
©2013 High-Tech Bridge SA – www.htbridge.com

Fuzzing: An introduction to Sulley Framework

May 6th, 2013

Brian MARIANI

©2013 High-Tech Bridge SA – www.htbridge.com

WHAT IS FUZZ TESTING?

 According to Wikipedia:

 Fuzzing is a software testing technique, often automated or

semi-automated.

 It involves providing improper, unexpected or random data to

the inputs of a computer program.

 While the fuzzing process is running, the targeted program is

monitored for exceptions, such as crashes, in order to find

potential memory corruption scenarios.

 Fuzzing is commonly used to test for security issues, so as to

evaluate a wide variety of software utilities on various platforms.

©2013 High-Tech Bridge SA – www.htbridge.com

DIFFERENT FORMS OF FUZZING

 Even if everybody does not agrees with the terms, there are basically

two main forms of fuzzing techniques:

 mutation-based fuzzing

 generation-based fuzzing

©2013 High-Tech Bridge SA – www.htbridge.com

MUTATION-BASED FUZZING

 When mutation-based fuzzing is applied as a fuzzing form, known

good data is collected, such as files or network traffic.

 Later, this data will be slightly modified. These modifications could be

random or using heuristic methods.

 Some examples of heuristic mutations include replacing small strings

with longer strings or changing length values to large or small

values.

©2013 High-Tech Bridge SA – www.htbridge.com

GENERATION-BASED FUZZING

 Generation-based fuzzing starts from a specification or RFC which

describes the internals of a specific format or network protocol.

 The key to making effective test cases is to make each case different

from proper data so as to cause a crash in the tested application.

 Transforming the data too much should be avoided, otherwise the

application could quickly reject the input as an invalid one.

©2013 High-Tech Bridge SA – www.htbridge.com

DISCOVERED VULNERABILITIES

 Any kind of security vulnerabilities can be found using fuzzing

techniques. Security researchers often rely on fuzzing to find security

issues.

 According to the excellent book “Fuzzing for software security

testing and quality assurance” some statistics show that:

 Over 80% of communications software implementations today are

vulnerable to implementation-level security flaws.

 25 out of 30 Bluetooth implementations crashed when they

were tested with Bluetooth fuzzing tools.

©2013 High-Tech Bridge SA – www.htbridge.com

WHAT IS A FUZZER?

 A fuzzer is therefore a software that deliberately sends out

malformed data to the input of a program.

 One of the first who wrote a fuzzer was Barton Miller from the

University of Wisconsin.

 He realized that if arbitrary inputs were given to core Unix command

line utilities, such as ls, grep or ps, these tools will react in an

unexpected way.

 This surprised him, and he started to write one of the first

automated tools specifically designed to crash a program.

 In add, he provided public access to his tool source code, the test

procedures and raw result data.

©2013 High-Tech Bridge SA – www.htbridge.com

TYPE OF FUZZERS

 Static and random template-based: It only tests simple request-

response protocols, or file formats. There is no dynamic

functionality involved.

 Block-based fuzzers: They implement an elementary structure for a

simple request-response protocol and could contain some basic

dynamical functionalities.

 Dynamic generation or evolution based fuzzers: These fuzzers do

not automatically understand the fuzzed protocol or file format, but

they will absorb it based on a feedback loop from the target system.

 Model-based or simulation-based fuzzers: They implement the

tested interface either through a model or a simulation.

©2013 High-Tech Bridge SA – www.htbridge.com

CLIENT AND SERVER-SIDE FUZZERS

 Some fuzzers are designed for client side testing and others for

server side testing.

 For example a client-side test for HTTP protocol will target browser

software.

 Likewise, a server-side fuzzing tests the robustness of a web server.

 Some of the existent fuzzers support both server and client testing, or

even middleboxes that simply proxify, forward and analyze protocol

traffic.

©2013 High-Tech Bridge SA – www.htbridge.com

Well-known fuzzers

 Our goal is not to mention all the existent fuzzers in the security arena,

but the more relevant of them are:

 GPF

 Taof

 ProxyFuzz

 Mu-4000

 Codenomicon

 beStorm

 Peach

 Sulley

 SPIKE

 COMRaider

 AXman

©2013 High-Tech Bridge SA – www.htbridge.com

THE SULLEY FUZZING FRAMEWORK

 Sulley was authored by two renowned security researchers, Pedram

AMINI and Aaron Portnoy.

 It is a fuzzer development and fuzz testing framework consisting of

multiple extensible components.

 The real goal of this excellent framework is to simplify not only data

representation but to simplify data transmission and target

monitoring as well.

 Sulley not only has impressive data generation but includes many

other important aspects that new generation fuzzers should provide.

©2013 High-Tech Bridge SA – www.htbridge.com

THE POWER OF SULLEY

 Sulley monitors the network and systematically maintains records.

 It instruments and monitors the health of the target, capable of

reverting to a known good state using multiple methods.

 It is capable to detect, track and categorize the uncovered faults into

the fuzzed application.

 Sulley can also fuzz in parallel mode, which significantly increase the

fuzzing speed.

 It can automatically determine what unique sequence of test cases

has triggered the faults.

©2013 High-Tech Bridge SA – www.htbridge.com

DATA REPRESENTATION

 To represent a dialog or protocol between two computers Sulley used the

block-based approach which combines simplicity and flexibility.

 Sulley uses the block-based method to produce individual requests.

 The requests will later be tied together to form what Sulley calls a

Session.

 When the basic structure is done, one can start to add primitives, blocks

and nested blocks to the request.

 We do not intend to describe all the supported data representation in

Sulley. The following slides gives you a preview of what Sulley is

capable to do. For more information please consult reference [4].

©2013 High-Tech Bridge SA – www.htbridge.com

STATIC AND RANDOM PRIMITIVES

 The simplest primitive is the s_static(), which adds a static

unmutating value of an arbitrary length to the request.

 It exists several aliases in Sulley, for example: s_dunno(), s_raw() and

s_unknown() are all aliases of the s_static primitive.

©2013 High-Tech Bridge SA – www.htbridge.com

INTEGERS

 ASCII protocols and binary data contains many sized integers values.

An example can be the Etag field in HTTP protocol.

 Sulley takes good care to represent this type of information

implementing different types of primitives such as:

©2013 High-Tech Bridge SA – www.htbridge.com

STRINGS AND DELIMITERS

 Hostnames, passwords and usernames are some of the strings that

can be found everywhere.

 The Sulley framework provides the s_string() primitive for

representing the data string.

 The primitive takes a single and mandatory argument.

 Lets say you would like to fuzz the following string <meta

name="robots">, here is how Sulley will understand your whishes:

©2013 High-Tech Bridge SA – www.htbridge.com

BLOCKS

 Once the primitives are well defined the next step is to nest them

properly within blocks.

 Blocks are defined and opened with s_block_start() and closed with

s_block_end().

 Each block must be given a name, specified as the first argument to

s_block_start().

 Because we will later analyze a real fuzzing case, we will not give more

details about blocks in this slide.

©2013 High-Tech Bridge SA – www.htbridge.com

SESSIONS, TARGETS AND AGENTS

 When the requests are defined one must attach them in a session.

 Sulley is efficient to fuzz very deep within a protocol. This is done

by linking the requests together. The next example is a sequence of

requests which are tied together:

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (1)

 Let’s stop with theory and analyse a real case study about a

vulnerability found in October 15th by High-Tech Bridge Security

Research Lab.

 The flaw was found in a media webserver with the name of TVMOBiLi.

 After fuzzing for a while we can find the possibility to crash the entire

server just by sending malicious HTTP crafted requests to it.

 In the following slides we will explain how the setup of Sulley can be

done, so as to better understand the framework, and we will also show

the first crash that Sulley caught.

 Studying or reversing the vulnerable code in detail is out of the scope

of this document. More information about this vulnerability can be

found here.

https://www.htbridge.com/advisory/HTB23120

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (2)

 Our scenario relies in a VMware Workstation environment with two

Windows XP SP3 machines up to date.

 The attacker machine has the IP address 192.168.175.130 and the

victim machine IP is 192.168.175.129.

 When fuzzing with Sulley or other fuzzing framework, it is very

important that the Attacker and Victim machine are in an isolated

environment.

 Sulley will send network packets at a respectable speed, so if your

environment is well isolated this will increase efficiency and you will

not disturb other hosts.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (3)

Attacker Machine

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (4)

 Let’s first check the python script that takes care of the HTTP fuzz
protocol.

 First of all we create our Sulley request. Then we define a s_group
primitive that will contain all the HTTP methods that we would like to
fuzz.

 Later between two s_block primitives we define our string and
delimiters in order to perfectly respect the HTTP protocol definition.
Finally we named this file httpcallAX.py

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (5)

 Now is time to define our main session file and its agents.

 The session file imports our httpcallAX module previously created.

Then the Sulley session name is defined.

 Later the target information is specified within the IP address and

the TCP port to connect to.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (6)

 The Sulley network monitor and process monitor agents are defined too. We

will give more information on them later.

 The name of the target binary is provided into the procmon_options block.

 It’s very important to provide to Sulley the right command in order to stop and

start the target application.

 With these commands Sulley will be able to properly restart the application if

a crash is produced. We will name this file kickfuzz.py.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (7)

Victim Machine

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (8)

 The Sulley process monitor agent is responsible for perceiving errors

which may occur during fuzzing process.

 This agent is hard coded to bind to TCP port 26002 and accepts

connections from the Sulley session over the PedRPC custom binary

protocol.

 After processing each individual test case, Sulley contacts the process

agent in order to determine if a fault was detected.

 If a fault is detected, information concerning the nature of the crash is

transmitted to the Sulley session in order to display it onto the

embedded Sulley Web server.

 All the crashes are logged for posterior analysis, which is very useful to

a security researcher.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (9)

 Here is the command line that appropriately starts the process agent.

 The filename to serialize the crash bin class is defined in the audits

directory.

 The process name to search for and attach to is defined using the –p

option.

 We could also use the –L option in order to increase the fuzzing

process verbosity.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (10)

 The Sulley network monitor agent is responsible for monitoring network

communications and logging them to PCAP files.

 This agent binds to TCP port 26001 and accepts connections from the

Sulley session over the PedRPC custom binary protocol.

 Once the test case has been successfully transmitted, Sulley contacts

this agent requesting it to flush recorded traffic to a PCAP file on disk.

 The PCAP files are named by test case number. This agent does not

have to be launched on the same system as the target software.

 Let’s see how we start the network agent from the command line.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (11)

 Here is the command line that properly starts the network agent.

 First of all we define the Ethernet device to be used in order to sniff

the network traffic. In this particular case the target device is 0.

 The PCAP filter is setup to target the TCP port 30888, which is the

default TCP port where our vulnerable application listens to.

 Finally, we specify the path to store our test files and we fix the

verbosity to the level five in order to have the most complete log

messages.

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (12)

 Here are the agents when they are started on the victim machine:

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (13)

 Sulley has also a Web service who listens on TCP port 26000, which

permits to observe produced crashes.

 In this example we are just going to attach immunity debugger to the

vulnerable process during the first crash.

 After lunching the Sulley fuzzer on the attacker machine, the magic

of Sulley can be observed. :]

©2013 High-Tech Bridge SA – www.htbridge.com

A REAL CASE FUZZING EXAMPLE (14)

 After almost seven minutes, Sulley wins over its opponent and finds

the first fault.

©2013 High-Tech Bridge SA – www.htbridge.com

CONCLUSIONS

 Sulley is a powerful fuzzer consisting of multiple extensible

components.

 It’s very easy to use. Finding security issues with this framework can

be very easy, even in complex applications.

 Sulley is an Open Source software and can be categorized as one of

the greatest fuzzers nowadays.

 In future articles we will discuss how more complex vulnerabilities

can also be discovered using the power of Sulley framework.

©2013 High-Tech Bridge SA – www.htbridge.com

REFERENCES

• [1] Fuzzing – The software security testing and quality assurance (Ari Takanen –

Jared D. Demott – Charles Miller from Artech House)

• [2] Fuzzing – Brute Force Vulnerability Testing (Michael Sutton – Adam Grenne –

Pedram Amini H. D. Moore – Addison-Wesley)

• [3] Analysis of Mutation and Generation-Based Fuzzing – Charlie Miller

http://ise.virtual.vps-host.net/files/papers/analysisfuzzing.pdf

• [4] The Sulley Fuzzing Framework www.fuzzing.org/wp-content/SulleyManual.pdf

• [5] http://pentest.cryptocity.net/files/fuzzing/sulley/introducing_sulley.pdf

©2013 High-Tech Bridge SA – www.htbridge.com

Your questions are always welcome!
 brian.mariani@htbridge.com

Thank you for reading

