The mutation approach however can run into problems with things like checksums where invalid inputs can 
be quickly rejected by the program under test without getting processed fully. In these cases a common 
approach is to comment out the sanity checks in the target if the source code is available. This will make it 
accept and process inputs even when items like checksums or the file's 'magic number' are invalid. If the 
source code of the target is not available then a specific test harness may need to be written to process the 
output of the fuzzer and fix checksums before forwarding it to the target. This is not a problem when using 
generation fuzzing as of course the fuzzer itself will be able to ensure that each test case is at least valid 
enough to pass any such tests.

Mutation fuzzers are also heavily dependent on the quality of the initial corpus of test cases used to seed 
them. Without an excellent corpus to start from they are unlikely to test as deeply as generation fuzzers. For 
example, if a protocol being fuzzed consists of 100 different commands, but the sample we give to the 
mutation fuzzer only contains 5 of them, we will not have a very thorough fuzzing campaign. There may be 
certain parts of a file format or a protocol that are valid but are rarely seen in practice and so may be absent 
from a typical corpus. With a generation fuzzer we would supply a detailed specification of the protocol and 
hence the full set of commands would be included in test cases. Developing this model of the file format or 
network protocol can be very time consuming though [40] and it is also possible to miss out undocumented 
features if the model is not created using reverse engineering. In [94] undocumented HTTP responses were 
discovered in a corpus that was created by web crawling showing that sometimes mutation fuzzing can 
provide coverage that would actually be missed by generation fuzzing.

In [2] experiments were performed to compare the code coverage obtained from mutation and generation 
fuzzing in the context of targeting a PNG image file reader. It was found that several parts of the PNG 
format's specification were not in common use and therefore not present in any of the PNG files downloaded 
from the web. This means that significant parts of a typical PNG image viewer would never be executed 
when loading readily available images. The only way that the missing pieces of the PNG format would 



appear in the initial corpus and thus these functions could be tested during fuzzing would therefore be by 
using a generation fuzzer. The authors concluded that “applications often contain large sections of code that 
will only execute with uncommon inputs”. In this situation the experiments found that generating test cases 
resulted in 76% more code coverage than mutation of PNG files downloaded from the Internet [2].

No academic literature was found researching if the experimental results seen in [2] hold true for HTML files
with respect to code coverage in web browsers. It may be that the common practice of downloading a 
selection of random web pages from the Internet to form an initial corpus for browser fuzzing [94] is actually
missing out some valid HTML tags and attributes and therefore not getting the best code coverage possible. 

Evolutionary fuzzing approaches are generally seen as the future of fuzzing and have been shown in practice 
to be better at finding vulnerabilities than using mutation or generation alone without incorporating feedback 
from the instrumentation. Building new test cases intelligently based on the observation of how previous test 
cases caused the target to behave allows general code coverage to be maximised or specific target functions 
to be reached. Implementing such a fuzzer can of course often be far more complicated and difficult than 
creating a less sophisticated tool. One aid of note for this task is LibFuzzer which is a C++ library for 
producing coverage-based evolutionary fuzzing tools [86].

Comparing subcategories of evolutionary fuzzing, coverage-based and taint-based fuzzing can both run into 
problems due to not having semantic understanding of the target. The fuzzer may know which code branches
it would like to reach, but not necessarily how to modify the test cases so as to reach them [69]. In practice, 
genetic algorithms have been found to often cope with this issue rather well. The population of test cases can
be optimised using a coverage-based fitness function to evolve a corpus with the desired properties [43]. 
Nevertheless, adding dynamic symbolic execution does allow the fuzzer to reason about how to reach 
specific code branches more directly. The target is executed in an emulated environment and constraints on 
variables are tracked. From this it is then possible to craft inputs that drive execution into the desired 
branches [87]. The TaintScope fuzzing tool documented in [88] combines dynamic taint-analysis with 
dynamic symbolic execution and is thus able to not only locate dangerous areas of the target but also reason 
about how to craft inputs so that the fuzzing session can reach them. A similar approach is taken by 
Confuzzer in [106].

4.4 Fuzzing Web Browsers
The web browser is an ubiquitous piece of software used by everyone who has a computer. It is also 
routinely used to open untrusted input every time it is used to search for information and visit new web sites. 
Vulnerabilities in web browsers that allow remote code execution are therefore extremely dangerous and can 
rapidly result in wide scale compromise of users around the world. Plenty of examples from recent years can 
be found of web browser vulnerabilities being used for everything from stealing banking information to state
sponsored espionage campaigns [46].

When fuzzing web browsers to find vulnerabilities it is common to focus on the rendering engine [44, 57]. 
This part of the browser is responsible for taking the HTML documents, CSS and images that make up a web
page and turning them into what is displayed to the user. The rendering engine parses HTML and CSS and 
then constructs a tree structure from this using the DOM (Document Object Model) API. Scripting languages
such as JavaScript can then interact with the rendered document through DOM API calls to make changes to 
it on the client side without further connections to the web server being necessary. Popular rendering engines
in use today include EdgeHTML, Trident, Gecko, WebKit and Blink (itself a fork of WebKit) [47]. The 
rendering engine is a common location to find exploitable UAF (Use-after-free) vulnerabilities [56].

There are two main approaches to fuzzing a web browser's rendering engine; file format fuzzing and DOM 
fuzzing. The file format fuzzing approach consists of simply applying the mutation or generation techniques 



that we have already examined to create malformed web pages and providing these to the browser as input. 
This is therefore applying a generic fuzzing approach and using the same methods that one might use to fuzz 
a PDF reader or a video player.

The DOM fuzzing approach applies techniques that are specific to web browsers [44, 59] and the actions are 
carried out by the browser itself through JavaScript. There are many variations but a typical approach is to 
crawl the DOM tree of a test case document and collect element references. The elements' attributes can then
be mutated and random DOM nodes can also deleted. It is also possible to perform the mutations on 
collections rather than individual DOM elements. The DOM tree can be rearranged in various pseudo-
random ways. Garbage collection is then triggered somehow and the process is repeated [59, 60]. This can 
result in the discovery and triggering of various memory corruption bugs. 

Creating logical views from a document tree can also be done as part of DOM fuzzing as it forces the 
rendering engine to attempt to maintain consistency between the logical views and the DOM as the 
mutations occur. This activity can also result in memory corruption bugs being triggered and revealed [59].

DOM fuzzing tools in general have had a problem with producing test cases to efficiently reproduce crashes 
when they are discovered. A typical DOM fuzzing tool builds up the DOM tree by randomly selecting 
HTML tags from an array and calling document.createElement with each. The built-in PRNG in JavaScript 
(Math.random) is often used which cannot be explicitly seeded with a known value. The script then does 
some mutations to the DOM tree (again often involving the use of Math.random) which may cause a crash, 
and if the browser does not crash the script reloads the page and starts over. This continues for perhaps 
several hours until eventually the browser crashes. When the browser does crash there is not a specific test 
case available with which to reproduce the crash. This is in contrast to loading a series of mutated HTML 
files into a web browser, where any crash can immediately be traced back to an exact test case.

Nothing can be written to disk from JavaScript within a web page for obvious security reasons. Most DOM 
fuzzers instead use the console.log() method from JavaScript to log messages to the browser's console [133]. 
This information can then be used to try to investigate what happened and reconstruct a test case. This is far 
from ideal compared to traditional fuzzing where any time a crash occurs the specific test case that caused it 
is available right away. The consequence of this has been that DOM fuzzers have been good at triggering 
bugs in browsers but investigating the bug to determine the root cause and fix it is often challenging.

4.4.1 Existing Browser Fuzzing Tools
Several tools exist that were created specifically to fuzz web browsers. We now examine some of the more 
successful ones and where enough detail can be found contrast their differing approaches to the problem.

The earliest browser fuzzing tool of note was Mangleme which was released in 2004 by Michal Zalewski 
[89]. This tool was a generation fuzzer that produced malformed HTML pages. It was implemented in C and 
deployed as a compiled CGI program that would run on a web server. By navigating to the CGI program's 
URL in the web browser to be tested, the page would repeatedly refresh and a different HTML test case 
would be processed each time. The test case generation worked by referencing a two dimensional array 
containing all the possible HTML tags and all the attributes of each tag. Malformed HTML pages were 
constructed by selecting random tags and adding random attributes from the array, while also scattering some
random characters and bytes throughout. The whole tool consisted of about 200 lines of C. Despite the 
simplicity of this tool it found serious vulnerabilities in all the main web browsers of the time.

HD Moore of the Metasploit project was involved in the release of two web browser fuzzers in 2005 and 
2006. Hamachi was a tool used to fuzz Dynamic HTML (DHTML) by mutating its elements, properties and 
attributes [91]. CSSDIE was used to fuzz CSS and was released as part of the July 2006 'Month of Browser 



Bugs' [92]. Both tools found vulnerabilities in all major browsers at the time. Unfortunately, precise details 
of how they worked and their source code both appear to no longer be available.

Another CSS fuzzer simply called 'CSS grammar' was released in 2009 by Jesse Ruderman [55]. This is a 
generation fuzzer written in JavaScript that includes a context free grammar [93] for Cascading StyleSheets. 
The grammar can be extended by the user (or even replaced in order to target some other language) and it is 
also possible to assign weights to different symbols in the grammar to influence how regularly they will 
appear in test cases. As with Mangleme [89], this generation fuzzer follows the grammar for creating most of
the test case but also throws random symbols in and makes other changes to produce slightly malformed 
input. The tool was used to find several bugs in the Gecko rendering engine.

Radamsa is a general purpose mutation fuzzer, developed by researchers at the Oulu University Secure 
Programming Group (OUSPG). Although it is a general purpose fuzzer, it has been used effectively to target 
web browsers as documented in [100]. Radamsa uses model-inference assisted fuzzing, that is to say it 
attempts to build its own model of the input based on the valid inputs in the initial test corpus that it is given. 
It then uses this model to apply mutations that are likely to be valid enough to be processed properly by the 
target rather than being immediately rejected as invalid. This allows the fuzzer to increase the depth of 
testing it is capable of whilst still not requiring the user to provide anything more than some valid input 
samples.

Radamsa was applied to web browser fuzzing in 2010 and 2011 as described in [100]. It was used to mutate 
HTML, CSS and JavaScript as well as PDF files, Flash and also image formats such as PNG and JPEG. All 
of these file formats were used as web browser test cases. The test cases were obtained first by random web 
crawling and then by downloading various conformance test suites. From this it was assumed that code 
coverage would be quite high, although nothing was done to actually measure this or try to increase it even 
further. It is possible that if this had been done the work would have been even more successful. 
Approximately 60 new bugs were found in a range of web browsers.

Crossfuzz is a DOM fuzzer released in 2011 by Michal Zalewski [48]. The tool works by “dynamically 
generating extremely long-winding sequences of DOM operations across multiple documents, inspecting 
returned objects, recursing into them, and creating circular node references that stress-test garbage collection 
mechanisms”. The tool is written in JavaScript and can be loaded into the web browser either from the 
filesystem or by hosting it on a web server, the same as with the CSS Grammar tool. In either case, the 
JavaScript executes in the browser to carry out the sequence of DOM operations. This tool found many 
vulnerabilities in all the major web browsers during 2010 and 2011 [90]. 

LangFuzz is a 2012 tool for fuzzing interpreters that takes a context free grammar [93] as input along with a 
test suite of valid sample progams and an additional corpus of programs that were seen to previously cause 
errors in the target application. The tool then combines aspects of mutation and generation fuzzing. It uses 
the grammar to parse the test suite and previous crashes and then recombines fragments of crash code into 
the test suite to create new programs in an attempt to find new issues [58]. For example, the tool was used to 
fuzz the Mozilla JavaScript engine by providing it with a context free grammar describing JavaScript, a 
JavaScript test suite and also a collection of JavaScript programs that had previously caused errors in the 
Mozilla engine. The newly generated JavaScript programs that LangFuzz created from this resulted in 105 
new vulnerabilities being discovered in 3 months [58]. LangFuzz can be applied to any compiler or 
interpreter and is not specifically aimed at fuzzing web browser related technology. Its successful use to find 
serious vulnerabilities in the Firefox browser via its JavaScript interpreter makes it worth including here 
though.

The success of the LangFuzz approach in [58] suggests that when forming an initial corpus for general 
browser fuzzing it may help to include previous crashing test cases that are already known as well as public 



browser exploits and proof of concepts. By doing this it may be that new browser vulnerabilities which 
happen to be similar to old, fixed vulnerabilities can be revealed. No academic literature was found to 
suggest that this idea has already been evaluated.

Grinder, released in 2012, is a distributed framework to support fuzzing Windows web browsers on a large 
scale [95]. It consists of a web application running on a centralised Grinder Server and any number of 
Grinder Nodes that carry out the actual fuzzing. As a framework, the aim is to provide an easy solution to 
problems such as documenting crashes, providing instrumentation, crash deduplication, restarting the 
browser as needed and related features rather than the fuzzing itself. The user must provide their own fuzzing
program that creates the test cases. The value of such a framework is that it lets the researcher focus on how 
to create good test cases without worrying about all the other issues.

GramFuzz was developed in 2013 by researchers in China [8]. Their work examined combining techniques 
from generation and mutation fuzzing while using HTML, CSS and JavaScript test cases to fuzz web 
browsers. The tool obtains a corpus of web pages from the Internet using web crawling and then builds a 
grammar tree from them. The grammar is then used to create mutations to the corpus that are likely to be 
correct enough to be accepted by the browser's JavaScript interpreter rather than being rejected immediately 
as may be the case with a pure mutation fuzzing approach. This is quite similar to the approach taken by 
Radamsa that we saw earlier. During testing GramFuzz found 36 new severe vulnerabilities in Firefox and 
Internet Explorer.

DOMfuzz [51] and Jsfunfuzz [52] are two fuzzers released by Mozilla at the end of 2013 and beginning of 
2014. DOMfuzz employs a mix of mutation and generation techniques to carry out DOM fuzzing. It takes an
initial corpus of pages and then applies techniques such as rearranging the DOM tree by moving nodes 
around. Jsfunfuzz is a generation fuzzer for testing JavaScript engines. It works by generating and executing 
random JavaScript function bodies. Unlike the JavaScript fuzzing that was performed with LangFuzz it 
therefore does not take an initial corpus but rather relies entirely on generation.

NodeFuzz is a modular cross platform browser fuzzing harness released in 2014 [53, 56]. It solves a lot of 
the same problems as Grinder but it is written in Node.js and is platform independent. The user is expected to
supply their own test case creation modules and also their own instrumentation modules. These can therefore
be specific to the exact browser being tested if necessary. A popular test case creation module written to be 
used with NodeFuzz is Wadi [50]. It was released at Defcon 23 in 2015 and provides functionality to create 
JavaScript test cases that fuzz the DOM. A grammar is used to generate syntactically correct random 
JavaScript routines that act on the DOM when executed and a HTML test case is generated each time with 
the script inside it. The module is aimed at testing both Firefox and Chromium using Asan as the 
instrumentation to detect memory corruption.

Finally, ShakeIt is a mutation fuzzer published in 2015 for use within a browser fuzzing framework [57]. The
program takes a corpus of valid web pages and extracts tokens from them. It then swaps random tokens with 
each other within these pages to create new test cases. Memory corruption bugs can be exposed in this way 
as the rendering engine attempts to make sense of seeing valid tokens in invalid locations or in an invalid 
order.

This is by no means a comprehensive list of all existing browser fuzzing tools, but it does serve to highlight 
the typical functionality and approaches that have been tried over the years. It can be seen that while fuzzing 
research in general has given considerable attention to measuring and increasing code coverage, the work 
that has been done on browser specific fuzzing tools does not appear to have made this a priority. It can also 
be seen that there has been a trend to focus on generation fuzzing when attacking web browsers, one notable 
exception being the work done applying Radamsa to browsers [100]. The work in [100] proved that mutation
of an existing corpus of web pages can be a successful approach to browser fuzzing, and had work been done



to ensure the maximum code coverage of the initial corpus it could perhaps have been even more successful.

5 Conclusion
This paper reviewed some of the most noteworthy academic literature and practical work that has been 
produced in the field of fuzzing.

We first examined how vulnerabilities come to exist in software and how security researchers find them. 
After a brief overview of common vulnerability types and methods of static analysis, we looked in depth at 
the field of fuzzing. Competing approaches to fuzzing were examined, from simple random inputs all the 
way to using genetic algorithms and taint analysis. The importance of measuring code coverage to evaluate 
the completeness of a fuzzing campaign was examined. Finally, the focus was placed on the fuzz testing of 
web browsers and the specific tools and techniques related to that. 
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