
 EDR Protection is a MYTH

(Cat and Mouse chase)

By –

Deepanshu Khanna

(Sr. Security Consultant – Atos)

Abstract – In this era of Cyber security, malwares has evolved to much greater strength. This era is not

the same as deploying like deploying the virus and crash the whole organization. The objectives of all

the attackers have changed. Now the main objective of the attackers is to grab as much confidential

information they can and sell it in the “Black Markets” or to the competitors. Hence, here comes the

EDR solutions that claim that these can protect the organizations against real-world attacks such as

Ransomwares (which is a type of malware).

While whichever solution any organization deploys to monitor and prevent real-time attacks, the truth

remains the same that this is a cat and mouse chase. Today the organizations implement a solution,

tomorrow there will be a bypass. Or today the attackers bypass the solutions, tomorrow there will be a

patch for this.

Introduction - Now before jumping to our main topic let’s first check what an EDR is and how it is

different from Anti-Viruses?

 EDR vs AV

Anti-viruses – as we all somehow are attached to the technologies either through our cell phones, or

laptops, desktops, etc. and we all must have heard about this term Anti-virus which has a major goal of

detecting the malicious codes via static analysis or some heuristic analysis and prevent against them.

But Endpoint Detection and Response are often advertised that these are the future of Anti-viruses.

EDRs are designed to perform primarily 2 major functions:

1. Monitor and Detect the malicious behaviors of malwares and

2. Incident Response (IR)

So, how EDR Works? The working of EDR is very simple, they inject their own DLLs to the suspicious and

notable processes such as cmd.exe, ps.exe, etc., and monitor the remote connections built to some

other domains. The process of injecting the DLLs in running processes is called the “Hooking” which is

the base of any EDR and the malwares as well. “NTDLL.dll” is one of the most important DLL files which

all the EDR solutions monitors, because the attackers rather than writing their own syscalls, directly

import the functions from Windows DLLs. The below screenshot depicts that the McAfee EP solution

injects its DLLs to PowerShell.exe to monitor and analyze if it can identify any malicious behavior.

 McAfee injected DLLs

These EDRs build their own databases of modern threats, match the signatures present on disk or during

runtime, check the behavior, and respond based on that. With this definition, this looks pretty much

simple, but in real-time it is not. So, how an EDR in a simple block diagram looks like:

Headers
(DOS)
(Stub)
(Nt Headers)

Sections
(.rdata)
(.data)
(.pdata)
(.rsrc)
(.reloc)

PE Process memory

Simple EDR Working

To understand this whole mess, let’s dig much deeper into the Operating System Architecture.

EDR
Agent
(DLLs injected
to Process)

Monitor Immediate

Prevention

Incident

Response

Cloud

Submission

Threat

Analysis

End Point

Prevention

DB

updated

 Windows Operating System Architecture

Windows system runs a huge set of APIs that has the primary function of arranging the complete stack

before the syscalls happen to execute the PE code. Syscalls such as NTVirtualAllocMemory() that allows

the memory process to interact with the Kernel. Now, these types of syscalls are located in ntdll.dll and

hence can only be called during an instruction to execute. The major task of these functions is to

allocate the memory for a thread, open/create a file, and write the required data to the allocated buffer

onto the disk.

The windows operating system is divided into 2 modes – User mode and Kernel Mode.

User-mode - all the applications installed on the Windows run in User mode, and

Kernel-mode – the kernel and device drivers run in kernel mode.

Now, the Kernel is protected with Kernel Patch Protection, which helps the kernel against the

applications to alter the kernel memory. Therefore, the EDR solution can only monitor the behavior at

User-mode and prevent the malware to execute at this last location only. The last syscall from User-

mode is made to the NTDLL.dll and then the CPU shifts all those calls to the Kernel-mode. So, the below

figure depicts the working of complete EDR DLL injection into the User-mode syscalls:

 Cloud

EDR flow diagram

Malicious.exe

(memalloc())

NTAllocateVirtualalloc()

NTDLL.dll (Syscall)

NTAllocateVirtualalloc()

Syscall

 EDR Service

User-mode (NT) Kernel-mode (ZW)

(memalloc())

Kernelbase.dll

 EDR Driver

The IR Logs sent

to cloud for

further inspection

Let’s begin the above flow as like this,

1. A malware (not detected on disk), is executed and created a Process thread, and the EDR

solution wanted to detect the newly created thread.

2. Then the EDR’s driver will register a kernel callback and stores it in the kernel callback table.

3. Once the file opens, the kernel will look into that kernel callback table to check if there is there

any callback to process. This usually happens for those processes which require higher privilege

threads to spawn like cmd.exe, ps.exe, ETW (Event tracing for windows), registries access, etc.

4. Now once the callback notification receives, the EDR will inject (hooks) the EDR.dll to that

suspicious thread, and then the EDR will start monitoring and logging all the confidential

information such as the main executed module from disk, its relatable components, the DLLs it

called, any remote thread, etc.

5. Now once any suspicious alert is there or the file looks suspicious to EDR, it sends all the logs to

the remote cloud for further analysis.

More Information on OS Architecture - User mode and kernel mode - Windows drivers | Microsoft Docs

So, now the question is how the attacker’s think, to understand this, let’s first check how an executable

is designed and how it looks inside the memory:

 PE (Portable Executable) Format

The PE looking in real-time is a complete mess, but to simplify let’s divide the PE into 2 parts:

1. Headers

2. Sections

And this looks like this:

Headers
(procedural
details)

Sections
(contents)

 PE classification

 Simplified PE Format

DOS Header

DOS Stub
NT Headers

Section Headers

.text

.rdata

.data

.pdata

.rsrc

.reloc

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode

So, how this looks like in memory and can be easily checked using PE bear.

 PE Bear cmd.exe format

Now, our main target is EDR bypass so, let’s jump to Sections, where the attackers store their payloads.

.text – holds the .exe code

.rdata – read-only data

.data – modules or global variables

.pdata – if any exceptions are there in the code, that lists in this section.

.rsrc - most important section, as most of the malwares in the form of images, or .wav or in any

format, stores here.

.reloc – stores information about the ASLR location where the loader has placed the code.

For more information about the PE format - Inside Windows: Win32 Portable Executable File Format in

Detail | Microsoft Docs

So, the query arises here that where do the attackers store their payload??

So, the answer is - .data, .text. and .rsrc (the most important, because of the traditional malwares). I

have demonstrated the same as a “code caving” project of adding a shellcode in a .text section.”

Code Caving – Hide malicious code behind actual software

So, now we have got all our basics, let’s jump to our section, that how real-time attackers bypass the

EDR protections.

https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://www.youtube.com/watch?v=qeee08iTjB4&list=PL9f2esOME1EZr3sdVK4aZYeykIgFI9TTh&index=2

Bypassing EDR

Entropy – A method which as per the great mathematician Shannon that defines the expected amount

of information drawn from distribution during an event. In simple terms Entropy means “The Measure

the Randomness”.

Shanon has defined the entropy on a scale of 0-8, → 0 – less entropy (means less randomness) and 8 –

higher entropy with higher randomness. The formula for this calculation is:

 -- Source Wikipedia

But how this is related to our malwares? So, the answer is removing random bytes, obfuscation, and

Encryption.

So, Microsoft provides “sigcheck64.exe” in a Sysinternals suite – Download link

So, more the Entropy value → more chances that the file is packed (compressed), obfuscated, or

encrypted.

So, let’s check this with my self-written malware, a simple snippet given below, that upon execution,

opens the cmd.exe shell to the remote server:

 simple reverse shell

Now, let’s check its entropy rate for this reverse shell:

Entropy rate for a simple reverse shell

Now as we can see that the entropy rate of an unverified .exe file is very high and the AV engines can

detect this as malware. So, how we can overcome this?

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

1. Certificate signing and modifying details- Signing malwares with digital certificates to bypass

AVs at runtime. Code signing or signature cloning is a powerful technique when the attackers

create malwares. In almost all my malwares, I always sign the malwares with known signatures

like Defender, office, VLC, chrome, Mozilla, putty, IE, etc.

I have demonstrated a complete video demonstration, how we can embed the certificate of a file to

an executable file – Certificate Signing Video Demonstration

The entropy rate of a certificate signed reverse shell

Now we have signed our malicious exe file with the Microsoft certificate and is verified but the Entropy

rate didn’t come down. So, let’s try to add all the comments here to make it more like a legitimate file:

Reverse shell with complete details

https://www.youtube.com/watch?v=rtdLniuzSg8

Entropy rate after modifying the exe

Now, we have modified all the parameters and also signed our file (the certificate is not installed on the

machine, that’s why it is showing the error. No worries), but still, the entropy rate didn’t come

down.

Now let’s check our favorite “kernel32.dll” entropy rate:

Kernel32 entropy rate

Now, this is a bit higher, but still, Microsoft verifies this under this entropy rate, and hence we can

concatenate kernel32.dll to our binary, and let’s see how much entropy rate we get now.

Kernel32.dll concatenated with our reverse shell

 concatenated reverse shell entropy

And finally, our entropy rate came down. So, in this way with multiple other techniques such as

concatenating image files can also be helpful during EDR analysis.

2. Payload Injection – which is a subset of Code Injection and considered to be the classic code

injection, as this method still relies on the real-time world Exploitation. This is the basic method

of any malware execution, in which the malware will contain a dropper file, that dropper file

consists of our shellcode, which upon execution will create a process and tries to inject the

shellcode into the already running process say “Explorer.exe”. To keep it very simple, this whole

method is divided into 3 steps, let’s understand with Windows API technical terms.

Now there are majorly 3 functions that are called in the whole process,

a. VirtualAllocEx() – the major task of this function is to allocate the buffer space into the target

process memory which the shellcode wanted to access. Usually, the buffer space required is

after the decompressed shellcode. So, in more technical terms the function VirtualAllocEx() can

be utilized in creating the real-time malwares by pointing the initialized memory of the target

process to zero, and then allocate the memory region within the virtual address space of the

target process.

 The syntax follows like this:

 Source – Microsoft WinAPI docs

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

b. WriteProcessMemory() – is to write the copied shellcode to the above-allocated buffer space of

the target space. Now there is a small thing that needs to be taken care of here, that the

memory region of the target process should be available with the WRITE permissions or in

simple terms should be accessible.

The syntax follows like this:

 Source – WriteProcess WinAPI Microsoft docs

c. CreateRemoteThread() and CreateRemoteThreadEx() – is used to create a remote thread

means to create a thread that will run in the data or shellcode memory region of the target

process. Sometimes, an Extended version of the CreateRemoteThread() is to be used, to define

or specify the attributes of the remote thread.

The syntax follows like this:

 Source – CreateRemoteThreadEx WinAPI Microsoft Docs

So, let’s analyze this with the help of a simple block dig.

 1

 2

 3

Payload Injection Process dig

 Shellcode

malicious.exe

Target Process

 (Spawn)

VirtualAllocEx()

WriteProcessMem()

CreateRemoteThread()

Memory Address Space

Virtual Address Space

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethreadex

Now, let’s demonstrate how code injection works, so as per the below code snippets, there is a

ProcessInject function which is being called to create a remote thread against which the memory is to be

allocated using VirtualAllocEx(), as per the shellcode length (here 510 bytes) defined. Once the memory

is allocated, the shellcode is to be written in the target process (here explorer.exe).

Code Snippet

Code Reference Idea – BlackHat Conference US 2019

Meterpreter Revese Shellcode

https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf

Now the basic working of this exploit is to look for the “explorer.exe”, then allocate the required buffer

space to the writable portion of the target process (here explorer.exe), then WriteProcessMem (copy

the shellcode from PE and write to allocated virtual address space) and then execute in that buffer space

and after execution we successfully got the reverse shell and is detected by the defender immediately

during runtime.

TCP Reverse shell

 AV detected payload

Now, as we can see that the AV detected the payload as expected and it immediately removed the

payload from memory. So, let’s run it again and analyze the background.

So, let’s analyze what happened exactly in the memory space. So, as it is visible in the below screenshot

that only 1 cmd.exe shell and that’s our shellcode.

Attached to Explorer.exe

Just to confirm, let’s open powershell.exe and see if that get’s attached to it.

 Shellcode executed memory location

Corresponding DLLs

and we can see, the corresponding ntdll.dll is called and the syscalls to kernel32.dll from

kernelbase32.dll are executed. So, the block-dig from the beginning hence been proved here.

Encryption/Decryption

So, the question comes here, how we can bypass this?

Let’s start with the traditional method of Encryption and Decryption, which the worldwide hacking

groups are following up, for this scenario, I will be using XOR encrypt and decrypt as I have seen this very

much working in real-time.

However, I have developed my python script to do all this crazy stuff. So, let’s encrypt our payload to

AES-256 or XOR or RSA, or whichever algorithm you like and build our new exploit, and then understand

from in-depth block dig and memory analysis.

EDR bypassed and successfully connected to the remote machine

 Shell connected to explorer.exe

 And to demonstrate in real-time, I also had created a video, below is the link for it.

Meterpreter Reverse Shell Complete EDR Bypass - YouTube

https://www.youtube.com/watch?v=s7CFAbUen2c

So, let's try to understand this with a simple block dig.

 1

 2

 3

 Encryption/Decryption Process in memory simplified block dig

So, let’s analyze it:

a) Encrypting the WinAPI functions using XOR/AES (here XOR)

b) Calling the pointer to the encrypted strings of the functions

c) Then decrypt the strings at the runtime and finding the kernel32.dll process module

d) And then writing the shellcode at the remote buffer thread (target process VAS)

To understand more on this - Bypassing CrowdStrike Endpoint Detection and Response - Red Cursor

Let’s understand this in more depth, attach the malware to the x64 debugger, as shown below in the

screenshot. And call the action with 1 entry, and we can see that the malware is at the kernel32.dll

 pointer to kernel32.dll

 Shellcode

malicious.exe

Target Process

 (Spawn)

*ptr((VirtualAllocEx())

))

*ptr(WriteProcessMem()))

*ptr((CreateRemoteThread()))

Memory Address Space

Virtual Address Space

*ptr(VirtualAllocEx())

*ptr(WriteProcessMem())

*ptr(CreateRemoteThread())

Str(Enc(VirtualAllocEx()))

Str(Enc(WriteProcessMem()))

Str(Enc(CreateRemoteThread()))

Str(Dec(VirtualAllocEx()))

Str(Dec(WriteProcessMem()))

Str(Dec(CreateRemoteThread())

)

Encryption Decryption

*ptr -> kernel32.dll

GetProcAddress

https://redcursor.com.au/bypassing-crowdstrike-endpoint-detection-and-response/

And now one step further to the kernel32.dll, and once it’s gets executed, the shell is opened, as shown

in the below screenshot:

 kernel32.dll executed and meterpreter shell opened

So, now let’s analyze this, step by step by setting the breakpoints

1. Entry Point of the malware:

 Entry point of the malware

2. Looking for the explorer.exe

 Looking for the explorer.exe

Now, if you will closely look at the above of Explorer.exe memory location, there are 3 kernel32.dll are

being called, which are nothing but:

a) Ptr -> VirtualAllocEx()

b) Ptr -> WriteProcessMemory()

c) Ptr -> CreateRemoteThread()

So, when pressed enter, it hit the explorer.exe

 And it starts searching for the explorer.exe

So, once it’s get the explorer.exe, it hit the breakpoint again, as shown in the below screenshot:

Once executed, it will call the encrypted shellcode, as shown in the screenshot below:

 Shellcode encrypted

 Shellcode decrypted in the memory at runtime

Once this gets executed, we will get the reverse shell as shown in the below screenshot:

 Reverse shell executed bypassing the EDR

Conclusion

Unfortunately, there is no perfect solution, because this is 1 such bypass, there are numerous like calling

fresh DLLs, Hel’s gate, Halo, etc. So, the only fix is to continue enhancing the EDR products like:

a) Implement some temper-based alert system, which will check for heuristical behavior of the

initial thread which is being created by the exe and if that process is trying to modify or temper

any system DLLs files which are loaded in memory.

b) Usually, we never say logs will help, as attackers can also delete the logs, or if someone has to

play more smartly, they will obfuscate the whole shell, which will make it difficult to trace back

and get the real picture. However, Microsoft has implemented a very intelligent log capturing

tool known as “ETW” – Event Tracing for Windows, which directly functions from kernel space

and hence, relies on the NTDLL syscalls which in real-time makes the whole task difficult for the

attackers.

c) There should be another implementation to monitor the HTTP/HTTPS, TCP based connections.

So, even if the attacker can bypass system controls, the external C2C connection should

immediately be blocked, which will help the industries to protect against data-exfiltrations,

lateral movements, etc.

d) Implementing EDRs is very much necessary as they are built to protect against most of the

known attacks. However, the industries should not completely rely on such products. There

should be other implementations as well like blocking of major executables, whitelist the

executables, temper protection against the known processes such as lsass.exe, etc.

