“DISSECTING ANDRO MALWARE”

=\
IV

BY
VADODIL JOEL VARGHESE

SUPERVISOR: PROF STUART WALKER

University of Essex

School of Computer and Electronic Engineering
University of Essex
Colchester CO4 3SQ, UK

SEPTEMBER 2011

Abstract

Reverse Engineering on malware analysis is a process which is used on
malware in order to understand its operation, code structure and its
functionality. This project aims to understand the operation of a malware and
Investigate the parameters, code and structure which is created or modified by
the malicious software. In response to this objective a virtual lab was created to
analyse the malicious software. A new variant of “DroidKungFu” was analysed
named “DroidKungfu-2 A” which infected Android platforms. After the Code
analysis we understood the malicious piece of code which was embedded along
with the original code. The services, activity that gets started and the mobile
information which is sent to the remote servers. Once the malware gets the root
access of the victim machine it can even damage the system.

Contents

ACKNOWIBAGEMENT.......oiieie ettt e e sre e 1

1. INEFOAUCTION. ...t 2
2. MAIWAIE ANAIYSIS.....eieiieiie ettt sttt e st e nbeeneenneeneas 3
2.1 Basics 0f Malware ANalyYSiS.........cceoviieiieieiie e 3

2.2 Types of Malware ANAlYSIS.......c.cccviiiiiiiiiieiiesc e 3

2.3 Components of Malware ANalYSIS........ccccovereiiieiieiiiere e 3

2.4 Tools of Malware ANAIYSIS.........ccoeiiiiiiiiiiieee e 4

2.5 Goals of Malware ANAlYSIS.........ccociiiiiiiiieiieee e 4

3. Operating SYStEM OVEIVIEW.......cc.ecviiieeieiie et e se et e e e sre e e sne e 4
3.1 ANAroid ArChItECIUNE.oviiiiiiicestee s 4

3.2 ANAroid IMAKEL.......c.oiiieieieie et 6

3.3 Android Security MOGEL.........ccooiiiiiiiiece e 6

3.4 Malware found in Operating SYSIEMS..........ccoiiieiiiiiiese e 7

4. V11 aToTo (o] (o]0 V2SSO PSSO 9
A1 INEFOAUCTION. ...ttt ettt 9

4.2 ANdroid Malware ANAIYSIS.........coeiiiiiiiiiiieiieee e 9

4.2.1 LISt OF TOOIS....cuiiiiiiiiieiiie st 9

4211 Virtual AppliancCe.........cocoveieiiiiecceee e 9

4212 EMUIALOT. ... 10

4213 DiSaSSEMBbIE ..o 11

4214 UNPACKET ...ttt 11

4215 TeXt EAITOr ... 12

4.2.1.6 Monitoring TOOL........cccccovviiiiice e 12

4217 Other TOOIS.......coiiiiiieic e 13

42171 DEX2JAI.....cciiiiiiiieee e 13

42172 ID-GULL ..o 13

4.2.2 Creating an ISO enVIrONMENL.........cccvvveiiieresiese e 13

4.2.3 Baseline the enviroNMEeNt..........cooviiireiiiiicceeees s 14

4.2.4 Malware ACQUISTEION.......cooviiiiiiiiiiiiesiee e 15

4.2.5 Reverse Engineering on Android Malware.............cccocevviiiininnnnnns 16
4.25.1 Dynamic ANalySiS........ccveveiieeiieieiiere e 16

4.25.2 Static ANAIYSIS.......cccieiveeieieere e 24

4.2.6 RESUIS.....oouiiiiiiiiee e 27
CONCIUSIONS.......eeiiiiee e bbbttt bbb 28
51 Mitigation and Control...........cocooiriiiiiiieie e 28
5.2 CONCIUSION......iiiiiiiitietee et 28
5.3 FULUIE WOTK ..ot 29
N o] 1= 16 | TP TP PP PP PP PRI 30

BIDHOGIAPNY ..o 31

Acknowledgement

| would like to thank my Project Supervisor Prof. Stuart Walker for his support
and guidance. From the start of the project till the end his encouragement
enabled me to successfully complete my Master’s project.

| would like to thank my family for the support they had given me for my
education. Also thank all my friends for their support and encouragement to
work hard and to be the best. Above all, | would like to thank the Lord
Almighty whose grace and close presence have given me immense strength and
courage to complete this project.

1. Introduction

In the ever booming IT industry daily a new technology arises related to Software, Operating
Systems, Databases, Servers and Applications etc. Malicious software also known as
malware imposes a larger threat to the ever growing IT industry. The vulnerabilities of those
Applications or Operating Systems are being exploited by the black hat hackers or the
attackers. Over the past two decades these malicious software’s has evolved from exploits to
black market making billions thus causing cyber crime. These malwares have the capability
of penetrating into the systems, networks without user intervention and thus can disrupt
services by compromising the confidentiality, integrity and availability of the applications,
systems and operating systems etc [1]. Malware analysis is a process in which we take apart
the malware for studying its code structure, operation and functionality. It is conducted with
certain objectives which include [2]:

e To understand the vulnerability that was exploited which has caused the system to be
compromised.

e To study the severity of the attack and combat measures.

e To penetrate into the compromised data in order to investigate its origin and to obtain
information about other compromised machines.

Reverse Engineering of Malware Analysis is a process which is used by forensic
investigators and system engineers to analyse the flow, operation, functionality of malware
using reverse engineering tools. This is useful in understanding the files, services, code and
parameters which were added or modified by the malicious software. It includes analysis in
two phases namely Static (Behavioural) Analysis and Dynamic (Code) Analysis.

The goal of this project is to understand the working of an Android malware. Android OS is
the second most popular environment for mobile malware. In this project we are going to take
you through the various phases so as to understand how and what are these malwares exactly
made up of and how these malware’s behave in an isolated environment. Various reverse
engineering tools were used for the analysis which provides subsequent results according to
the type of analysis. Android malware named “DroidKungFu2-A” has the capability to run
its service and activity along with the original application process. It then captures the IMEI
Number, OS Version and the phone model and saves into a local file. If it gets the root access
then it can even download malicious packages from remote server and even get the capability
to install or uninstall application packages without user’s knowledge.

Thus the project highlights the following important procedures:

e Create an isolated virtual environment

e Static Analysis

e Dynamic Analysis

e Extract findings and vulnerabilities as per the analysis and create statistical results
e Mitigation

This project will also serve as a reference for the readers to perform Reverse Engineering on
Malware Analysis by performing the analysis as mentioned by using the tools, methodologies
on a particular type of malware.

2. Malware Analysis
2.1 Basics of Malware Analysis

Malwares are evolving in a rapid manner and combat measures to stop them have become
difficult because they use new signatures, encapsulation which prevents it from being
detected. Anti-Virus products have been releasing daily updates which detect almost all the
attacks, some of them narrowly escape. It is essential that a reverse engineer must analyse
such malwares which change the registry values, tamper data, and download payloads in
short which shows unusual behaviour. Reverse Engineer must analyse malware of that
particular Operating system and study the environmental variables and activity performed by
that malicious software.

2.2 Types of Malware Analysis

e Static Analysis

Static Analysis also called behavioural analysis, which is used to analyse and study
the behaviour of malware. We can study how malware interact with the environment,
services added, files tampered, data captured, network connection made, port opening
etc. [3] Collected data is reconstructed and mapped together to get a complete picture
of the analysis.

e Dynamic Analysis

Dynamic Analysis also called code analysis, which is used to analyse the code of the
malicious software. As it is very difficult to get the source code of the malware
especially executables we need to analyse the binary code. There are debuggers and
decompilers which are used to convert the malware to its binary form or assembly
level. By analysing the code, a reverse engineer will come to know the exact
malicious code which is embedded in the actual code.

2.3 Components of Malware Analysis

Malware creators use different techniques to develop malicious software so it is difficult to
specify a common factor in all the malwares. Each malware have a different signature,
programming language and a packer. [4] Around 500 packers are released which are used by
the attackers in order to prevent the malware from being detected by the anti-virus
applications. Packers are used so that the code is compressed using tools like 7-zip or Win
Rar etc. Compressed code will be harder to detect as there will be a session with less CPU
Utilization unlike larger code which utilizes maximum CPU utilization and sessions. Another
method is to add more protection by using encryption to prevent from being detected. Even

3

though anti-virus will unpack the malware they will just scan the encrypted version of the
code. Malware may contain backdoors such as Net Cat, VNC, Exploits, Scripts, Botnet’s,
Spyware, Adware etc. Thus malware may contain multiple malicious components which
ensure that at least one of them will cause damage to the system.

2.4 Tools of Malware Analysis

Various tools are selected by the reverse engineer for the behavioural and code analysis. The
following is a list of tools used for reverse engineering malware by most reverse engineers.

e Creation of Lab — Virtual Box, VMware, Sandbox GFI.

e Static Analysis — Process Monitor, Wireshark, PEID, TCPView, WinHex, Process
Explorer, Winanalysis, Strings.

e Dynamic Analysis — Ollydbg, IDA Pro, Dex2jar, JD-GUI, Baksmali, Apktool.

2.5 Goals of Malware Analysis

The goal of Malware Analysis [4] is to find out how to defend the organisation from
malicious attacks. The first question is, how did the system get compromised? And secondly
what did the malware exploit? According to the type of malware and its analysis, we will get
the more relevant answer to these two questions. Using this information, a reverse engineer or
a system engineer will be able to determine whether the suspicious software was a malware
or not.

3 Operating System Overview

In this project, Windows 7 was selected for analysis. Windows is a common platform for
Workstations and Servers which is used worldwide. Malware is the biggest threat to the
Windows OS compared with other operating systems. Android is a mobile operating system
which uses Linux as its base [5]. Android application developers develop application in Java
and control their operation using Java Libraries designed by Google.

3.1 Android Architecture

- Arpplici:at'io'ns g

Contacts Phone

Application Framework

Activitiy Window View System Notification
Manager Manager ide v ~M

Libraries Android Runtime

SQlLite Core Libraries

. “TDalvik Virtual
OpenGLIES WebKit Machine

sSGL libc

Linux Kernel

Diplay Biuetooth Filash Memory Binder (IPC)
Oriver S o Dri Driver Driver

USB Driver Keypad Driver WiFi Driver Audio Drivers

Figure 1: Android Architecture

[Source: Stephen A.Ridley, Retrieved From: http://dl.dropbox.com/u/2595211/HelloMoto-
AndroidReversing.pdf, Last Accessed: May 2011]

As we can see in the above architecture [6] Linux kernel [7] is the base of the architecture. It
has a proprietary Dalvik VM.

Figure 2: Comparison of Dalvik VM v/s Java VM

[Source: Cyber Security, Retrieved From: https://www.honeynet.org/filessMyCERT-3-PST-
HoneynetConf-Reversing%20Android%20Malware.pdf, Last Accessed: March 2011]

The above diagram shows the comparison between the Dalvik Virtual Machine with the Java
Virtual Machine. It is register based which is faster as compared with stack based register.
The Java application *.class file is converted into *.dex file using DX tool. *.dex is the
executable format for android applications. The DEX process flow is as shown below [7]:

Figure 3: Flowchart on Dex Process Flow

[Source: Cyber Security, Retrieved From: https://www.honeynet.org/filessMyCERT-3-PST-
HoneynetConf-Reversing%20Android%20Malware.pdf, Last Accessed: March 2011]

The Java application program is compiled using the Java Compiler (javac) and the *.class file
is generated which is given to the Dalvik VM. It generates *.dex file which is executed.
Android Package File (APK) consists of the following files [8]:

.dex file

e Res - Resources which APK requires.

e Android Manifest xml file

e META-INF directory which contains the certificate, the list of resources and manifest
file.

All these files and folders are bundled together to form the apk file. Application, kernel and
driver layers are the different layers in the architecture with specific roles. As android is an
open source OS, application developers can use the hardware, information about the location,
running services etc. Application framework has the main underlying services as follows [9]:

e View System — List of parameters like buttons, list, text box etc.
e Notification Manager — Applications are enabled to use custom alerts.

C / C++ libraries are used by various parameters which is present in the Android architecture.
Linux version 2.6 is used as an abstraction layer which provides services such as network
management, memory management, security etc.

3.2 Android Market

Google has offered Android Market where the application developers can market applications
to the users. [10] As android is an open mobile operating system it allows flexibility for
sharing applications compared with Apple 10S. There are advantages as well as disadvantages
with this method; the advantage is that any application developer can list his application in
the Android Market thus providing variety of options to the common users. The main
drawback in this approach is it allows lot of attackers to develop malicious software which
can compromise systems and can gain user information. Earlier on March 2011, DroidDream
has developed and released in the Android Market which had the capability to capture IMEI
number, IMSI number, user id etc and send that information to a remote server. Later Google
had released [11] an application “Android Market Security Tool” which was installed on all
infected machines which would remove the exploit.

3.3 Android Security Model

The Android operating system allows user to decide whether an application is malicious or
not. [10] That means users must analyse and confirm its identity and if found malicious need
to report and thus will ensure its removal from the Android Market. For example, a malware
application was released in the name droid09 which allowed users to carry out banking
activities. User need to provide the account information details and it would tunnel
communication to the bank. But actually that malware used to provide a browser login to the
bank homepage the credentials were sent to the attacker. So, an Android application needs to
show the permissions during the installation so that user can judge whether to install or not.

But attackers have become more sophisticated they find different ways to enter the system by
exploiting the vulnerability or by just tricking the common user.

3.4 Malware found in Operating Systems

Variety of malwares has been developed by attackers for different operating systems. In this
project we are dealing with Android so in the following sub topics will be dealing with the
malwares on which research has been conducted by different reverse engineers and
researchers.

Varieties of malwares are developed by android application developers thus enhancing crime
in the Android Market too. Cyber Security of Malaysia [7] has analysed some malware such
as SMS.Trojan which was the oldest malware on Android OS. Its code was just like hello
world code of SDK and was very simple. It would send fraudulent sms to some private
numbers. The next malware analysed was Geinimi which would capture information. The
information includes IMEI number, IMSI number, Contacts etc. It was a bot which would
connect with a remote server and would delete sms, make a call, steal sms etc. The
communication was encrypted and would run as a loop. Dream Droid the most malicious
malware was hosted in the android market and had infected 53 software’s. It would exploit
the vulnerabilities such as exploid (CVE-2009-1185) and Rageagainstthecage (CVE-2010-
EASY). It is also a bot which uses encrypted communication. It has 2 stages of payloads, the
first one is to infect the machine and allow installation of the 2" payload which is the
DownloadProviderManager. DownloadProviderManager gets installed in the /system/app
directory which sends and receives information with the remote server. Stephen A.Ridley’s
paper [6] on Android Malware Reverse Engineering mentions analysis on Sound Miner
Trojan. This malware would listen to the keypad tones by activating the phone’s microphone.
This would allow the attackers to check for credit card numbers from the DTMF tones. SMS
Message SPY Lite and Pro are the different spywares [10] which asks for the following
permissions during its installation:

The READ_SMS and RECEIVE_SMS will allow the attacker to monitor the flow of SMS
communication.

Another malicious application named iCalendar.apk was analysed by my friend Dinesh
Shetty in his paper on “Demystifying the Android Malware” [12]. This malware would send
SMS to premium numbers with a text. But in the background would block the delivery report
from that premium number thus the user doesn’t know anything what is happening in the
background. This sms is sent only once thus eliminating the suspicion about the charges sent
by a suspicious activity. Another important work on android malware permissions was done
by Joany Boutet in his paper on “Malicious Android Applications: Risks and Exploitation”.
[13] The default permission of the application “seesmic” is as shown below:

"Application info

Seesmic

5554:Telindu

Bl & o7:51

version 1.0.1

Storage
Total
Application
Data

Clear data

Cache
Cache

Launch by default

1.18MB
1.16 MB
20.00KB

5554:Telindus

Figure 4: Default Permission of “Seesmic Application”

[Source: SANS, Retrieved From:
http://lwww.sans.org/reading_room/whitepapers/malicious/malicious-android-applications-
risks-exploitation_33578, Last Accessed: November 2011]

The permission includes access to the SD Card, GPS Location, Full internet access and phone
call access. Author tried to add permissions like to browse history, read, send and write sms

etc. The mentioned were added in the manifest file as shown:

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission

andreoid:
android:
android:
android:
andreoid:
android:
android:
android:
andreoid:
android:
android:
android:

name="android.
name="android.
name="android.
name="android.
name="android.
name="android.
name="android.
name="android.
name="android.
name="android.
name="android.
name="android.

permission

permission.
permission.
permission.
-READ HISTORY BOOKMARKS" />
permission.
permission.
permission. .
.RECORD AUDIO"/>

permission

permission

permission.
permission.
.WRITE SMS " />

permission

-ACCESS COARSE LOCATION" />

CALL PHONE" />
CALL PRIVILEGED"/>
RELD_CALENDAR"/>

READ_FRAHE_?UFFER“/>
READ OWNER DATA"/>
READ SMS"/>

SEND_SMS"/>
CAMERA" />

Figure 5: Modified Android Manifest File

[Source: SANS, Retrieved From:
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications-
risks-exploitation_33578, Last Accessed: November 2011]

It is necessary to generate a self-signed certificate using the jarsigner then it needs to be
installed. After the installation we can see that the above mentioned modified permissions
were reflected on the application information as shown:

Figure 6: Modified Permissions of “Seesmic Application”

[Source: SANS, Retrieved From:
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications-
risks-exploitation_33578, Last Accessed: November 2011]

Thus we can add permissions, services and activity by reverse engineering a malicious code
in order to access sensitive data of the victim.

4 Methodology
4.1 Introduction

This chapter deals with the identification of tools required for malware analysis, creating and
base lining the environment, malware acquisition, information collection and results based
upon the analysis. | am analysing Android Malware “DroidKungFu2-A” and the purpose of
this analysis is to create a virtual environment, analyse the problems and suggest mitigation
steps.

4.2 Android Malware Analysis
4.2.1 List of Tools
4211 Virtual Appliance

Virtual Appliance is required for executing and analysing malwares in an isolated
environment. Oracle Virtual Box was selected for this analysis.

Oracle VM Virtual Box

Oracle VM Virtual Box is freely available for download from [14]. It is the best virtual
appliance which allows us to load multiple operating systems. It has a host only networking

which means the virtual OS can see only itself not even the main parent OS.

3 Oracle VM VirtualBox Manager
File Machine Help

B & D [y—

New Settings Start Discard

= =] preview

Name:
05 Typ

_F rem win 7 iso
W& © Powered OFF

s
rem linux
*| (@Powered OFF System
rem android os (Android Baby :D) Base Memory: 512 MB _ "
|f @Powered oFF Boot Order: Floppy, CD/DVD-ROM, Hard Disk rem win 7 iso
— Acceleration: VT-x/AMD-Y, Nested Paging
rem new
(@ Powered Off
Display
Video Memory: 18 MB T
Remote Desktop Server: Disabled
(2 Storage
1DE Controller
IDE Secondary Master (CD/DVD): X15-65804.is0 (Inaccessible)
SATA Controller
SATA Port 0 rem win 7 iso.vdi (Normal, 20,00 G8)
I Audio

Host Driver: Windows DirectSound
Controller: Intel HD Audio

=P Network
Adapter 1: Intel PRO/ 1000 MT Desktop (Bridged adapter, Atheros AR9285 Wireless Network Adapter)

P uss

Device Filters: 0 (0 active)

[Shared Folders
None -

Figure 7: Snapshot of Oracle VM Virtual Box Manager
The latest version 4.0.12 is installed and also it provides the important feature of snapshot.

4212 Emulator

Emulator is a tool, which is used to reproduce the function of a real system thus enabling us
to work in a virtual environment which resembles the original system.

Android SDK

Android SDK is an emulator, which is used to create and load Android Virtual Devices. It has
lots of packages related to mobile phones, android platforms etc. It needs to be installed along
with all the latest packages from [15]. It has a manager panel from where we can create
virtual devices and install latest packages as shown.

£ Android SDK and AVD Manager pr— | S |

Virt | devices Android SDK Updater.
nstalled packages R n12
b

Ava e package n XML Scherma 22
Settings Repository XML Scherma &4
_ Copyright (C) 2009-2011 The Android Open Source Project.

Figure 8: Android SDK Manager

10

4213 Disassembler

Disassembler is used to convert the code into hexadecimal format for better analysis during
dynamic analysis.

Apktool

Apktool is the disassembler used in this project for analysing Android Malware. It can
decode the malicious code to its original code also we can modify the code and recompile
using Apktool [16]. It uses Baksmali for disassembling and Smali for assembling the code.
This dex format is used by Dalvik VM. Baksmali and Smali are the Icelandic names for
“Disassembler” and “Assembler” [17]. The framework for Apktool is installed as shown:

Figure 9: Installation of Apktool Framework

4214 Unpacker

Unpacker is a tool used to unzip the compressed contents of the file or folder which is
required in the uncompressed format for analysis.

7-Zip

7-Zip is the unpacker used in this project which helps to unzip the apk file of the application.
This is the best unpacker or unzipper which has high compression ratio, strong encryption
and 2-10% more compression capability compared with WinZip, PKZip etc [18].

[Ez] 7-Zip File Manager = | =[]
File Edit View Favorites Tools Help

=
gp == <7 =) wmp R i
Add Extract Test Copy Move Delete Info
> & -
MName
MEComputer |
Documen ts
€ Network

0 object(s) selected

Figure 10: Snapshot of 7-Zip File Manager

11

4215 Text Editor

Text Editor is used to edit the configuration files, disassembled files and normal text
documents.

Notepad++

Notepad++ is the text editor used in this project which is easy to use and it has high execution
speed and requires less utilization power. It is user friendly as it provides lots of options. [19]

[__L{ C:\Users\Reverse\Desktop\reverse\live-messenger-malware\msgr.xml - Notepad++ | e]
File Edit Search View Encoding Language Settings Macro Run Plugins Window 7?7

o= oo @& & [\ | o8 8| = x| B E|= BEo| - o] | e ¥
= msgrxml |E Unit1.dfm | & Unit1pas | & Unit2.dfm | .

= kPEScanSession>
2 <ScanTime>2011-07-11T12:37:08Z</ScanTime>
— <PEList>
<FileItem>

<Path>C:\Users\Reverse\Desktop\reverse\live messenger—malware\Windc
<Created>2007-01-26T15:08:26Z</Created>
<Modified>2011-06—-30T13:33:27Z</Modified>
< = > 7 — _ - - < =ed>

Figure 11: Snapshot of Notepad++
4.2.1.6 Monitoring Tool
Wireshark

Wireshark is the world’s best network sniffer and packet analyser. It is similar to tcpdump but
Wireshark provides GUI and lots of plugins for better analysis. [20] It provides deep
inspection for hundreds of protocols [21] and it is also free being an open source.

il Capturing from Intel(R) PRO/1000 MT Desktop Adapter [Wireshark 1.6.0 (SVN Rev 37592 from /trunk-1.6)] —|[== @

File Edit View Go Capture Analyze Statistics Telephonx Tools Internals Help

Bl essee DEXSEELE AT I (ENERQQ D @B R B

Filter: Expression... Clear Apply

No. Time Source Destination Protocol Length Info 1
36 69.633916 192.168.0.1 239.255.255. 250 SSDP 340 NOTIFY * HTTP/1.1
37 69.637144 192.168.0.1 239.255.255.250 S5SDP 331 NOTIFY * HTTP/1.1
38 69.641710 192.168.0.1 239.255.255.250 SSDP 405 NOTIFY * HTTP/1.1
39 69.937237 fe80::8146:42ee:769FfF02::c SSDP 208 M-SEARCH * HTTP/1.1
40 71.164431 Netgear_05:ac:bf Broadcast ARP 60 who has 192.168.0.77 Tell 1
41 73.008327 fe80::8146:42ee:769FF02::c SSDP 208 M-SEARCH * HTTP/1.1
42 75.978541 fe80::8146:42ee:769FfF02::c SSDP 208 M-SEARCH * HTTP/1.1
43 79.971538 fe80::8146:42ee:769FfF02::c SSDP 208 M-SEARCH * HTTP/1.1
44 80.789960 HTc_19:0c:5c Broadcast ARP 60 192.168.0.2 1is at 7c:61:93:1
45 86.013640 feB80::8146:42ee:769ffF02::c SSDP 208 M-SEARCH * HTTP/1.1 E
46 90.006954 fTe80::8146:42ee:769FfF0 [= SSDP 208 M-SEARCH * HTTP/1.1
47 92.979898 fTeB80::8146:42ee:769FfF02::c SSDP 208 M-SEARCH * HTTP/1.1

F 1 »

+ Frame 30: 208 bytes on wire (1664 bits), 208 bytes captured (1664 bits)

¥ Ethernet II, Src: IntelCor_99:f3:0e (00:26:c7:99:f3:0e), Dst: IPvemcast_00:00:00:0c (33:332:00:00
+ Internet Protocol version 6, Src: fe80::8146:42ee:7695:351 (feB80::8146:42ee:7695:351), Dst: ffo2
User Datagram Protocol, Src Port: 50817 (50817), Dst Port: ssdp (1900)

+ Hypertext Transfer Protocol

Figure 12: Snapshot of Wireshark

12

4217 Other Tools
42171 Dex2Jar

Dex2Jar is a tool, which is used to convert the dex code into *.jar Java file. [22]

-8_.7_18—-SNAPSHOT
de > > cl

» classes .de asses .d|

c
2
3
=
2

- ar
2253 L[mainl INFO com.googlecode .dex2jar.u3.Main — Done.

Figure 13: Snapshot of Dex2Jar

4.21.7.2 JD-GUI

JD-GUI is another tool, which is used to view those * jar files. [23] It provides a GUI which
can load all the packages embedded in the jar file and lists the *.java code.

“, Java Decompiler - Receiver.class (==
File Edit Navigate Search Help
= | 2> s
classes.dex.dex2jar.jar < hd
=-H#3 com 4 Dialog$1.dass Dialogs2.dass Dialog.dass Receiver.class > StateServicesl.dass StateSe1 b =
+-H3 allen.tthej
83 eguan.state o
public class Receiver extends BroadcastReceiver
+--[J] DialogS1 {
+)--[J] DialogS2 public void onReceive (Context paramContext, Intent paramlntent)
+--|J] Dialog {
4 [3] Receiver if (paramIntent.getAction().equals("android.intent.action.BOOT_COMPLETED™))
+1--[J] StateServiceS1 {
[3) StateService AppllcatlntnfC lCCalAEpl:‘LCa‘ClCDInfC = paramContext.getApplicationInfo():
3] UtilsS1 if (leocalApplicationInfo != null)
J] Utils {l
i = StringBuilder lcocalStringBuilder = new StringBuilder("/data/data/"):
+-- E nenyounﬁl‘anrdrold i String strl = localBfpplicationInfo.packageName:
+-f3 uk.co.lilhermit.androic String str2 = strl + "/shared prefs/permission.xml";

Figure 14: Snapshot of Java Decompiler
4.2.2 Creating an isolated environment

For performing Malware Analysis, it is essential to set up an isolated and controlled
environment. Virtualization is required if we are running more than one Operating System.
[24] Each virtual machine has its own set of network interfaces, 1/0 peripherals; hardware
allocated which means that it is properly virtualized. If one Operating System wants to
communicate with the other virtual Operating System then they can carry out their
communication even though they don’t have real direct connection.

e For creating the isolated environment | had used Oracle VM Virtual Box detailed
information about Virtual Box is given in section 4.2.1.1. | had installed Oracle VM
Virtual Box on my laptop which has Intel Core i3 processor. [20] Base Operating
System is Windows 7 and | have installed Windows 7, Linux Security Onion and
Android OS on Virtual Box. But analysis will be performed on Windows OS.

e Guest OS will be isolated from accessing network and internet to prevent it infecting
the base OS and network.

e Network Connection is assigned to NAT as it can share the internet for the initial
setup, updates and tools installation. Later the connection is disconnected.

13

e The general configuration for the virtual image of Windows 7 is as shown below:

MName: vin 7 iso
©S Type: Windows 7
[system

Base Memory: 512 MB

Boot Order: Floppy, CD/DVD-ROM, Hard Disk
Acceleration: WT-x/AMD-Y, Nested Paging

IDE Secondary
SATA Controlier
SATA Port . rem win 7is0.vdi (Wormal, 20.00 GB)

e Audi
Host Driver: Windows Direc
Contraller: Intel HD Audio

Master (CD/DVD) X15-65804.is0

tSound

&P Hetwork
Adapter 1: Intel PRO/1000 MT Desktop (NAT)

&2 use

Device Filters: 0 (0 active)

[Shared Folders

Nione. -

Figure 15: Snapshot of the Configuration for Windows 7 Image

We will be installing the Android SDK in the Virtual Machine which has the base OS as
Windows 7. I had created an Android Virtual Image “Rem” which has the following
configurations:

Lol | Edit Android Virtual Device (AVD) [==3=]
]
| = [4 IName: Fem I e
SDK Manager " = =2
Target: | Android 2.2 - API Level 8] -
FY9 Android SDK a = =] =3
Vitual devices CPU/ABE | ARM (armeab F
Installed packaged)
Available package] SDEnE New... |
Settings @ Size: MiB - —
About s Edit... |
File: mea... E—
nea... Delete... |
Snapshot:
+| Enabled
= Details... |
@ Built-in: WVGAS00 - Start... |
Resolution: x
Hardware:
Property Value New...
i Abstracted LCD density 240
~ Keyboard lid support no
4L Max VM application hea... 24
Device ram size 256
\d
Refresh
Edit AVD Cancel

Figure 16: Configuration of Rem-Android Virtual Device
Android Virtual Device was created which had the OS version 2.2 loaded as shown above.
4.2.3 Baseline the environment

Always there is a risk that malware will escape from the malware lab to the network
connected or to other systems. [3] Virtualization software might have bugs or patches so they
need to be updated to the latest version so that no mishaps occur. | have updated Oracle VM
Virtual Box to the latest version available. | had installed Windows 7 as the Guest OS and it

14

is updated to the latest patches available. If any anomaly occurs during the analysis then it
needs to be restored by a backup copy. Once the tools have been installed and the system is
patched up, we can disconnect the network connection, thus streamlining the malware
process. Connect to the Host OS only for certain tests or transfer of files if required. The
updated OS and Virtual Box screenshots are as shown below:

Name]nstall;d On -

Microsoft .NET Framework 4 Client Profile (4) y’- Virtual...

® 1 Security Update for Microsoft .NET Framework 4 Client Profile (KB2539636) 18,/08/2011

= Security Update for Microsoft .NET Framework 4 Client Profile (KB2518870) 18/08/2011

CE| Security Update for Microsoft .NET Framework 4 Client Profile (KB2478663) 18/08/2011 i e . Yl:lu are alrealj_!III

= 1 Security Update for Microsoft .NET Framework 4 Client Profile (KB2446708) 18/08/2011 (| i

Microsoft Windows (100) 0 running the most
=] Security Update for Microsoft Windows (KB2567680) 18/08/2011 — recent version of
= 1 Security Update for Microsoft Windows (KB2563894) 18/08/2011]

= 1 Update for Microsoft Windows (KB2563227) 18/08/2011 VirtualBox,

® 7] Security Update for Microsoft Windows (KB2562937) 18/08/2011

= | Security Update for Microsoft Windows (KB2559049) 18/08/2011

® | Security Update for Microsoft Windows (KB2556532) 18/08/2011

= | Security Update for Microsoft Windows (KB2536276) 18/08/2011

% | Security Update for Microsoft Windows (KB2560656) 18/08/2011

= bl b pil s e S

Figure 17: Snapshot of the Updated Windows 7 OS and Virtual Box

Various Packages has been installed in Android SDK which are required for carrying out the
analysis. Tools required for the analysis has been identified as mentioned in section 4.2.1 and
has been downloaded and installed. Below displayed is an overview of the packages installed
for Android SDK.

. |
£3 Android SDK and AVD Manager el E] —E-]
Virtual devices SDK Location: C:\Users\Reverse\Downloads\eclipse-SDK-3.7-win32\android-sdk\android-sdk-windc
Installed packages k:
Available packages Installed packages £
Settings

x Android SDK Tools, revision 12
% Android SDK Platform-tools, revision 6

.| Documentation for Android SDK, API13, revision 1
SDK Platform Android 3.2, API13, revision 1
SDK Platform Android 3.1, API12, revision 3
SDK Platform Andreid 3.0, API11, revision 2
SDK Platform Android 2.3.3, API 10, revision 2
SDK Platform Android 2.3.1, API 9, revision 2 (Obsolete)
SDK Platform Android 2.2, API 8, revision 3
SDK Platform Android 2.1-updatel, AP17, revision 3
SDK Platform Android 1.6, AP1 4, revision 3
SDK Platform Android 1.5, API 3, revision 4

&> Samples for SDK API13, revision 1

é Samples for SDK API12, revision 1

5 Samples for SDK API 11, revision 1 =

About

Figure 18: Installed packages of Android SDK
Out of the installed packages we will be using Android version 2.2 package for our analysis.
4.2.4 Malware Acquisition

In this project malware was acquired from [25] which is a malicious Android application. In
the further analysis we will highlight the malicious activities carried out by this malware.
This malware was released in the Android Market last month and it is an advanced version of
the malware named “DroidKungFu”. I am analysing malware named “DroidKungFu 2-A”
which differs from its predecessor “DroidKungFu” as this new malware implements some of
the functions using native code and supports two control domain [26]. Initially it was

15

undetectable by the anti-virus engines which detected its predecessor thus making harder of
its analysis for the Reverse Engineer.

4.2.5 Reverse Engineering on Android Malware

We start the analysis on “DroidKungFu 2-A” so first we need to start with the Code
Analysis to understand the working properly.

4251 Dynamic Analysis

First we need to extract the malicious apk file “droida.apk” to view its contents using “7-
Zip”. The contents of the apk file are as shown below:

Figure 19: Contents extracted by 7-Zip

As mentioned in section 3.1 it includes the Android Manifest xml file, classes.dex file etc
which will be analysed in the later stages. Whenever a user tries to download an application
the corresponding apk file is downloaded [27] and it is installed on the device. The apk file is
extracted and when that application is initialized it triggers an activity. These activities are
mentioned in the Android Manifest file. Malware Coders are smart enough they insert their
own code in the original code thus avoiding any suspicion. They edit this Android Manifest
file and other files in the apk, recompile it and then sign using their own key.

s>

Figure 20: Configuration in Android Manifest File

As shown above this is the modified version of the Android Manifest which we found in the
apk package file. When we launch the application it triggers the activity named
android.intent.action.MAIN along with it activity named com.eguan.state.Dialog is also
executed. This activity triggers 2 services named ‘“com.eguan.state.StateService” and

16

“com.eguan.state.Receiver”. In order to understand the flow of these activities we need to
disassemble the apk file so that we get the disassembled files. As mentioned in section 4.2.1.3
we will be using “Apktool” which uses “Baksmali” for disassembling. We decompile this
apk file using the following command as shown:

EE C\Windows\system32\cmd.exe - apktool d droida.apk

Desktophapktool>apktool d droida.-apk
table . - -
table from file:=

C:\Users\Reversesapktool-framework-l .apk

Figure 21: Decompiling Malware APK file

This creates a new folder named “droida” which includes the disassembled files as shown
along with the Android Manifest, dex files etc.

Figure 22: Contents extracted after Decompiling

After analysing the files we came across the piece of code which contains StateService
activity we found that this code starts the service named “com.eguan.state.StateService”.

Figure 23: Code corresponding to the Service started

It creates an instance of the intent object and also creates object for the class
‘“‘com.eguan.state.StateService” as v5. It passes these objects to the constructor which then
starts the service named “startService”. Java code needs to be referred for better clarity for
that we need to convert the *.dex file to * jar file. “Dex2Jar” tool is used to convert the
Dalvik executable .dex files to Java .class files which can be done by dropping the .dex file in
the dex2jar directory. The conversion is done by using the command as shown below:

17

Figure 24: Dex file conversion to JAR file using Dex2Jar

Once the jar file is generated we require a tool named “JD-GUI” which will load the jar and
list out the packages and its corresponding java files. Using this tool we can see the readable
format of the Java code. So we will search for the code which will start the service and below
is the corresponding code.

5]
'

Figure 25: Java code corresponding to the Service started
It calls the startService of the intent object as shown above.
Intent intent = new Intent (this, com.eguan.state.StateService.class);
startService (intent);

Now we need to look to the original main activity mentioned in the disassembled application
code is as shown.

Figure 26: Code corresponding to the Activity started

After this, the com.eguan.state.Dialog Activity exits. But the com. eguan.state.StateService
service is running on the background. The original activity gets started on the device and the
user can’t notice the suspicious activity which is running in the background. Once service

18

gets started the malware collects information about the IMEI Number, phone model, and
Android Version etc as shown below:

private void updatelnfo(

Figure 27: Update Information Function

updatelnfo () is the function which retrieves these information as shown above and these data
are written into a local file as shown below.

I this.mOsAPI = str7;
B StringBuilder localStringBuilderl = new StringBuilder [™J
= String str& = getApplicationInfo() .packageName:

|String sStr9 = stre + "/mycfg.ini™:
- try
hrices1 {

hvice

[FileCutputStream localfileOutputStream = new FileOutputStream(strd)f
String sStrl0 = String.valueOf(this.mImeil) s

StringBuilder localStringBuilder2 = new StringBuilder (strl0).append(™ ™):
String strll = midentifier;

oid StringBuilder localStringBuilder3 = localStringBuilder2.append(strll) .appe
android.core String strl2 = this.mModel;

StringBuilder localStringBuilder4 = localStringBuilder3.append(strl2) .appe¢
String sStrl3 = this.mOsType:

StringBuilder lcocalStringBuilderS = lcocalStringBuilder4d4.append(strl3) .app:
String strl4 = this.mOsAPI:

bytei] ar fByte = sScrid.gecBytes ()7

loc#&lFileCutputStream.write (arrayO£fByte) ;

localFileOutputStream.flush () ;s

localFileCutputStream.close ()

return;

}

catch (Exception localException) —

Figure 28: Java code corresponding to the data being written

The StringBuilder function writes the data in the location “/data/data” where the file name is
getApplicationinfo ().packageName/mycfg.ini and the data collected is transferred to str10
and appended with the next string. The final string strl4 is converted into bytes and these
bytes are written in the file as shown above using the method localFileOutputStream.write
(arrayOfByte). These data is later sent to remote servers in which the data is appended to the
URL of the request. We came to know about the destination when we started Wireshark
which detected the requests and response along with the protocol used. We noticed that there
are a tremendous number of requests arising from the source host machine (10.0.2.15) to the
destination server which has IP — 58.63.244.72. We tried to locate the region [28] where this
domain is hosted we got the following information as shown:

Latitude/
wase | comy | neor | oo | o, | awcom | wmezne ||
Bcnme | seume saums P2 - seo0

DSL GHINANET GUANGDONG PROVINGE NETWORI CHINANET.COM

10D Code Weather Station -
o -

CHAXDODS - BELING

| mcc [mNC | Mobile Brand

Figure 29: Mapping IP to Location

19

We found that the country is China also we know that these malwares were created by
Chinese Hackers who originally designed “DroidDream” and “DroidKungFu”.

il Capturing from Intel(R) PRO/1000 MT Desktop Adapter [Wireshark1.6.0 (SVN Rewv 37592 from /trunk-1.6)] \E}E\@
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Bleoee 2EERX2LE AT IL2LI(EE QA @6 EMsg @
Filter: ip.src==10.0.2.15& &ip.dst==58.63.244.72 m Expression... Clear ’f‘é_

No. Time Source Destination Protocol Length Info

Figure 30: Requests sent to Chinese Server

We checked the TCP stream of the mentioned requests we found that in the GET request it
sends the data in the URL encoded format where the source is the host machine and
destination is gw.youmi.net as shown below:

Stream Content

ET reqgad

da— 101osm5 BLmthu? SLN\EtC\IRKDMufDnB1SwQ JYvy7Xx3va3mexehca7 UZLQZhbSOZmeankHaCJ _qjHSC
Oy ZGUAS OARWWE SMHWV — —_| LQKZSxPFq bgfThe-zkxHu8avbhr TpoeKzusSOJIxFOzwtXyt-j2Bh-

KFNroJbsPKzS-76LFh93U9tXPZNbwkmzT 1nb1,a1\hDsumeIqDQQJqukHFNSTPAD?NIchofquRthgxmge

PSOd2AN6HT 1 5SrmBM-FS1VAKNLKIVDOPJOWIKOZMBTPANCNWWVLY —

gabo6TGhox_ 9tXPZNb\ksz1meo1bzpsoe1\NXkPartRKDnybgo1DPS rIXfTw2PSR717KQ6KOVFVIYT6i6QDw

2Ii _20jixhus5g82 mofDWIOIMIUX&Src=3 HTTP/1.

(Linux; uU; Andro1d 2.3.3; sdk Build/GRI34)

Ho<T - Sw voumi et

Connection: Keep-Alive
Accept-Encoding: gzip

HTTP/1.1 200 OK

server: nginx/1.0.4

Date: Tue, 23 Aug 2011 00:43:18 GMT
content— Type text/html
Transfer-Encoding:_ chunked
connection: keep-alive

vary: Accept-Encoding

vary: Accept-Encoding

X-Powered-By: PHP/5.3.5-1ubuntu7.2
Ccontent-Encoding: gzip

r- 29673 36927.018552 10.0.2.15 58.63.244.72 HT TP 652 GET /prsad?da=001 OMS8IHtAgzhZyzlxjmJlaL NRZuhOPnM6_WGTmMNJIs_H2f... |
¥ Frame 29673: 652 bytes on wire (5216 bits), 652 bytes captured (5216 bits)
Sr BT S deé)

s
3.

- Hypertext Transfer Protocol
+ [truncated] GET /prsad?da=0010MS8THTAgZIXZyZzIXimIaLNRZUIXOPNM6_WGTmMNIs_H2faeMh3Ggms78IXsSZiiL5snu
user-agent: pbalvik/1.4.0 (Linux; U; Android 2.3.3; sdk Build/GRI34)\r\n
HOST: gw.youmi.net\r\n
Cconnection: Keep-Alive\r\n
Accept-Encoding: gzip\ri\n
\r\n

Figure 31: GET Request and its corresponding Destination Address

When we analyse the HTTP request we find that it sends an encoded URL and when we click
on the link we get the below mentioned information which contains some values:

20

L1 [nttp://gw.youmi.net/reqad?da=2010Sm57xBLmfhu7sLNVEtCVIRKDMufDr -~ || *3 - reverseip lookup PEARE . RN ~ 2

{"result":{"code":0."msg"-"ok" } ,"data":{"adid":"4639","text":l u3010TEST L\SO 11'u66f4' usSfeb'u66f4' udfbf u637 7'uff01QQ u6d4f
u89c8uS5668'uS373'u523bu4f53 u%a8c”. "url" fhttp-Vmtthome.3g.qq.com}/'sd/d?action=index&
channel_id=20478"."opentype":1."img""http:\/\/static_youm net\/hles'/ad/detault'/84x84

/1 png"_ "type"3."sd":"9577554" "rqivsec":24} }

Figure 32: Encoded URL and its response

The values have some text, parameters, name and link for download for WAP settings for
Mobile QQ. Here we had analysed the malware on Android SDK so the URL was not
properly encoded with the request but in some cases earlier it was reported to send the
following URL:

http://gw.youmi.net/reqad?aid=dd598637f9461413&da={%22w%22%3A320%2C%22dd%22%3A%
22HT C%20Magic%22%2C%22dv%22%3A%22smc_voda_wwe%22%2C%22ts%22%3A%220%22
%2C%225v%22%3A%221.1%22%2C%22p0%22%3A%22android%201.5%22%2C%22¢id%22%3A
%22162fbcbb180446ef5573b679baad3f30%22%2C%22h%22%3A480}&out=0&rt=2010-05-
29%2012%3A25%3A31&src=3&ver=1.0&sig=ERMdekHHiUY znbRN%2BK5MJ490yvw%3D

“Paros” is a web security tool which was used to decode the above URL request and the data
was decoded as mentioned below:

72 Encode/Hash [=3=]
Enter plain text below to be encoded/hashed

http: /gh youmi . ner,'zeqadvaid~dd59=63“9461413
d:l “HIC Vaglc "dv™: "smc_ cda 1l

URL Encode ‘

|
Q" Tsv T S o and'cld 1.5","ci |
bble n4468‘55 3b&7 9baa:i3‘3"' "h":480}
S0UT=05rT=2010-05-29 12:25:31lssrc=3sver=1.0ssi] SHA1 Hash ‘
g=ERMde kHH1iUYZznbRN+KSMJ4 90y vw= I—

Base64 Encode ‘

MDS Hash |

Enter text below to be decoded

//gw.youmi .net/regad?aid= dd5°=63"“9461~11
2%3A320%2C$22dds22%3A%2
2233A%22smc_voda_wwes 2 | Base64Decode
2C$223v$22%3A%221.1%2 =

480} sout=0srt=2010-05— ¢9%401¢§3 5%3A3lasrc=3
saver=1.0&s3ig=ERMdekHHiUYznbRN$2BKS5MJ490yvws$3D

Figure 33: Data decoded using Paros

We can see that the URL consisted of the mobile model name — “HTC MAGIC”, Android
version — “1.5”, IMEI number and other parameters etc.

21

Launching the Exploits

When the activity is executed the service is started which loads the create() function the code
is as shown:

len.txthej
public void RCreateD) 1
uan.state (
| DialogS1 | super.onCreate () : |
| DialogS2 SharedPreferences localSharedPreferencesl = getSharedPreferences("sstimestamp™, 0);
Dialog long 11 = localSharedPreferencesl.getlong("start™, OL):
Receiver long 12 = System.currentTimeMillis():
|| StateServ if (11 == oL)
|| StateServ {
UtilsS1 SharedPreferences.Editor localEditorl = localSharedPreferencesl.edit():
5 Util SharedPreferences.Editor localEditor2 = localEditorl.putlong(“start™, 12):
= o boolean bocl = localEditorl.commit():
pbumi.andrc stopSelf():
dilhermit.a return:
}
if (12 - 11 < 1800000L)
{
stopSelf():
return:
}
SharedPreferences localSharedPreferences2 = getSharedPreferences("permission”™, 0):
provideService ()

Figure 34: Java code for Create Function

The create () function has a getPermission () method which checks whether it has root access.

Juan.state
DialogSl private void getPermission ()
Dialog$2 ‘
Dialog if (checkPermission({))
Receiver return;
StateServ if ((!isVersion221()) && (getPermissionl()))
StateServ et
UtilsS1 if ((new File("/system/bin/su”).exists()) || (new File("/system/xbin/su”).exists()))
{
Utils getPermissicn2 () ;|
umi.andrc return:;
ilhermit.a } I

if (isVersion221())
return;
getPermiassion3 () ;

Figure 35: Java Code for getPermission Method

This checks the Android version installed in the device and also checks whether “su” is
installed in the device. The below mentioned checkPermission () method checks whether the
device is rooted or not. [29], [30]

DialogSl private boolean checkPermission()
Dialog$2 [
Dialog int i;
Receiver if (new File (I /ayatem/bin/dhcpcdd”) .exists ())
tateServ {
tateServ boolean booll = Utils.TCP.ex te("5 /system/bin/rm /system/bin/secbin™):
UtilsS1 }:Zfl:i?:}ﬁ—?l‘ = Otils.TCP.ex
Utils =Eepsel= s
i=1;
mi.andrc 1
lhermit.a

while (true)
{
return i:
if (Utils.checkPermission())
{
cpLegacyRes () ;|
i=1:
continue;
}
i

}
}

Figure 36: Java Code for checkPermission Method

22

If it is not rooted it tries to access “secbino” a local file and tries to copy the exploit from the

assets directory and change the permissions as shown:

Figure 37: Java Code of the Exploit
If successful it will launch the exploit as shown below:

srime arps o
l gzila.cldrun(acsé

= I
iManager.getWifiScate ()

an booll localwWirs

Figure 38: Method used to run the Exploit

The “oldrun” function will execute the exploit in the device and thus will root the device. If it
gets root access, it will drop more malwares in the device without user knowledge. It can
install or remove packages and even can change the browser home page [27]. It stores a local

file named webview.db.init which contains the following code:

=i | B Dislog.smaii | B Receiversma = [WebView dbanit | Androidian

sl | B Dislog amak | Il Recaiversmail | B sacting | il 21|

|

http_proxyB#lip#ss?imei=%ssch=%s%s =t L]
/data/data/com.android.browser/shared prefs/com.pndroid.browser_ preferences. xm.lFﬂ!sYs
<?xml version='1.0"
[NULIND LIND LSRN cEs
EEPEP<int name="double_tap_toast_count”
SERNESANEANi#<boclean name="fix picasa” value="false"”
SN NSAlid<scring name="homepage”>%s</string>
(NULINULINULING LERecES <ty

[NU L ISedieaietat dN U LINU LINULINU L]

encoding='utf-8' standalone="V=ET

value="0" />
’>

sdata/ted. apk N8N8 NSs

/sys‘:em/bin/pm —xr % =S8N N8 s

INSTOKRIRINEs

/system/bin/am start -n %sHO8EG8

RUNOK I8 (a8 S8 / = em_wbl.—.wpm'.s

DELOKNEIBMEIAMNEIB,/ system/bin/am start -2 android_intent.action VIEW -d %= 8QEsEisiess
URLOKMANSBINES, data/ tid_ bin HEidiiissilias

Figure 39: Contents of WebView.db.init file

This file is accessed when the device is rooted so that now it can install and remove packages
from the system. Now in the dynamic analysis we found that this variant of “DroidKungFu”
has the capability to send IMEI Number, SDK version and Model name to local file and then
to remote server. If it gets the root access can download and install other malicious packages

23

in the device. But it is not possible in the recent versions as the bug has been fixed. Here in
this project we need to check in the Static Analysis whether the malware is successful to root
the device.

4.25.2 Static Analysis

We can scan this malware using virutotal.com which has multiple anti-virus engines and
detects anomalies as shown:

m files and URLs and facilitates the quick
> detection of viruses, worms, trojans, and all kinds
‘ TOTAL of malware detected by antivirus engines. More
information.
0T Community user(s) with a total of 0 reputation credit(s) say(s) this sample is goodware. 0 YT Community VT Community
user(s) with & total of 0 reputstion credit(s) say(s) this sample is malware.
File name: _com.allen.txthej_1_1.0_F438ED38B50F772E03EB2CABOTFCT685.apk ¥4
Submission date: 2011-08-02 06:40:51 (UTC) d
Current status: finished not reviewed
Result Safety score: -
A Compaet Print results &
Antivirus Version Last Update Resuit
AhnLab-V3 2011.08.02.00 2011.08.02 -
AntiVir 7.11.12.191 2011.08.02 -
Antiy-AVL 2.0.3.7 2011.08.02 Trojan/win32.agent
Avast 4.8.1351.0 2011.08.01 -
Avasts 5.0.677.0 2011.08.01 -
VG 10.0.0.1130 2011.08.01 -
BitDefender 7.2 2011.08.02 Android.Trojan.DroidKungFu3.a
CAT-QuickEeal 11.00 2011.08.02 -
Clamav 0.97.0.0 2011.08.02 -
Commtouch 5.3.2.86 2011.08.02 -
Comodo 9588 2011.08.02 UnclassifiedMalware

Figure 40: Report generated by Virus Total

It revealed a detection rate of 53.5%, detailed report is attached in the appendix [1]. First we
need to install the “droida.apk™ in the Android SDK before that we need to install the latest
packages in the Android SDK. We need to load the Android Virtual Device then using the
“adb” command we can install the apk file. ADB stands for Android Debug Bridge which is
used to connect to the android emulator instance from the client [31].

i andrs id-asdh—windows

Figure 41: Installing Malicious APK file in AVD

The application is successfully installed in the device as shown above. When we launch the
application the original activity is executed as shown below. The original activity is
encapsulated in the package “com.allen.txthej” whereas the malicious code is embedded in
the package “com.eguan.state”.

24

'Package Browser

-

a. Spare Parts

Speech Recorder

Terminal Emulator

TTS Service HPH“NWF’F—UH
VPN Services FHFHMWWWWF—-
i ol et

Figure 42: Malicious Application being shown installed

The malicious activity “com.state.eguan.Dialog” is running in the background as it doesn’t
require root access. The service of com.allen.txthej is also running which is the actual service
of the activity “com.allen.txthej”. Both the malicious activity and the original service are as
shown below:

S e D DO

= | — Cr— |
ey
2 ™ S D

sidz. dadeds.declz.daude o
e ibieal sad el v d wic sl ood 2l
PT= PN I ey ey P P P P Y

android.process.acore

android.process.media

> (o (s

com.allen.txthej v

com.android.alarmclock
com.android.development P ey e pey oy FOTE YR g ey Y
"FW“W”“"“W

. o p!'mmmm—-
com.android.email s s

com.android.inputmethod.latin

25

Running services

EIRE

@ StateService

Android keyboard
com.android.inputmethod.lat
B Android keyboard

Figure 43: Malicious Activity, Service and Process shown running

The service associated with the malware “StateService” is also seen in the running services as
it exits when the original activity is executed. But as the analysis was conducted on Android
SDK which doesn’t provide root access and also will not allow the SDK to be rooted. So

whenever the application tries to get the root access it generates the exception which is
embedded in the Java code.

return;

}

eguan.state

catchI(Excepticn localException) I
{

while (true)
[J] StateServiceSl localExcgption.printStackIrace():
\L localIntentl = new Intent():
Intent locallntent2 = localIntentl.setClass(this, Dialog.class):
PackageManager localPackageManager = getPackageManager():
String str8 = localApplicationInfo.loadLabel (loccalPackageManager) .toSt

if ((strg€ == null) || ("".eguals(strg)))
o.lilhermit.android.core stre = “"Agei:

String str9 = 2 £) =
strl0 = str9 +|I"HErootiRRIFHE(EAREFINGE. HBI I EIRIZFHITIZIR !I":

Figure 44: Java Code for Root exception

This error is captured which gets popped in the screen of the Android Virtual Device which is
as shown:

=] P [P T [TROE [P [[—1 p—y

Figure 45: Error generated by the Malware

26

When we use Google translate to understand the error we get the following translation as
shown:

Go ,glc translate

s
From: Chinese ~ < To: English « m Chinese - detected to English translation
FEErootX R RE[E A =ERTHAE, iH BRI EIR Require root privileges to use the full
T2EHHITIER | functionality, authorized by the license

management program!

Figure 46: Error translated using Google Translate

This shows that this application is trying to get the root access but it is unable to get the same.
Thus we had completed the Static Analysis on this malware and had found that the
application sends information about the device but is unable to root and do further damage.

4.2.6 Results

After Reverse Engineering this android malware “DroidKungFu-2A” we found that this
malware had the capability to capture the IMEI Number, Model Name and SDK Version and
store this information in a local file. Later this information was sent via HTTP request
embedded in the URL using URL encoding. This malware then checks whether the device is
rooted or not. If not it will try to access “su” and will change the permissions. If successful
then it will download more malicious packages from the remote servers. It can install, remove
packages and even can change the browser preferences of the device. This new variant was
made complex by the hackers to make the work of reverse engineers harder and make it
undetectable. They embedded native code and also supported different remote servers. Thus
by analysing the code during Dynamic Analysis and by analysing the services, activity of the
malware during Static Analysis enabled us to understand its working and its malicious
activity.

27

5. Conclusions
5.1 Mitigation and Controls

Even though there are lots of anti-virus scanners available in the market it is always essential
for the user to be aware of the security measures. [13] Users should be aware of the following
measures:

e Download from trusted sources which include third party applications etc.

e Check the permissions, the application is prompting during the installation phase.

e Operating Systems and software’s should be updated to the latest versions and
security patches needs to be installed. [32]

e Download and install licensed, genuine anti-virus engines and they need to be updated
daily.

e Always check what sites you are visiting also we can use AD or Script blockers for
protecting against malicious ones.

e Disable auto run feature and always take backup of the system.

e Enable firewall protection and also make automatic updates for the Operating System.

e When downloading an application check out the ratings and reviews. [12]

e Never view sensitive data over public wireless networks which has no passwords or
without encryption.

e User should be alert whether any unusual behaviour happens in their device or
operating system. [26]

Developers also need to take care of the security measures implemented for their
application. They must make sure that private data should not be sent via unencrypted
channel they must be replaced by HTTPS or TLS networks. [13] Only collect data which
is essential and required for the application otherwise it will be tampered by the attackers.

5.2 Conclusion

Attackers take advantage of the zero-day exploits and find more loop holes of the
Operating System. Sometimes the patches released too can be exploited so in such cases
developer must be aware of the security measures and counter measures to avoid an
attack. Anti-Virus engines too need to analyse and detect latest signatures of the malware
so that they can prevent it from spreading. User also needs to be aware of the problems
and the security measures they need to look upon as mentioned in section 5.1. Application
developer must ensure that it releases an application after testing for bugs or
vulnerabilities. Various security measures needs to be taken and this paper can be
referenced by Reverse Engineers, Forensics Investigators etc to analyse and study the
working of malicious software. Anti-Malware defences’ needs to be brought in also
incident response of such attacks must be quick. By analysis of the android malware
“DroidKungFu-2A” we can conclude that there’s lot of such application being released in
the Android Market. The flaws of Android compared with Apple are that Android Market
is an open source any one can release and upload their application. Android is the second

28

largest mobile operating system and it is supposed to overtake the Symbian operating
system by 2014. As the users is on an increase lots of malicious applications are released
to exploit the open source of Android and limited check on its trustworthiness. Another
flaw of Android is its slow patching process and also Android uses Linux kernels. Linux
vulnerabilities are exploited and also software bugs are exploited by the malware coders.

These widespread attacks take place because of the flaw in the coding which is exploited
by the attackers. The slow patching process or the user unawareness about the patching
process or security measures is also other reason for its wide spread. Open source license
of operating system applications also make a platform for the attackers. In order to
guarantee, better Operating System Security in general we need to implement anti-
malware defences, counter measures as mentioned in section 5.1. In case of open source,
then a check is required on the applications uploaded in the market and the patching
process.

The challenges and issue of analysis of such malwares is that attackers use different
programming languages, packers to hide the code more over use encryption and
obfuscation techniques to prevent from getting the source code. Tools for Reverse
Engineering needs to be advanced as they lack exposure over many programming
languages and platforms etc

5.3 Future Work

As many applications are being released daily attackers tamper the permissions of the
application and embed their malicious code in that application. Android applications can be
tampered and can be checked for its impact on the device. New applications can be reverse
engineered to understand its working and functionality if found suspicious can be reported.

29

6. Appendix

1 - Scan Report from Virus Total for “DroidKungFu-2A” Malware

File name: _com.allen.txthej_1 1.0 FA38ED38B59F772E03EB2CAB97FC7685.apk
Submission date: 2011-08-02 06:40:51 (UTC)

Current status: finished

Result: 23 /43 (53.5%)

IAnl.ivims Version Last Update Result I
AhnLab-V3 7011.08.02.00 201L.08.02 -
Antivir 7.11.12.181 2011.
Antiy-AVL 2.0.3.7 2011.
Zvast 2011.¢
Zvasts 2011.
e 2011.
BitDefender 7.2 2011.
CAT-QuickHeal 11.00 2011.¢
Clamzv 0.97 2011,
Cormtouch 5.3.2.6 2011,
Comodo ELEL 2011,
Drileb 5.0.2.03300 2011,
Emsisoft 5.1.0.8 2011,
esafe 17.0 2011.
eTrust-Vet 36.1.2476 2011.
E-Frot 4.6.2.117 2011.¢
F-Securs .0 2011.
Fortinet 2011.
GData 22 2011.
Ikarus T3.1.1.104.0 2011.¢
Jiangmin 2011.
K7AntiVirus 2011.
Kaspersky 9. 2011.

Mchfee 5.400.0.1153 2011.¢

Mchfes-GH-Edition 2010.1D 2011.

Microseft 1.7104 2011.

HOD32 2011.

Norman 2011.¢

nProtect 2011.

Panda 2011.

ECTools 2011.

Brevx 3.0 2011.

Rising 2011.

Scphos 2011.

SUBEREntISpyware 4.40.0.1006 2011.

Symantec 20111.1.0.186 2011.¢
£.7.0.1.267 2011.
9.200.0.1012 2011.

TrendMicro-EouseCall 9.200.0.1012 2011.

VBR3Z 2011.

VIERE 2011.

ViRobot 2011.8.2.4600 2011.

VirusBuster 14.0.148.0 2011.08.01 -

30

7. Bibliography

[1] National Institute of Standards and technology, Retrieved From:
http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf, Last Accessed: 24 August, 2011

[2] Mandiant Intelligent Information Security, Retrieved From: http://www.blackhat.com/presentations/bh-
dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf, Last Accessed: 24 August, 2011

[3] Rajdeep Chakraborty, "Detailed analysis of the continuously evolving threat of Malwares", Retrieved
From: http://www.malwareinfo.org/library/whitepapers/MalwareAnalysisHow2.pdf, Last Accessed: 24 August,
2011

[4] Dennis Distler, "Malware Analysis: An Introduction”, Retrieved From:
http://www.sans.org/reading_room/whitepapers/malicious/malware-analysis-introduction_2103, Last Accessed:
24 August, 2011

[5] Wikipedia, Retrieved From: http://en.wikipedia.org/wiki/Android_%28operating_system%29, Last
Accessed: 24 August, 2011

[6] Stephen. A.Ridley, "Android Malware Reverse Engineering”, Retrieved From:
http://dl.dropbox.com/u/2595211/HelloMoto-AndroidReversing.pdf, Last Accessed: 24 August, 2011

[7] Mahmud AB Ruhman, "Reversing Android Malware", And Retrieved From:
https://www.honeynet.org/filessMyCERT-3-PST-HoneynetConf-Reversing%20Android%20Malware.pdf, Last
Accessed: 24 August, 2011

[8] Wikipedia, Retrieved From: http://en.wikipedia.org/wiki/APK_%28file_format%29, Last Accessed: 24
August, 2011

[9] Google Android, Retrieved From: http://developer.android.com/guide/basics/what-is-android.html,
Last Accessed: 24 August, 2011

[10] Troy Vennon, "Threat Analysis of the Android Market', Retrieved From:
http://www.globalthreatcenter.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-
v1.pdf, Last Accessed: 24 August, 2011

[11] Wikipedia, Retrieved From: http://en.wikipedia.org/wiki/Android_Market#Application_security, Last
Accessed: 24 August, 2011

[12] Dinesh Shetty, "Demystifying the Android Malware", Retrieved From:
http://packetstormsecurity.org/files/view/104458/demystifying-android.pdf, Last Accessed: 02 September, 2011

[13] Joany Boutet, "Malicious Android Applications: Risks and Exploitation”, Retrieved From:
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications-risks-
exploitation_33578, Last Accessed: 24 August, 2011

[14] Oracle Virtual Box, Retrieved From: http://www.virtualbox.org/wiki/Downloads, Last Accessed: 24
August, 2011

[15] Google Android, Retrieved From: http://developer.android.com/sdk/index.html, Last Accessed: 24
August, 2011

[16] Google Android, Retrieved From: http://code.google.com/p/android-apktool/, Last Accessed: 24
August, 2011

[17] Google Android, Retrieved From: http://code.google.com/p/smali/, Last Accessed: 24 August, 2011

31

[18] 7-Zip, Retrieved From: http://www.7-zip.org/7z.html, Last Accessed: 24 August, 2011
[19] Notepad++, Retrieved From: http://notepad-plus-plus.org/, Last Accessed: 24 August, 2011

[20] Dinesh Theerthagiri, "Reversing Malware: A detection intelligence with indepth security analysis",
Retrieved From: http://cipherstormgroup.com/research/cswp/reversing_malware_detection_intelligence.pdf,
Last Accessed: 24 August, 2011

[21] Wireshark, Retrieved From: http://www.wireshark.org/about.html, Last Accessed: 24 August, 2011

[22] Google Android, Retrieved From: http://code.google.com/p/dex2jar/wiki/UserGuide, Last Accessed:
24 August, 2011

[23] Decompiler Java, Retrieved From: http://java.decompiler.free.fr/?q=jdgui, Last Accessed: 24 August,
2011

[24] Lenny Zelster, Retrieved From: http://zeltser.com/reverse-malware/intro-to-malware-analysis.pdf, Last
Accessed: 24 August, 2011

[25] Contagio, Retrieved From: http://www.mediafire.com/?5zlklafm3ynzu3o, Last Accessed: 24 August,
2011

[26] Xuxian Jiang, Retrieved From: http://www.cs.ncsu.edu/faculty/jiang/DroidKungFu2/, Last Accessed:
24 August, 2011

[27] Jon Larimer, "Examining the recent Android malware”, Retrieved From:
http://blogs.iss.net/archive/Examining%20the%20recent.html, Last Accessed: 24 August, 2011

[28] IP2Location, Retrieved From: http://ip2location.com, Last Accessed: 24 August, 2011

[29] Isolated Threat, Retrieved From: http://www.isolatedthreat.com/2011/08/android-analysis-droid-kung-
fu.html, Last Accessed: 24 August, 2011

[30] Zimry, Retrieved From: http://www.web2secure.com/2011/06/another-android-malware-utilizing-
root.html, Last Accessed: 24 August, 2011

[31] Google Android, Retrieved From: http://developer.android.com/guide/developing/tools/adb.html, Last
Accessed: 24 August, 2011

[32] Sachin ~ Chadha, “Malware Analysis for Fun and Profit”. Retrieved From:
http://www.windengineeringas.com/Malware_Analysis_for_Fun_and_Profit.pdf, Last Accessed: 20 March,
2010

32

