
Binary JSON : Insecurity in Implementing Serialization
[One Step Ahead]

Aditya K Sood
 http://www.secniche.org

[Binary JSON : Insecurity in Implementing Serialization]

http://zeroknock.metaeye.org/mlabs

Abstract
The article describes serialization attack based on binary Javascript Object Notation.
The infection vector encompasses the manipulation of objects like arrays. The binary
JSON enhances the working functionality of Javascript request-response mechanism
by speeding up processing. The binary JSON is designed to handle serializing
operations in an efficient manner. The J SON provides centralized concept of
designing server request handling. All the data is undertaken as a string in
serialization concept. The point of talk is the serialization base is vulnerable to web
attacks. It is possible through object infection. The binary JSON comprise of JSON
fused with binary concepts for string handling mechanism. We will delve into the
infection spots of the binary JSON and enumerate the impact of wrong serialization
on web applications. A saying :

Success in warfare is gained by carefully accommodating ourselves to the
enemy's purpose.

 The security aspect work on this paradigm.

[Binary JSON : Insecurity in Implementing Serialization]

Why Binary JSON?
The binary JSON is the result of fusibility of binary concepts in the Java script object notation. The
binary JSON concept sticks complex serialization. The serialization is a methodology to transform
data from raw object notation to a well formed output having defined constraints. The notation
used in object designing is based on the Javascript standards. The server dynamically processes
the request and serializes the data in the execution path. This dynamic nature is provided for
better functionality It also ensures that transformation takes place on the defined standards. It is
a functional peculiarity of Javascript object notation is to convert not to transform. The form of
data is changed but not converted to the requisite layout. The binary JSON handles the complex
request comprised of variables of high length or nested statements.

1. The BISON stands for the Binary interchange and structure object notation. It is a protocol
used for the structural transformation of objects through HTTP undertaking the concept of
XMLHTTP request ie Ajax standard. The base comes from the JSON framework and it
strictly adheres to the web2.0.

2. The BISON entirely relates to the concept of binary transformation which includes integers,
strings, arrays, multibyte values etc. The BISON is termed as Binary JSON. Remember the
BISON favors only the multibyte values that are converted to Little Endian format prior to
have some functions defined on it. It means before designing any object for request, the
binary variables or multibyte values should be in little Endian format.

3. The concept of NULL Byte is highly critical because for an effective usage , the strings
must end with null byte ['\0'].If this is not undertaken then web applications are prone to
insecurity and exploitation realm. It suggests that string operations should be handled in
definite manner to avoid complexities.

4. The integers should be used in a signed way for the applications to work exactly in the
same manner across the platforms. The testing against unsigned integers will cause the
application to work in a stringent way and create a lot of problems. Further a specification
has been made about the two's compliment use of the integers. The integers must inherit
the properties of two's compliment.

5. The concept of Magic numbers is the sole point of the message format which is sent
through the HTTP i.e. every single message must start with the magic number.

The BISON is used mostly where the serialization is complex and the transformation of objects is
very critical. This sets an element of flexibility in the serialization and deserialization of the
variables placed in objects.

Insecure Vectors in BISON
The specification and requirements have already been analyzed. Before digging deeper I
would like to discuss about the security weakness or infection vector that dismantles the
working of the BISON.

1. The concept of NULL byte ending has been introduced. It is a prime point of concern
because if a string is subjected to null byte , it will truncate the string at the first prime
byte leaving the other bytes in a random layout. It is a contrary part of web application
with serialization and creates a lot of problems in the context in which it is applied. To
overcome this issue, the byte should inherit the escape element. It makes the concept

[Binary JSON : Insecurity in Implementing Serialization]

very complex and harder to implement because a coder has to take care of everything in
mind to overcome the issue. It is a very critical way and can lead to some web application
problems.

2. The server is able to process to the strings that are passed as ['']. The element passed in
quotes treated as an object by the arrays. The request is treated and handled in a same
manner as the normal request like HTML/XML by the server. It means if a link is embedded
with definitive parameters it get processed and serialized with the application structure.
The data is dynamically serialized. The object is infected very easily because server treats
object as a string. The arrays can be annotated or nested. The most stringent point is that
there is no specific limit on the size of nested arrays. So, this means as the nested index
increases so as the infection .It makes the web application rogue and deeply infected All
this leads to infected serialization.

Array: [temp, ret, true,"Hello World", [2, 3, 4, 5], 4]]
The array can be infected by placing string with rogue request in the above
model.

3. The designing of object is the core of all object notation language. The objects are
processed and then executed through the serialization. The infection through the objects is
possible. The object has a member element and a value attached to it. Objects can be
nested. It makes the infection possible at a primary level ,secondary level and so on. The
nested object concept works fine but can be manipulated very easily. The depth of nested
object is not defined, so you can think how much the vector gets traversed deep. The
object member value is stored as null articulated string. The number of member objects is
of limited size. The interoperability issues are undertaken by enforcing the naming
conventions. The object simulated as
 Object: {

 NestedObject: {
 AnotherNestedObject: {

name: "Blue",
age: 32, }

},
4. The base of this specific protocol is HTTP context, so it is possible to implement methods

like get and post. It becomes convenient for the attacker or user to extract the BISON
document from the server directly by crafting a specific request. This functionality is
inherited from the basic HTTP protocol. That’s why the fusibility is applicable.

POST /service/ HTTP/1.1
Host: www.host.com
Content-Type: application/bison
Content-Length: 410
[BMF Message]

HTTP/1.1 200 OK
Content-Type: application/bison
Content-Length: 321
[BMF Message]

5. The data can be easily encoded or decoded into hexadecimal format. It favors the attacker
to design an infected request and serialize it after encoding it in hexadecimal. In this

[Binary JSON : Insecurity in Implementing Serialization]

manner, it becomes hard for the security elements to undertake an issue efficiently. You
can look at the desired layout as:

{ PI: 3.14159265, }

This is a simple declaration of element and when it is converted to
hexadecimal as by the inbuilt BISON request as:

00000 70 77 6C 3B 2B 2A 7A 73 2A 37 04 39 73 6A

That's how the conversion occurs through the inbuilt request.

So we have undertaken many of the insecure parameters and explored the infections. . Now we
will look into the request designing in BISON which is inherited from the Javascript object
notation. It will clarify the BISON approach.

Evaluating Strings And Serialization
var bison = new Bison();
function stringToBison(str) {

 var obj;
 try {
 obj = eval("(" + str + ")");
 return bison.serialize(obj);
 } catch (e) {
 alert("Error in expression: " + e.message);
 return false;
 }

}

Request Generation Based On XMLHTTP Object:

XmlHttpRequest = {

 getInstance: function() {
 var instance = false;
 if (typeof XMLHttpRequest != "undefined") {
 instance = new XMLHttpRequest();
 }

 if (!instance) {
 try {
 instance = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 instance = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 instance = false;
 }
 }
 }

[Binary JSON : Insecurity in Implementing Serialization]

 return instance;
 }

}

Sending Data To The Server:

function send() {

 var bisonStr = stringToBison(document.getElementById("send-box").value);
 if (bisonStr)

{
 var xmlHttp = XmlHttpRequest.getInstance();
 xmlHttp.open("POST", "./bisonserver.php", true);
 xmlHttp.onreadystatechange = function() {
 if (xmlHttp.readyState == 4) {
 var obj = bison.deserialize(xmlHttp.responseText);
 document.getElementById("receive-box").innerHTML = dump(obj);
 }
 }
 xmlHttp.send(bisonStr);
 }

}

You can look clearly how exactly the request is generated and sent to the server for
processing and serialization of data. Now we look at the way of how attackers exploit the
serialization concept based on the BISON through array infection, object infection etc. The
point is to look at the injection of rogue parameters. Lets analyze the infection and the
serialization effect:

Demonstration : Infecting Arrays.

The array is constructed as an infected array underlined to test. We will design
an array in send window and will notice the output in receive window.

The output subjected out to be:

[Binary JSON : Insecurity in Implementing Serialization]

The link gets easily embedded after serialization which shows that an array
gets infected.

Infecting Notation Objects:

In this we will look how the notational objects are infected and result after
serialization.

The receive window will throw output as:

The object is getting infected according to the concept. The hexadecimal of this test is

[Binary JSON : Insecurity in Implementing Serialization]

The next test will show you the third party connection is also possible.

Embedding Telnet Protocol Request Through Serialization
In this a simple object is defined in which a telnet protocol request is
embedded. This is done to check whether the connection is passed by the
serialization of data or not.

The output is:

The test was successful when you click on the required link: Let’s see what
happen

When user launches application, a command shall appear asking for remote credentials
for the server as shown above.

[Binary JSON : Insecurity in Implementing Serialization]

Conclusion

No doubt with the advent of new web technologies, the developer’s task has become very easy
but, the insecurity has increased. The concern should be to restrict the insecure element and
reduce infections in web application. The serialization concept works in both ways. The approach
of designing objects and fusibility of links should be scrutinized properly. At the last the protection
is all yours.

[Binary JSON : Insecurity in Implementing Serialization]

