
Security in The Representational State Transfer

API
Using OAUTH2 for Authorization

Abhibandu Kafle

Computer Science Department

University of Alabama in Huntsville

Huntsville, AL

Alicia Lindsey

Computer Science Department

University of Alabama in Huntsville

Huntsville, AL

Abstract—In this paper we discuss security and the REST

API. Specifically discussed is a security implementation using

OAUTH as part of the security framework to protect access to

resources (data and services). Security of resources can be

implemented either by basic authentication or by methods which

include both authentication and authorization. Traditionally

authentication only has been used to protect resources however it

is difficult using authentication alone to provide varying levels of

access to resources, basically using authentication only the user

will receive all access or no access. The more developed the web

becomes the more important it is to provide a finer level of

control to resources, more than the 'all or nothing' approach

authentication only provides. Combining authentication with

authorization can provide fine control of access to resources as

defined by rules put in place by the system administrator.

OAUTH provides a framework for authorization and when

combined with an effective authentication method can provide

the flexibility in access control required by modern web services.

The OAuth 2 spec itself leaves numerous choices over to the

practitioner. Rather than portraying every single conceivable

choice that should be made to effectively actualize OAuth 2, this

paper settles on choices that are fitting for most usage. This

paper is an attempt to portray OAuth 2 in a disentangled

configuration to help designers and administration suppliers

actualize the security aspect of the convention.

Keywords—OAuth2.0, Authorization, Security

1. INTRODUCTION

As the internet has become more developed there exists a need
for computer applications and computer resources to share
information without human intervention. Sharing data from
web servers to applications is generally referred to as web
services. In order to allow developers to more easily provide
applications and services standardized methods of interfacing
applications to services have been developed. One of those
methods is Representational State Transfer (REST). The
REST architecture provides a standardized method of
accessing web based resources. The REST API has become
popular due to the fact that it uses existing HTTP technology to

access and transfer resources between applications and web
based resources thereby reducing server and client complexity
allowing for quicker application and server development.

 In order for a web service to be considered RESTful it must
meet the following constraints:

1. Have a uniform interface

2. Be stateless

3. Be cacheable

4. Be a client-server system

5. Be a layered system

6. Support code on demand (optional)

The REST architecture is both lightweight and scale-able using
HTTP to connect computers for exchanging information. The
HTTP operations implemented by RESTful services are:

1. GET: retrieve resources

2. POST: create resources

3. PUT: update resources

4. DELETE: delete resources

REST SECURITY REST applications are subject to
many of the same vulnerabilities that web servers in general
are exposed to. Security must be implemented in REST
services wherever the resources controlled by the service
require protection. Resources require protection in every phase
of the transfer process:

1. Access protection on the server – Authentication and
authorization

2. Protection from eavesdropping during transport to the
application – HTTPS/SSL

3. Protection once delivered to the application –
Depends on application requirements

Protection from eavesdropping during transport (can be
provided by HTTPS/SSL) and protection once the application
receives the data is beyond the scope of this paper. This paper
is focused on using OAUTH as a method of providing access
authorization in order to protect data on the server.

REST AND OAUTH2 REST and OAUTH work
together to allow users to authorize an application to access
resources on behalf of the user. The REST services provide
access to the resources only after obtaining authorization via
the OAUTH protocol. The OAUTH protocol in turn uses a
separate method to provide authentication of a user prior to
granting authorization to the API as approved by the user.
Authorization to all or part of a resource can be granted via the
OATH protocol, the ability to provide access to only part(s) of
a resource as approved by the resource owner is part of what
differentiates the OAUTH protocol from basic authentication
where 'all or none' of the resource can be authorized. OAUTH
also provides a standardized API for applications to access the
resources via REST using the granted authorization. In Section
4 “Authorization Using OAuth2”, we will provide the details
of OAuth2.

 In Figure 1, the diagram shows the process of an
application requesting authorization to access the user’s data.
When the user runs an application that needs data from another
application, the authorization mechanisms are carried out.
Then, once authorization has been granted, the client’s
application issues a resource request that includes the
authorization token using a REST request message.

2. BACKGROUND

As web services on the internet have evolved the need for

higher levels of security has arisen, initially only requiring

limited protection. As more and more data has been made

available on the web the need for improved security to access

the data has caused a need for more secure authentication

mechanisms. As even more data is made available the need

for not only secure authentication but also finer control of

authorization to portions of a resource are required. There are

several methods that are used to provide authorization to

access resources.

A. HTTP Basic Authentication

 HTTP basic authentication requires an “authorization

request” containing the user name and password to be sent to

the server with each request in turn requiring the application to

store a copy of the user's name and password in order to send

it to the server. Storing the user's name and password on the

device poses a risk to the user in cases where the device is lost

or hacked. Each application which requires access to

resources on the user behalf will be required to store a copy of

the name and password which further increases the risk. Early

implementations sent the user's name in clear text along with a

minimal encryption of the user's password to the server

possibly allowing eavesdropping. Later implementations use

HTTPS/SSL to encrypt the transport which improves security

during the transport phase. If the user's name and password

are compromised the only way to prevent inappropriate access

to the protected resource is to change the user's password, if

for instance the user's device is stolen all the user's passwords

on all services the user accesses via the device would have to

be changed. This places a high burden on the user in order to

prevent inappropriate access of the user resources.

Additionally only very course control of the resource can be

achieved, only 'all or nothing' access can be granted or

revoked by changing the password.

B. OAUTH1.0a

OAuth was developed to allow third-party applications to
gain access to an owner’s resources without the owner having
to reveal his user name and password to the server that
possesses the resource or to the application which needs access
to the user's resource. The first widely deployed version of
OAuth was OAuth1.0 which was found to have a security flaw
and was replaced by OAuth1.0a which had several issues
including:

1. The signature scheme used is complex to implement

2. The tokens used to control access do not expire

OAuth 1.0 used notion of signing the requests using
client ID and secret. Oauth 2.0 replaces signatures
simply uses https for communication between all
parties involved. OAuth 1.0 wasn’t really scalable
because it required temporary credentials, and it was
difficult to synchronize the data across different data
centers.

C. OAUTH2.0

 OAuth2.0 was developed to solve the issues of

OAuth1.0a as well as the following:

1. More support for non-web applications (desktop

applications, mobile devices)

2. More scale-able for larger projects.

OAuth2.0 is more similar to a framework than simply a

protocol leaving parts of the implementation to be defined by

the user which can cause implementations not to be inter-

operable. OAuth2.0 is not directly compatible with Oauth1.0a.

OAuth 2 also provides password as a grant type option. This

means instead of exchanging tokens, applications can use

username and password to authenticate a user to a system.

However, this is usually done only within an application. For

an instance Facebook messanger app could use OAuth 2 to get

login information from its native mobile application.

3. RELATED WORKS

In this paper we have taken the approach of using OAuth2
as the method for providing authorization to access resources.
When OAuth2 was released in October of 2012, OAuth1.0a
was obsoleted. However, OAuth2 has been plagued by many
problems, even before it was released.

When the OAuth2 project was in a mature stage, one of the
main contributors left the project. He was very unhappy with
how the specification had progressed. He did not approve of
the final product so much that he did not want his name
associated with the product. He concluded that OAuth2 is a
bad product. He believed this occurred due to compromising
all along the way. He stated that the result was that two main
goals were not going to be provided by OAuth2. These are
security and interoperability.

Some companies are not transferring to OAuth2, but many
other big companies have adopted OAuth2.

However, work continues on OAuth2 to analyze and
discover its performance. In one study of social media web
applications that use OAuth2, the authors[] claim there are
many malicious websites and vulnerabilities, such as cross-site
request forgery (CSRF) and open redirectors.

Another study concluded that OAuth2 is vulnerable to
application impersonation attacks due to having several flows
and token types. They also concluded that this vulnerability
can lead to large-scale exploits and privacy leaks[].

In another study of OAuth2, the results are that a request is
not guaranteed to be confidential. A brute force attack against
the server can lead to a loss of confidentiality. Also, there is a
lack of server trust. OAuth2 is concerned with authenticating
the client, but not the server[].

There are many ongoing studies of OAuth2. One software
architect, Sergey Beryozkin, believes that OAuth2 will
continue to be deployed and that it will become a “big thing”,
because it is well-suited to the Cloud and to Big Data.

4. AUTHORIZATION USING OAUTH2

OAuth2 is a framework for delegating access authorization.

A. Roles

There are four roles in OAuth2. They are listed below.

 Resource Owner: The Resource owner.

 Client: The Client.

 Resource Server: The Resource Server.

 Authorization Server: The Authorization Server.

B. Tokens

There are two kinds of tokens used in OAuth2. They are
the authorization token and the access token.

C. Flows

Flows are how the different roles interact in requesting
authorization. Sometimes flows are referred to by the type of
authorization granted. OAuth2.0 offers four flows:
Authorization Code, Implicit, Resource Owner Password
Credentials and Client Credentials. The flow used depends on
the authorization grant type and by the types of grants that the
API supports. The flows are described below.

 Authorization Code: This flow is used with server-side
applications.

 Implicit: This flow is used with mobile applications or
with web applications.

 Resource Owner Password Credentials: This flow is
used by trusted applications. A trusted application may
be owned by the service.

 Client Credentials: This flow is used application APIs.

 The flows are depicted below.

Authorization Code

 This is the most commonly used flow because it works with
the source code on the server side. Also, client confidentiality
can be maintained. This flow uses redirection, so the
application must interact with the user agent.

Implicit

 This flow is used with mobile applications and with
applications that run in a web browser. Client confidentiality is
guaranteed. This flow also uses redirection. In this flow, the
token is given to the user-agent to forward to the application.
This flow does not authenticate the application. The redirect
URI must perform this action.

Resource Owner Password Credentials

 In this flow, the user provides his username and password
to the application. The application uses this information to get
an access token from the service. This flow should only be
used if no other flows are offered by the API and if the user
trusts the application.

Client Credentials

 This flow allows an application to access its own service.

5. OAUTH2 SECURITY PROBLEMS

One important thing to keep in mind is Oauth inherently
doesn’t guarantee privacy/security of data. The security bugs
generally originate because of implementation issues. Hence
most security risk aren’t in the protocol, but in the
implementation[9].

5.1) Client side attacks:

Most of the client side attacks are targeted on stealing
access token from the end user.

Here, we assume that attackers control the user’s browser
or has the capability to force (or lure) user to visit a URL.

1) Phishing: If the attacker has the knowledge of client id
(which is very easy to obtain) and redirect URI, resource owner
can be redirected to the attacker’s application instead of
legitimate application [6]

2) Client impersonation: Attacker grabs the session (or
authorization code) using callback endpoint (combining other
flaws like** URL redirection, click jacking, exploiting cross
domain referrer leakage[12] etc.) and then drops the original
request to prevent authorization code from being stale.* He
then establishes session with client using the victims’
authorization code.

**applications strictly following RFC 6749 were found to
be vulnerable to URL redirection thus possibly leading to
OAUTH token leak.[11]

5.1.1) Case Study-client side attacks:

1) Hotmail CSRF vulnerability: In September 2015,
Researchers from Synack found a CSRF vulnerability[15] in
OAuth 2.0 implementation. In CSRF vulnerability, the attacker
has the user’s browser and he performs action on behalf of the
user.

The problem was that Hotmail’s OAuth implementation
didn’t validate CSRF tokens in the server side. This let anyone
send request to read/write in the resources of hotmail on behalf
of victim user. Although, in the client side a nonce token was
being sent to the server for every new request, server wasn’t

validating them and removing the entire nonce value would
still perform the intended action, which could easily have been
turned into a worm to steal tokens from hotmail users.

* Most authorization servers donot simply expire access
token in their implementation, which means even if attacker
didn’t drop the packet, he would still be able to use it.

5.2) Server side flaws and attacks:

In this section we will discuss the problems in this protocol
that are related to the server side implementation of OAuth 2.0.

First, there exists no inherent signing process to ensure
security of client application before allowing them to ask for
authorization token.

Second type of problem is caused by implementation of
OAuth 2.0 where an attacker could escalate privilege to
perform actions that are outside of the scope of authorization
token

5.2.1) Case Study- server side attacks:

1)Missing authorization checks in/Facebook: After
Facebook released its’ graph API, there have been more than
100 security related bugs that were originated due to missing
authorization checks [14]. The attacker in this scenario was
resource owner instead of an attacker unrelated to a
system.(like in client side attacks). For an instance, if a user
only allowed the resource owner to read his name from
authorization server, he could read other personal details like
his email address, physical location etc.

6. RECOMMENDATIONS

We will discuss ways of defending attacks on OAuth 2.0
implementations in both client and server side.

6.1)Client side attacks mitigation techniques:

Solution for phishing related issues: Whitelist a set of
protected URI’s that can be used as field in redirect URI
parameter.

Different measures have to be implemented to prevent
client impersonation, some of which include strict
implementation of SSL/TLS in pages that exchanges
authorization token. Ensuring CSRF tokens issued to the client
are properly validated plays and important role towards
protecting users from impersonation attacks.

The X-frame-options header should always be set to
‘sameorigin’ to prevent probability of victim being tricked into
performing actions that the user didn’t intend.

 fig: secure implementation of OAuth 2.0 for authorization
with.client_secret

2)Server Side attacks mitigation technique:

Since implementations can have different approaches,
server side authorization flaws don’t have any known solutions
except exhaustively testing each authorization scopes.

Other than that, now we have access tokens that don’t expire.
This is still secure, provided that along with access token,
appsecret proof is also sent from the resource server to
authorization server. [8] This will ensure that even if attacker
steals the access token, he doesn’t have the appsecret token,
which is held by resource server. Even if attacker gets hold of
resource server, app secret token can be changed according to
necessity of resource server.

7. SUMMARY

Properly implemented web services using the REST API

along with OAuth2.0 can provide secure access to user

resources. Services can be designed and implemented which

provide only the level of access a user explicitly allows while

protecting the remainder of the user's resources from access.

8. CONCLUSION

In this paper, we discuss the necessity of web services in
web application and authorization procedures currently being
implemented. OAuth 2.0 is the most common way of
authorizing a user in REST API implementation. This allowed
us to login to several applications without having to remember
password for them. However, it also introduced risk of
authorization token being stolen from client/server side. We
present details and case study of current threats in OAuth 2.0
implementation and ways to mitigate those threats. We divide
the attacks into client side and server side based on who was
being targeted. Our survey shows that most of attacks are
possible due to improper implementation of RFC 6749. We
present several issues that are being found in popular websites
so that they could be eliminated before deploying OAuth for
authorization in REST API.

REFERENCES

[1] Mou’ath Hourani, Qusai Shambour, Ahmad Al-Zubidy and Ali Al-

Smadi, “Proposed design and implementation for restful web server”,
Journal of Software, vol 9, No 5, May 2014.

[2] Mohamed Ibrahim B, Mohamed Shanavas A R, “Applying security for
restful web services – limitations and delimitations”, IJETAE, ISSN
2250-2459, ISO 9001:2008 Certified Journal, vol 4, Issue 9, Sept 2014.

[3] Muhammad Imran Hussain and Naveed Dilber, “Restful web services
security by using asp.net web api mvc based”, Journal of Independent
Studies and Research – Computing, vol 12, Issue 1, Jan 2014, pp 4-10.

[4] Khash Kiani, “Four attacks on oauth – how to secure you oauth
implementation,” Sans, vol. 3.1, 2015.

[5] Chetan Bansal, Karthikeyan Bhargavan, Sergio Maffeis, “Discovering
concrete attacks on website authorization by formal analysis,” IEEE, pp.
247–262, 2012 [25th Computer Security Symposium].

[6] Pili Hu, Ronghai Yang, Yue Li, and Wing Cheong Lau, “Application
impersonation: problems of oauth and api design in online social
neworks”, Association for Computing Machinery, 2014.

[7] D. Hardt, Ed., Microsoft, The OAuth 2.0 Authorization Framework
http://tools.ietf.org/pdf/rfc6749.pdf Oct 2012.

[8] T. Lodderstedt, Ed. Deutsche Telekom AG, M. McGloin, IBM, P. Hunt,
Oracle Corporation
https://tools.ietf.org/pdf/rfc6819.pdf Jan 2013.

[9] Four Attacks on OAuth - How to Secure Your OAuth

Implementation, K. Khash

https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-
secure-oauth-implementation-33644

[10] Yang, F., & Manoharan, S. (2013). A security analysis of the OAuth
protocol. Communications, Computers and Signal Processing (PACRIM),
2013 IEEE Pacific Rim Conference, 271-276.

[11]https://hackerone.com/reports/26962

[12]http://oauthsecurity.com

[13] Chari, S., C. Jutla and A. Roy, 2011. Universally composable security
Analysis of OAuth v2.0. http: //eprint. iacr. org/2011/526. Pdf

[14]http://philippeharewood.com/

[15] https://www.synack.com/2015/10/08/how-i-hacked-hotmail/

http://tools.ietf.org/pdf/rfc6749.pdf%20Oct%202012
https://tools.ietf.org/pdf/rfc6819.pdf
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644
http://philippeharewood.com/
https://www.synack.com/2015/10/08/how-i-hacked-hotmail/

