Garage 4 Hackers http://www.garage4hackers.com

Cracking Salted Hashes

Web Application Security: - The Do’s and Don’ts of “Salt Cryptography”

Overview:

Data Base security has become more critical as Databases have become more open. And Encryption
which is one among the five basic factors of data base security.

It’s an insecure practice to keep your sensitive data like Password, Credit Card no etc unencrypted in
you database. And this paper will cover the various Cryptography options available and do and don’ts of
them.

Even if you have encrypted your data that doesn’t mean that your data’s are fully secured, and this
paper will be covered in an Attacker perspective.

Slat Cryptography.
http://en.wikipedia.org/wiki/Salt_(cryptography)

Assume a user’s hashed password is stolen and he is known to use one of 200,000 English words as his
password. The system uses a 32-bit salt. The salted key is now the original password appended to this
random 32-bit salt. Because of this salt, the attacker’s pre-calculated hashes are of no value (Rainbow
table fails). He must calculate the hash of each word with each of 232 (4,294,967,296) possible salts
appended until a match is found. The total number of possible inputs can be obtained by multiplying the
number of words in the dictionary with the number of possible salts:

27{32} \times 200 000 = 8.58993459 \times 107{14}

To complete a brute-force attack, the attacker must now compute almost 900 trillion hashes, instead of
only 200,000. Even though the password itself is known to be simple, the secret salt makes breaking
the password increasingly difficult.

Well and salt is supposed to be secret, to be simple if the attacker knows what salt is used then we
would be back again to step one. So below listed are few possible ways you could use to crack salted
hashes.

FB1H2S http://www.fb1h2s.com

Page 1

Garage 4 Hackers http://www.garage4hackers.com

Application that doesn’t use cryptography hashes:

While auditing a web application I came across this piece of program. It used
java script to encrypt the user password before sending. And a salt too was
used, and the salt used was the current Session ID.

onclick="javascript:document.frm.id.value='user";

document.frm.passwd.value='value’;
this.form.passwd.value=(hex_md5('CC6AB28BA9FAD121184B09EOOF1DD6E7 +this.form.passwd.value));
this.form.submit();

Where “CC6AB28BA9FAD121184B0O9EOOF1DD6E7”.

So In the Back End program:

There would be no way for the back end program to verify the password value, as the salt is used and is the
random session id. And as MD5 function are non reversible hash function, the password cannot be verified
unless and until the passwords are saved as clear text in the Data Base.

The salt used to encrypt the password before sending were the random generated session ids. That
means that the back end databases are no way encrypted.

Some time these kinds of coding gives away a lot of information.

Point NO 1: Always encrypt and save your passwords database.

Slated Hashes.

| recently came across a huge Data Base of a well known !|@#$$il[Encrypted] ©, the Database contained
Email-lds and there alternate passwords, but unfortunately the passwords were encrypted and was in
hashed format, “Good Practice”. So the following paper would be in respect to how | cracked those
hashes.
Cracking The Hashes:
The few possible way to crack hashed passwords are:
1) The algorithm used for hashing should have some flaws and hashes should be
reversible
2) Or that you will have to Brute force the hashes with a wordlist of Dictionary or
Rainbow tables.
3) Or simply if you have UPDATE Privileges on that Data Base Update it with a
know password’s hash value.

For all of these attacks to work you need to know what algorithm the hashes are computed on.

FB1H2S http://www.fb1h2s.com Page 2

Garage 4 Hackers http://www.garage4hackers.com

So what is that you could do to figure out the Hashing Algorithm used??

Answer: All algorithms generate a fixed length hash value, so based on the Output you could estimate
what algorithm was used®. “Well all these things are pretty know facts “, but Still am putting it here.

For this am putting here a small Cheat sheet for figuring out the Hash functions based on the output.

Languagef{
Algorithm ﬂ

PHP

ASP

JAVA

MD5

Function: md5 (“input”);

Hash (“input”) ;
Output: 32 Char
Ex:

“5f4dcc3b5aa765d61d8327d
eb882cf99”

Function:
System.Security.Cryptogr
aphy

Output: 32 Char

Ex:
“5f4dcc3b5aa765d61d8327d
eb882cf99”

Output: 32 Char

Ex:
“5f4dcc3bb5aa765d61d
8327deb882cf99”

Salt+Crypto

Function: Crypt()
By default its DES
Output: 13 Char

Ex: “sih2hDulacVcA”

“w u

“ u

And lot others:

Original Source: http://www.insidepro.com/eng/passwordspro.shtml

FB1H2S http://www.fb1h2s.com

Page 3

http://www.insidepro.com/eng/passwordspro.shtml

Garage 4 Hackers http://www.garage4hackers.com

Hash Type | Hash Example | Additional Information

Used in Linux and ather similar S,

Length: 13 characters,

DES(Unix) Iy57aeTaNz QM Description: The first two characters are the salt (random characters; in our example the salt
the string '1v"), then there follows the actual hash,

Notes: [1][2]

Used for caching passwords of Windows domain,

Length: 16 bytes,

Algorthm: MD4(MD4(Unicode($pass)) Unicode! strialower{ Susername))
Note: [1]

Used in Linux; and ather smilar 03,

Length: 34 characters,

Description: The hash begins with the $1§ signature, then there qoes the satt (up to 8 randorm
MDS(Unix) 414123456 784X M4PIPrKBOKNNTagGIPOT/ characters; in our example the saltis the string "12345678"), then thers gues ane more §
character, followed by the actual hash,

Algorithm: Actually that is a loop calling the MDS algarithm 2000 times.

Notes: [1] (2]

Used in Linux and other similar 05,

Length: 37 characters,

Description; The hash beging with the $aprl$ signature, then there goes the salt (up to
MDSHAPR) $aprl§lZ34ae7aauQ3KaMyat tBidyexg). randarn characters; in our example the salt is the string "12245678"), then there goes ane me
8 character, followed by the actual hash,

Algorithm: Actually that is a loop calling the MDS algorithm 2000 times,

Notes: [1][2]

Used in phpBB 3.,

Length: 34 characters,

Description! The hash beging with the $HS signaturz, then there goes one character (mast oft
MDS(phpBR3) $H§91234567850ER ghLpsr D9zt 20 the number '9'), then there goes the salt (8 random characters; in our example the salt s the
string "12345678"), followed by the actual hash,

T e e P |)

Domain Cached Credentials Adrmin:be 74ddacdfea974da6efdd249040dd91

mkk e MAPE o laaibh e ANAT ..

FB1H2S http://www.fb1h2s.com Page 4

Garage 4 Hackers http://www.garage4hackers.com

Used in Wordpress,
Length: 34 characters,
Description: The hash beqins with the 4§ signature, then there goes one character (most often

MOS(lifardpress) P4B123456780BAGRYSIUnGYERErKEALDL the number ‘B, then there goes the salt (3 random characters; in our example the salt is the
string "12345678"), followed by the actual hash,
Algorithm: Actually that is a loop calling the MDS algorithm 8192 times,
Notes: [1][2]
Used in the old versions of MySQL,

MySQL 606717496665bcha Length: & bytes,
Description: The hash consists of two DWORDs, each not exceeding the walue of 0x7fffff,
Used in the new versions of MySQL,
Lenqth: 20 bytes,

MySQLS 4E6CCONBETARO4BCISEI2BONI CTI2CAECSACAARA | Mlgorithm: SHA-1(SHA-1($pass)
Note: The hashes are to be loaded to the program without the asterisk that stands in the
beginning of each hash,
Used in the application Remote Administrator v2.x,

- Length: 16 bytes,

Radmin v2: SeiZumeaafedSecdlgss 737 a1 247t Algarithm: The password is padded with zeras to the length of 100 bytes, then that entire string
is hashed with the MDS algorithm,
Used in phpBB v2.x, Joomla version below 1.0.13 and many other forums and CHS,

MD5 04cad238a0b923620d0c509a6f 75849 Length: 16 bytes,
Algorithm: Same as the mas() function in PHP,
Used in WB News, Joomla version 1.0.13 and higher,

md5($pass.$salt) w04f0d7506870858bae14ac0badaf73:1234 Length: 16 bytes.
Note: [1]
Used in osCommerce, AEF, Gallery and other CHMS,

md5($salt.$pass) f1900e9acA445d 24974 TcabThed 3f7d5:12 Length: 16 bytes,
Note: [1]

mS{me(pass) sactedie b aDd IS g3 A86ER 06 Used in 8107, DLE, AVE, Diferior, Koobi and ather CMS,
Length: 14 bytes,
Used in vBulletin, TceBB,

md5{md5($pass) $salt) 6011527690eddea2 3550955c216b1fd2 w06 Length: 16 bytes.

Notes: [1][3] [4]

md5({md5($salt) mds(pass))

B1f37275dd805aa01 BdfBbefeN I 3fB:wHE _S

Used in IPB,
Length: 16 bytes.
Notes: [1][3)

md5(md5(§salt) $pass)

816.214db44578F516ck 2ef25000d8206: 1234

Used in MyBE,
Length: 16 bytes.
Note: 11

FB1H2S http://www.fb1h2s.com Page 5

Garage 4 Hackers http://www.garage4hackers.com

Used in TBDeY,
maSi §salt.§pass.fsalt) a3bc0el1fddfdfefddeealleddotteab, 1234 Length: 16 bytes,
Note: [1]

Used in DLP,
mdS($salt.mdS{$satt $pass)) 14715652285 e0abbCakedd 270265208 2:123 Length: 16 bytes.
Note: [1]

Used in many farums and CMS,
HA-1 35621920791 300405457401 8c20d46e63954288b |Length: 20 btes,
hlgorithrn: Same as the shal) function in PHP,

Used in SMF,
shad(strtalower(usermame). $pass) |bdmin:fic7cadd5te3faa5ch303fF5bdecse052e c0BeTa | Lenath: 20 bytes,
Note: [1]

Used in Woltlab BB,
shal(fsalt.shal(fsattshat(§pass))) [od37bfbf6edl 98d11d39a67158c0090ddf345730: 1234 (Lenath: 20 bytes,
Note: |1]

Used in Linu and ather similar OF,

Length: 55 characters,

Description: The hash begins with the §54 signature, then there goes the saft (up to 8 randorr
SHA-256(Unix) 45412345678 4B WLoe Y ZbSvRENUBras3gplavai., [characters; in our example the salt is the string "12345678"), then there goes ane mare §
tharacter, followed by the actual hash,

hlgorithm: Actually that is loap calling the SHA-258 alqorthm 5000 times,

Notes: [1] 2]

Used in Linu and ather similar OF,

Length: 98 characters,

Description: The hash begins with the §84 signature, then there goes the saft (up to 8 randorr
SHA-512(Uni) $6412345678 $L8 TvSELInBmEES 2K end2ofrbEm... (characters; in our example the salt is the string "12345678"), then there goes ane mare §
tharacter, followed by the actual hash,

hlgorithm: Actually that is a loap calling the SHA-512 algorthm 5000 times,

Notes: [1][2]

Well hope this reference table might be of help for you some time.

And out these the hashes | had to crack where “13 Chars” hashes. So it was obvious form my table that
It was based on Php Crypt function.

A simple walk through of of the Php crypt function:
1) It'sis a hash algorithm which takes in a “String” and a “salt” and encrypts the hashes.

2) And by default it uses “DES” to encrypt hashes.

FB1H2S http://www.fb1h2s.com Page 6

Garage 4 Hackers http://www.garage4hackers.com

Consider the Ex:

<?php
Spassword = crypt ('password');

>

Hashes: laAsfestWEigl

Here password hashes generated would be on basis of a random 2 digit salt.
Or we could provide our on salt.

<?php
Spassword = crypt ('password',’salt’);

>
Hashes: sih2hDulacVcA

And the comparison password verification code would be as follows:

if (crypt($user password, S$password) == Spassword) {
echo "Correct Password";

In either of the cases the salt is appended with the Hashes, property of DES. Well as | mentioned above
the security of salt cryptography is on the fact that the salt is unknown to the cracker. But here it’s not.
Well with this basic piece of Information, it was easy to crack hashes that | had in my hands®©.

And all the hashes were cracked easily, all | have to do was load a common passwords dictionary and
add it with the constant salt, and get my work done.

FB1H2S http://www.fb1h2s.com

Page 7

Garage 4 Hackers http://www.garage4hackers.com

Consider the given Hash/salt programs with the following cases.

Salt/Hash algorithm with Constant Salt:

Spassword = Spassword input; //user input
Ssalt = "salted";
Spassword = md5 ($salt.S$password); //saved in db md5 (saltedpassword)

Hashes: 1423de37c0clb63c3687f8f1651celbf

Salt: salted

In this program a constant salt is used therefore the salt is not saved in
the database. So our dumped hashes won’t be having the salt value.

For verifying such algorithms we need to try the following things.
1) Try to create a new user using the target application.

2) Dump the data again and verify what algorithm is used using the above

mentioned methods.

3) Consider the new password added was “password” md5 (‘password’)==
“5f4dcc3b5aa765d61d8327deb882cf99”, instead if the updated value was
“1423de37c0c1b63c3687f8f1651celbf” that says a salt is used and is a constant one as it
don’t seem to be added with the final hashes.

Cracking the salt:

Now for breaking this, the only thing you could do is a bruteforce the hashes for figuring out what the

salt is, for ex:

And once we know the salt append it with every password we check and crack it.

We know :

Md5 (‘password’) == “5f4dcc3b5aa765d61d8327deb882cf99”

Now question is

Md5(‘password’ + “????WHAT????”) ===
“1423de37c0c1b63c3687£8f1651celbt”

FB1H2S http://www.fb1h2s.com

Page 8

Garage 4 Hackers http: //www.garage4hackers.com

Note: Never use a constant salt for all hashes:

“If same constant salt is used for all hashes then it would be easy to crack
all hashes”

So Point NO 2: If your PHP application is storing Sensitive values and you want to encrypt and store its
salted hashes then Crypt() function is not the right option nor depending on any constant salt functions
is the right choice.

Salt/Hash algorithm with Random Salt:

If random salt is used for each hash, which is necessary for application
whose source is publicly available, then it would be necessary to store the
salt along with the hashes. That gives it a -ve point because it’s possible
to extract the salt for the hashes. But + point is, that cracker need to
build hash tables with each salt for cracking each hash. This makes it hard
to crack multiple hashes at a time. But still possible to crack the selected
hashes, consider the admin one.

Consider the example:

Spassword = S$rand(5); //user input

Ssalt = "salted";
Spassword = md5 ($salt.S$password); //saved in db md5 (saltedpassword)

Hashes: 6f04f0d75f6870858bael4acOb6d9f73:14357 (Hash:Salt)

Salt: 14357

We could extract the salt, but as different hash will be having a different
salt, it’s impossible to crack all hashes at a stretch.

But it would be back again dependent on how good the passwords are.

At similar situations a Dictionary attack on the hashes would be the only
possibility. Or else we need a better Cracking program, which provides
distributed cracking process.

Rainbow tables rocks not because it has got all possible values hashes, but
because “Searching” algorithm is faster.

FB1H2S http://www.fb1h2s.com

Page 9

Garage 4 Hackers http://www.garage4hackers.com

Consider.

Rainbow tables check = searching [Fast]

Brute Force =2 Read a value > Append salt > Compute hashes > Compare [slow]
This property makes the attack slow even if we know the salt.

So such situation a better and free Cracking [Distributed Cracking System would be necessary]

Idea for One such Distributed Cracking System would be as follows

Tool: One such tools documentation would be.

The whole Idea of such a system comes from the concept of torrents, where if
you want something you have to share something. Here if you want to crack
something you will have to share your processing speed.

Architecture Of the tool should be:

Note: Sorry for the poor Image

FB1H2S http://www.fb1h2s.com Page 10

2)

3)

4)

6)

7)

Garage 4 Hackers http: //www.garage4hackers.com

You download the Cracker tool Client

You have an admin hash to crack that of wordpress, you add the hash along with salt to cracker
Client.

Cracker client sends the hash to Crack server.
Crack server accepts you as part of the distributed cracking Network.

Crack server updates you with the new set of hashes, algorithm, and permutations you have to
carry out.

Logic is when someone is doing work for you, will have to work for them too.
There by your work will be carried out by many different computers.
How this speeds your cracking.

1) Your computer when in the network is assigned to generate wordlist , consider the key

space for a 9 char alphanumeric password is 101559787037052 and your computer will have
to generate 101559787037052/N , where “N” is the total no of cracker clients in the NW.

Brute-Force Attack

i~ Pazzword length-

Min 3 ___1:

aparstisnsizi T 22456789 <_i b2 4 __:_j
(kA Start from -
 Keyzpace 5 = Current pazsward
B 101559899643531 T 43fbscasa
~ kKenRate- 4 1 Lime Left-
216971 Pazz/Sec ' 1.0011 yearz

Intel Core 2 dua

@ 2.10 gh:

3 gb RAM

Keyspace for alphannumeric password of length 9 char is 1015598649531 but your computer will
ohly have to generate check 1015598649531/n where "n™ is the total no of cracker clients
participatiing .

And each key should be passed through all the jobs you are assigned with too.

FB1H2S http://www.fb1h2s.com

Page 11

2)

Garage 4 Hackers http://www.garage4hackers.com

You computer will have to pass each word generated through multiple algorithms your
assigned with on your multithreaded Cracker Client.

Once a client cracks a password it updates it to the Cracker server, and cracker server passes
it to the user who requested the information.

So if you have 350 cracker clients working together then every body’s work will be done in a
day or two.

Finding an unknown Hash Algorithm:

Consider the case with such an algorithm

Consider a situation where the hashes are multiple encrypted with different hash

algorithms, for example:

<?php
Spassword = shal('password'); // de4he6la fedoeblatedhebladedhebladedhebla
Sfinal_password= md5(Spassword)

Final Password Hashes: 1423de37c0c1b63c3687f8f1651celbf

e In such kind of situations, Hashes may looks like Md5 but it’s actually the md5 of
sh1 hashes.

So in such kind of situation were multiple hashing algorithm is used and algorithm is

unknown, and it would be really hard to find what the hashes are.

Now you need an algorithm brute force for predicting the back end
algorithm.

FB1H2S http://www.fb1h2s.com

Page 12

Garage 4 Hackers http://www.garage4hackers.com

Algorithm_Bruter

So | came up with this script, which takes in a known “password” and it’s “hashes” and
then moves it through many different commonly used hash algorithms and tries to find
a match, predicting what algorithm it used in the back end.

For script need to be provided with a Plain Text Value and its alternate Hashes and as
output you will get the algorithm used.

You could check out the script here.

http://www.fblh2s.com/algorithmbruter.php

This could be used in above mentioned situations.

Algorithm_Bruter.php

Hash Bruter by fbhlhls
Pleasze Enter Y our Password and its hashes
FPazsword: password 23de37clcl bB3c3687f3f1651 cel bf
Salt

Algorithim found: Its
shl{mdSipassword))

| am going through different Programming forums and taking out different, forms of
multiple hashing; programmers are using and, will update it on this script. So you
could find what algorithm was used.

FB1H2S http://www.fb1h2s.com

Page 13

http://www.fb1h2s.com/algorithmbruter.php

Garage 4 Hackers http://www.garage4hackers.com

Hope this paper was of some help for you in dealing with salted hashes.

And all greets to Garage Hackers Members.

http://www.garage4hackers.com

And shouts to all ICW, Andhra Hackers members
http://www.andhrahackers.com/

and my Brothers:-
BONd,Eberly, Wipu,beenu,w4riOr,empty,neo,Rohith,Sids786,SmartKD,Tia,hg-
h@xor,r5scal,Yash,Secure_IT, Atul, Vinnu and all others.

This paper was written for Null meet 21/08/
By FB1H2S

www.fblh2s.com

FB1H2S http://www.fb1h2s.com Page 14

http://www.fb1h2s.com/

