
1

Injections 101
Hanut Kumar Arora



Lucideus 2020 2

INTRODUCTION

Injections is one of the most basic and common attacks and it is at the first position 
of the OWASP Top 10 Attacks. An unprotected website is a security risk to customers, 
other businesses, and public/government sites. It allows for the spread and 
escalation of malware, attacks on other websites, and even attacks against 
national targets and infrastructure. A single security breach could be a death-knell 
for a small business. By some estimates, about 30,000 to 50,000 websites get 
hacked every day. These numbers are growing every day and the importance of 
website security is increasing rapidly. Web security must be a primary focus in a 
time when a person can make purchases, pay bills, and even access bank 
accounts all from the convenience of a web browser. A lot of sensitive information 
is transmitted over the internet, which enables people to carry out all business from 
a web browser. So, to be aware about these attacks and protect our websites we 
should have a proper understanding about the working of these attacks and the 
preventive measures.

Untrusted data is most often data that 
comes from the HTTP request, in the 
form of URL parameters, form fields, 
headers, or cookies. But data that 
comes from databases, web services, 
and other sources is frequently 
untrusted from a security perspective. 
That is, untrusted data is input that can 
be manipulated to contain a web 
attack payload. The OWASP Code 
Review Guide has a decent list of 
methods that return untrusted data in 
various languages, but you should be 
careful about your own methods as 
well.

The project overview describes the 
attack Injections. It describes the 
meaning, working, implementation, 
impact of the vulnerabilities, what can 
it be used for and how can they be 
found. Injections are very common, 
and Injections is probably the most 
frequently occurring web security 
vulnerability. This project aims to 
provide mitigation before and after 
the attack.



Lucideus 2020 3

HOST HEADER INJECTION

A web server commonly hosts several web applications on the same IP address, 

referring to each application via the virtual host. In an incoming HTTP request, web 

servers often dispatch the request to the target virtual host based on the value 

supplied in the Host header. Without proper validation of the header value, the 

attacker can supply invalid input to cause the web server to:

● dispatch requests to the first virtual host on the list

● cause a redirect to an attacker-controlled domain

● perform web cache poisoning

● manipulate password reset functionality

Initial testing is as simple as supplying another domain (i.e. attacker.com) into the 
Host header field. It is how the web server processes the header value that dictates 
the impact. The attack is valid when the web server processes the input to send the 
request to an attacker-controlled host that resides at the supplied domain, and not 
to an internal virtual host that resides on the web server.

In the simplest case, this may cause a 302 redirect to the supplied domain.

Alternatively, the web server may send the request to the first virtual host on the list.



Lucideus 2020 4

In the event that Host header injection is mitigated by checking for invalid input 

injected via the Host header, you can supply the value to the X-Forwarded-Host 

header.

Potentially producing client-side output such as:

Once again, this depends on how the web server processes the header value.



Lucideus 2020 5

Using this technique, an attacker can manipulate a web-cache to serve poisoned 

content to anyone who requests it. This relies on the ability to poison the caching 

proxy run by the application itself, CDNs, or other downstream providers. As a result, 

the victim will have no control over receiving the malicious content when 

requesting the vulnerable application.

The following Fig 2.2 will be served from the web cache instead of Fig 2.3, when a 

victim visits the vulnerable application.



Lucideus 2020 6

It is common for password reset functionality to include the Host header value 

when creating password reset links that use a generated secret token. If the 

application processes an attacker-controlled domain to create a password reset 

link, the victim may click on the link in the email and allow the attacker to obtain the 

reset token, thus resetting the victim’s password.

Mitigating against the host header injection is simple — don’t trust the host header. 

However in some cases, this is easier said than done (especially situations involving 

legacy code). If you must use the host header as a mechanism for identifying the 

location of the web server, it’s highly advised to make use of a whitelist of allowed 

hostnames.



Lucideus 2020 7

SQL INJECTION

SQL injection is a web security vulnerability that allows an attacker to interfere with 

the queries that an application makes to its database. It generally allows an 

attacker to view data that they are not normally able to retrieve. This might include 

data belonging to other users, or any other data that the application itself is able to 

access. In many cases, an attacker can modify or delete this data, causing 

persistent changes to the application's content or behavior.

In some situations, an attacker can escalate an SQL injection attack to compromise 

the underlying server or other back-end infrastructure, or perform a 

denial-of-service attack.

The UNION operator is used in SQL injections to join a query, purposely forged by the 

tester, to the original query. The result of the forged query will be joined to the result 

of the original query, allowing the tester to obtain the values of columns of other 

tables.

http://testphp.vulnweb.com/listproducts.php?cat=1 union select 
1,2,3,4,5,6,group_concat(uname,":",pass,"::",cc,":::",address,"::::",email),8,9,10,11 from 
users

http://testphp.vulnweb.com/listproducts.php?cat=1%20union%20select%201,2,3,4,5,6,group_concat(uname,%22:%22,pass,%22::%22,cc,%22:::%22,address,%22::::%22,email),8,9,10,11%20from%20users
http://testphp.vulnweb.com/listproducts.php?cat=1%20union%20select%201,2,3,4,5,6,group_concat(uname,%22:%22,pass,%22::%22,cc,%22:::%22,address,%22::::%22,email),8,9,10,11%20from%20users
http://testphp.vulnweb.com/listproducts.php?cat=1%20union%20select%201,2,3,4,5,6,group_concat(uname,%22:%22,pass,%22::%22,cc,%22:::%22,address,%22::::%22,email),8,9,10,11%20from%20users


Lucideus 2020 8

Many instances of SQL injection are blind vulnerabilities. This means that the 

application does not return the results of the SQL query or the details of any 

database errors within its responses. Blind vulnerabilities can still be exploited to 

access unauthorized data, but the techniques involved are generally more 

complicated and difficult to perform.

Many instances of SQL injection are blind vulnerabilities. This means that the 

application does not return the results of the SQL query or the details of any 

database errors within its responses. Blind vulnerabilities can still be exploited 

to access unauthorized data, but the techniques involved are generally more 

complicated and difficult to perform.

Time Based SQL Injection is the subcategory of Blind Based SQL Injection in 

which when we input a Query. They are often use to extracts the data when 

there no other way to retrieve the data from the database while executing a 

query in the database which creates a time delay if the query is right 

depending on the time it takes to get the server response. As you can guess, 

this type of inference approach is particularly useful for blind injection attacks. 

It is basically used by using queries which results in a delay of response.

We basically use the functions such as :

 Basic syntax



Lucideus 2020 9

You can change the logic of the query to trigger a detectable difference in the 

application's response depending on the truth of a single condition. This might 

involve injecting a new condition into some Boolean logic, or conditionally 

triggering an error such as a divide-by-zero.

In this, we get the answers in the form of errors or we can say Dumping 

everything in the form of sql error.

SQLMAP is one of the most popular tools for Automated SQL Injection.



Lucideus 2020 10

Most instances of SQL injection can be prevented by using parameterized queries 

(also known as prepared statements) instead of string concatenation within the 

query.

Parameterized queries can be used for any situation where untrusted input 

appears as data within the query, including the WHERE clause and values in an 

INSERT or UPDATE statement. They can't be used to handle untrusted input in other 

parts of the query, such as table or column names, or the ORDER BY clause. 

Application functionality that places untrusted data into those parts of the query 

will need to take a different approach, such as white-listing permitted input values, 

or using different logic to deliver the required behavior.

For a parameterized query to be effective in preventing SQL injection, the string that 

is used in the query must always be a hard-coded constant, and must never 

contain any variable data from any origin. Do not be tempted to decide 

case-by-case whether an item of data is trusted, and continue using string 

concatenation within the query for cases that are considered safe. It is all too easy 

to make mistakes about the possible origin of data, or for changes in other code to 

violate assumptions about what data is tainted.



Lucideus 2020 11

SMTP INJECTION

This threat affects all applications that communicate with mail servers 

(IMAP/SMTP), generally webmail applications. The aim of this test is to verify the 

capacity to inject arbitrary IMAP/SMTP commands into the mail servers, due to 

input data not being properly sanitized.

The IMAP/SMTP Injection technique is more effective if the mail server is not directly 

accessible from the Internet. Where full communication with the backend mail 

server is possible, it is recommended to conduct direct testing.

An IMAP/SMTP Injection makes it possible to access a mail server which otherwise 

would not be directly accessible from the Internet. In some cases, these internal 

systems do not have the same level of infrastructure security and hardening that is 

applied to the front-end web servers. Therefore, mail server results may be more 

vulnerable to attacks by end users (see the scheme presented in Figure 1).

Step 1 and 2 is the user interacting with the webmail client, whereas step 2’ is the 

tester bypassing the webmail client and interacting with the back-end mail servers 

directly.



Lucideus 2020 12

This technique allows a wide variety of actions and attacks. The possibilities 

depend on the type and scope of injection and the mail server technology being 

tested.

Some examples of attacks using the IMAP/SMTP Injection technique are:

● Exploitation of vulnerabilities in the IMAP/SMTP protocol

● Application restrictions evasion

● Anti-automation process evasion

● Information leaks

● Relay/SPAM

Validate that user input conforms to a whitelist of safe characters before placing it 

into email headers. In particular, input containing newlines and carriage returns 

should be rejected. Alternatively, consider switching to an email library that 

automatically prevents such attacks.



Lucideus 2020 13

XPATH INJECTION

XPath Injection attacks occur when a website uses user-supplied information to 

construct an XPath query for XML data. By sending intentionally malformed 

information into the web site, an attacker can find out how the XML data is 

structured, or access data that he may not normally have access to. He may even 

be able to elevate his privileges on the web site if the XML data is being used for 

authentication (such as an XML based user file).

Querying XML is done with XPath, a type of simple descriptive statement that 

allows the XML query to locate a piece of information. Like SQL, you can specify 

certain attributes to find, and patterns to match. When using XML for a web site it is 

common to accept some form of input on the query string to identify the content to 

locate and display on the page. This input must be sanitized to verify that it doesn’t 

mess up the XPath query and return the wrong data.



Lucideus 2020 14

You need to use a parameterized XPath interface if one is available, or escape the 

user input to make it safe to include in a dynamically constructed query. If you are 

using quotes to terminate untrusted input in a dynamically constructed XPath 

query, then you need to escape that quote in the untrusted input to ensure the 

untrusted data can’t try to break out of that quoted context.



Lucideus 2020 15

OS COMMAND INJECTION

Command injection is an attack in which the goal is execution of arbitrary 

commands on the host operating system via a vulnerable application. Command 

injection attacks are possible when an application passes unsafe user supplied 

data (forms, cookies, HTTP headers etc.) to a system shell. In this attack, the 

attacker-supplied operating system commands are usually executed with the 

privileges of the vulnerable application. Command injection attacks are possible 

largely due to insufficient input validation.

Command injection is an attack in which 

the goal is execution of arbitrary 

commands on the host operating system 

via a vulnerable application. 

Command injection attacks are possible 

when an application passes unsafe user 

supplied data (forms, cookies, HTTP 

headers etc.) to a system shell. In this 

attack, the attacker-supplied operating 

system commands are usually executed 

with the privileges of the vulnerable 

application. Command injection attacks 

are possible largely due to insufficient 

input validation.



Lucideus 2020 16



Lucideus 2020 17

The simplest and safest one is never to use calls such as shell_exec in PHP to 

execute any host operating system commands. Instead, you should use the 

equivalent commands from the programming language. For example, if a 

developer wants to send mail using PHP on Linux/UNIX, they may be tempted to use 

the mail command available in the operating system. Instead, they should use the 

mail() function in PHP.

This approach may be difficult if there is no equivalent command in the 

programming language. For example, there is no direct way to send ICMP ping 

packets from PHP. In such cases, you need to use input sanitization before you pass 

the value to a shell command. As with all types of injections, the safest way is to use 

a whitelist.



Lucideus 2020 18

HTML INJECTION

HTML injection is a type of injection vulnerability that occurs when a user is able to 

control an input point and is able to inject arbitrary HTML code into a vulnerable 

web page. This vulnerability can have many consequences, like disclosure of a 

user’s session cookies that could be used to impersonate the victim, or, more 

generally, it can allow the attacker to modify the page content seen by the victims.

This vulnerability occurs when user input is not correctly sanitized and the output is 

not encoded. An injection allows the attacker to send a malicious HTML page to a 

victim. The targeted browser will not be able to distinguish (trust) legitimate parts 

from malicious parts of the page, and consequently will parse and execute the 

whole page in the victim’s context.



Lucideus 2020 19

The stored injection attack occurs when malicious HTML code is saved in the 

web server and is being executed every time when the user calls an 

appropriate functionality.

In the reflected injection attack case, malicious HTML code is not being 

permanently stored on the web server. Reflected Injection occurs when the 

website immediately responds to the malicious input. This can be again 

divided into more types:

● Reflected GET

● Reflected POST

● Reflected URL

 occurs, when our input is being displayed 

(reflected) on the website.

 occurs when a malicious HTML code is 

being sent instead of correct POST method parameters.

happens, when HTML code is being sent through the 

website URL, displayed in the website and at the same time injected to 

the website.



Lucideus 2020 20

You need to use a parameterized XPath interface if one is available, or escape the 

user input to make it safe to include in a dynamically constructed query. If you are 

using quotes to terminate untrusted input in a dynamically constructed XPath 

query, then you need to escape that quote in the untrusted input to ensure the 

untrusted data can’t try to break out of that quoted context.



Lucideus 2020 21

SSI INJECTION

SSIs are directives present on Web applications used to feed an HTML page with 

dynamic contents. They are similar to CGIs, except that SSIs are used to execute 

some actions before the current page is loaded or while the page is being 

visualized. In order to do so, the web server analyzes SSI before supplying the page 

to the user.

The Server-Side Includes attack allows the exploitation of a web application by 

injecting scripts in HTML pages or executing arbitrary codes remotely. It can be 

exploited through manipulation of SSI in use in the application or force its use 

through user input fields.

Another way to discover if the application is vulnerable is to verify the presence of 

pages with extension .stm, .shtm and .shtml. However, the lack of these type of 

pages does not mean that the application is protected against SSI attacks.

This is a set of normal requests and responses.



Lucideus 2020 22

The commands used to inject SSI vary according to the server operational system 
in use. The following commands represent the syntax that should be used to 
execute OS commands.

L
List files of directory:

→

List files of directory:



Lucideus 2020 23

If possible, applications should avoid incorporating user-controllable data into 

pages that are processed for SSI directives. In almost every situation, there are 

safer alternative methods of implementing the required functionality. If this is not 

considered feasible, then the data should be strictly validated. Ideally, a whitelist of 

specific accepted values should be used. Otherwise, only short alphanumeric 

strings should be accepted. Input containing any other data, including any 

conceivable SSI metacharacter, should be rejected.



Lucideus 2020 24

LDAP INJECTION

The Lightweight Directory Access 

Protocol (LDAP) is used to store 

information about users, hosts, and 

many other objects. LDAP injection is a 

server side attack, which could allow 

sensitive information about users and 

hosts represented in an LDAP structure to 

be disclosed, modified, or inserted. This is 

done by manipulating input parameters 

afterwards passed to internal search, 

add, and modify functions.

A web application could use LDAP in 

order to let users authenticate or search 

other users’ information inside a 

corporate structure. The goal of LDAP 

injection attacks is to inject LDAP search 

filters metacharacters in a query which 

will be executed by the application.

Boolean conditions and group 

aggregations on an LDAP search filter 

could be applied by using the following 

metacharacters: &, |, !, =, ~=, >=, <=, *, ()



Lucideus 2020 25



Lucideus 2020 26

1. Escape all variables using the right LDAP encoding function

2. Escape any untrusted data that is added to any LDAP query

3. Use Frameworks that Automatically Protect from LDAP Injection

4. To minimize the potential damage of a successful LDAP injection attack, you 

should minimize the privileges assigned to the LDAP binding account in your 

environment

5. Input validation can be used to detect unauthorized input before it is passed 

to the LDAP query.



Lucideus 2020 27


