
Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 1

Cracking Salted Hashes

Web Application Security: - The Do’s and Don’ts of “Salt Cryptography”

Overview:

Data Base security has become more critical as Databases have become more open. And Encryption
which is one among the five basic factors of data base security.

 It’s an insecure practice to keep your sensitive data like Password, Credit Card no etc unencrypted in
you database. And this paper will cover the various Cryptography options available and do and don’ts of
them.

Even if you have encrypted your data that doesn’t mean that your data’s are fully secured, and this
paper will be covered in an Attacker perspective.

Slat Cryptography.

http://en.wikipedia.org/wiki/Salt_(cryptography)

Assume a user’s hashed password is stolen and he is known to use one of 200,000 English words as his
password. The system uses a 32-bit salt. The salted key is now the original password appended to this
random 32-bit salt. Because of this salt, the attacker’s pre-calculated hashes are of no value (Rainbow
table fails). He must calculate the hash of each word with each of 232 (4,294,967,296) possible salts
appended until a match is found. The total number of possible inputs can be obtained by multiplying the
number of words in the dictionary with the number of possible salts:

2^{32} \times 200 000 = 8.58993459 \times 10^{14}

To complete a brute-force attack, the attacker must now compute almost 900 trillion hashes, instead of

only 200,000. Even though the password itself is known to be simple, the secret salt makes breaking
the password increasingly difficult.

Well and salt is supposed to be secret, to be simple if the attacker knows what salt is used then we
would be back again to step one. So below listed are few possible ways you could use to crack salted
hashes.

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 2

Application that doesn’t use cryptography hashes:

While auditing a web application I came across this piece of program. It used
java script to encrypt the user password before sending. And a salt too was
used, and the salt used was the current Session ID.

The salt used to encrypt the password before sending were the random generated session ids. That
means that the back end databases are no way encrypted.

Some time these kinds of coding gives away a lot of information.

Point NO 1: Always encrypt and save your passwords database.

Slated Hashes.

I recently came across a huge Data Base of a well known !@#$$il[Encrypted] ☺, the Database contained
Email-Ids and there alternate passwords, but unfortunately the passwords were encrypted and was in
hashed format, “Good Practice”. So the following paper would be in respect to how I cracked those
hashes.
Cracking The Hashes:
 The few possible way to crack hashed passwords are:

1) The algorithm used for hashing should have some flaws and hashes should be
reversible

2) Or that you will have to Brute force the hashes with a wordlist of Dictionary or
Rainbow tables.

3) Or simply if you have UPDATE Privileges on that Data Base Update it with a
know password’s hash value.

For all of these attacks to work you need to know what algorithm the hashes are computed on.

onclick="javascript:document.frm.id.value='user';

document.frm.passwd.value='value';

this.form.passwd.value=(hex_md5('CC6AB28BA9FAD121184B09E00F1DD6E7'+this.form.passwd.value));

this.form.submit();

Where “CC6AB28BA9FAD121184B09E00F1DD6E7”.

So In the Back End program:

There would be no way for the back end program to verify the password value, as the salt is used and is the
random session id. And as MD5 function are non reversible hash function, the password cannot be verified
unless and until the passwords are saved as clear text in the Data Base.

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 3

 So what is that you could do to figure out the Hashing Algorithm used??

Answer: All algorithms generate a fixed length hash value, so based on the Output you could estimate
what algorithm was used☺. “Well all these things are pretty know facts “, but Still am putting it here.

For this am putting here a small Cheat sheet for figuring out the Hash functions based on the output.

Language:

Algorithm:

PHP ASP JAVA

MD5

Function: md5(“input”);
 Hash(“input”);

Output: 32 Char

Ex:
“5f4dcc3b5aa765d61d8327d
eb882cf99”

Function:
System.Security.Cryptogr
aphy
Output: 32 Char

Ex:
“5f4dcc3b5aa765d61d8327d
eb882cf99”

Function:java.secur
ity.MessageDigest

Output: 32 Char

Ex:
“5f4dcc3b5aa765d61d
8327deb882cf99”

Salt+Crypto

Function: Crypt()

By default its DES

Output: 13 Char

Ex: “sih2hDu1acVcA”

 “ “ “ “

And lot others:

Original Source: http://www.insidepro.com/eng/passwordspro.shtml

http://www.insidepro.com/eng/passwordspro.shtml

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 4

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 5

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 6

Well hope this reference table might be of help for you some time.

And out these the hashes I had to crack where “13 Chars” hashes. So it was obvious form my table that
It was based on Php Crypt function.

A simple walk through of of the Php crypt function:

1) It’s is a hash algorithm which takes in a “String” and a “salt” and encrypts the hashes.

2) And by default it uses “DES” to encrypt hashes.

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 7

Consider the Ex:

In either of the cases the salt is appended with the Hashes, property of DES. Well as I mentioned above
the security of salt cryptography is on the fact that the salt is unknown to the cracker. But here it’s not.
Well with this basic piece of Information, it was easy to crack hashes that I had in my hands☺.

And all the hashes were cracked easily, all I have to do was load a common passwords dictionary and
add it with the constant salt, and get my work done.

<?php
$password = crypt('password');

?>

Hashes: laAsfestWEiq1

Here password hashes generated would be on basis of a random 2 digit salt.

Or we could provide our on salt.

<?php
$password = crypt('password',’salt’);

?>

Hashes: sih2hDu1acVcA

And the comparison password verification code would be as follows:

if (crypt($user_password, $password) == $password) {
 echo "Correct Password";
}
?>

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 8

Consider the given Hash/salt programs with the following cases.

Salt/Hash algorithm with Constant Salt:

In this program a constant salt is used therefore the salt is not saved in
the database. So our dumped hashes won’t be having the salt value.

For verifying such algorithms we need to try the following things.

1) Try to create a new user using the target application.

2) Dump the data again and verify what algorithm is used using the above
mentioned methods.

3) Consider the new password added was “password” md5(‘password’)==
“5f4dcc3b5aa765d61d8327deb882cf99”, instead if the updated value was
“1423de37c0c1b63c3687f8f1651ce1bf” that says a salt is used and is a constant one as it
don’t seem to be added with the final hashes.

Cracking the salt:

Now for breaking this, the only thing you could do is a bruteforce the hashes for figuring out what the
salt is, for ex:

And once we know the salt append it with every password we check and crack it.

$password = $password_input; //user input
$salt = "salted";
$password = md5($salt.$password); //saved in db md5(saltedpassword)

Hashes: 1423de37c0c1b63c3687f8f1651ce1bf

Salt: salted

We know :

 Md5(‘password’)== “5f4dcc3b5aa765d61d8327deb882cf99”

Now question is

Md5(‘password’ + “????WHAT????”) ===
“1423de37c0c1b63c3687f8f1651ce1bf”

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 9

Note: Never use a constant salt for all hashes:

 “If same constant salt is used for all hashes then it would be easy to crack
all hashes”

So Point NO 2: If your PHP application is storing Sensitive values and you want to encrypt and store its
salted hashes then Crypt() function is not the right option nor depending on any constant salt functions
is the right choice.

Salt/Hash algorithm with Random Salt:

If random salt is used for each hash, which is necessary for application
whose source is publicly available, then it would be necessary to store the
salt along with the hashes. That gives it a –ve point because it’s possible
to extract the salt for the hashes. But + point is, that cracker need to
build hash tables with each salt for cracking each hash. This makes it hard
to crack multiple hashes at a time. But still possible to crack the selected
hashes, consider the admin one.

Consider the example:

We could extract the salt, but as different hash will be having a different
salt, it’s impossible to crack all hashes at a stretch.

But it would be back again dependent on how good the passwords are.

At similar situations a Dictionary attack on the hashes would be the only
possibility. Or else we need a better Cracking program, which provides
distributed cracking process.

Rainbow tables rocks not because it has got all possible values hashes, but
because “Searching” algorithm is faster.

$password = $rand(5); //user input
$salt = "salted";
$password = md5($salt.$password); //saved in db md5(saltedpassword)

Hashes: 6f04f0d75f6870858bae14ac0b6d9f73:14357 (Hash:Salt)

Salt: 14357

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 10

Consider.

Idea for One such Distributed Cracking System would be as follows

Tool: One such tools documentation would be.

The whole Idea of such a system comes from the concept of torrents, where if
you want something you have to share something. Here if you want to crack
something you will have to share your processing speed.

Architecture Of the tool should be:

Note: Sorry for the poor Image

Rainbow tables check à searching [Fast]

Brute Force à Read a value à Append salt à Compute hashes à Compare [slow]

This property makes the attack slow even if we know the salt.

So such situation a better and free Cracking [Distributed Cracking System would be necessary]

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 11

1) You download the Cracker tool Client

2) You have an admin hash to crack that of wordpress, you add the hash along with salt to cracker
Client.

3) Cracker client sends the hash to Crack server.

4) Crack server accepts you as part of the distributed cracking Network.

5) Crack server updates you with the new set of hashes, algorithm, and permutations you have to
carry out.

6) Logic is when someone is doing work for you, will have to work for them too.

7) There by your work will be carried out by many different computers.

How this speeds your cracking.

1) Your computer when in the network is assigned to generate wordlist , consider the key
space for a 9 char alphanumeric password is 101559787037052 and your computer will have
to generate 101559787037052/N , where “N” is the total no of cracker clients in the NW.

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 12

2) You computer will have to pass each word generated through multiple algorithms your
assigned with on your multithreaded Cracker Client.

3) Once a client cracks a password it updates it to the Cracker server, and cracker server passes
it to the user who requested the information.

4) So if you have 350 cracker clients working together then every body’s work will be done in a
day or two.

Finding an unknown Hash Algorithm:

Consider the case with such an algorithm

• Consider a situation where the hashes are multiple encrypted with different hash
algorithms, for example:

• In such kind of situations, Hashes may looks like Md5 but it’s actually the md5 of
sh1 hashes.

• So in such kind of situation were multiple hashing algorithm is used and algorithm is
unknown, and it would be really hard to find what the hashes are.

 Now you need an algorithm brute force for predicting the back end
algorithm.

<?php

$password = sha1('password'); // de4he6la fe4oe6late4he6lade4he6lade4he6la

$final_password= md5($password)

Final Password Hashes: 1423de37c0c1b63c3687f8f1651ce1bf

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 13

Algorithm_Bruter

• So I came up with this script, which takes in a known “password” and it’s “hashes” and
then moves it through many different commonly used hash algorithms and tries to find
a match, predicting what algorithm it used in the back end.

• For script need to be provided with a Plain Text Value and its alternate Hashes and as
output you will get the algorithm used.

• You could check out the script here.

• http://www.fb1h2s.com/algorithmbruter.php

• This could be used in above mentioned situations.

Algorithm_Bruter.php

I am going through different Programming forums and taking out different, forms of
multiple hashing; programmers are using and, will update it on this script. So you
could find what algorithm was used.

http://www.fb1h2s.com/algorithmbruter.php

Garage 4 Hackers http://www.garage4hackers.com

 FB1H2S http://www.fb1h2s.com Page 14

Hope this paper was of some help for you in dealing with salted hashes.

And all greets to Garage Hackers Members.

http://www.garage4hackers.com

And shouts to all ICW, Andhra Hackers members

http://www.andhrahackers.com/

 and my Brothers:-
B0Nd,Eberly,Wipu,beenu,w4ri0r,empty,neo,Rohith,Sids786,SmartKD,Tia,hg-
h@xor,r5scal,Yash,Secure_IT, Atul, Vinnu and all others.

This paper was written for Null meet 21/08/

By FB1H2S

www.fb1h2s.com

http://www.fb1h2s.com/

