
ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

CVE 2012-1889 Microsoft XML core services
 uninitialized memory vulnerability

1th July 2012
Brian MARIANI & Frédéric BOURLA

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Timeline

 Before the 30th of May 2012 attackers were exploiting a new
Microsoft Internet Explorer 0day.

 The 30th of May 2012 Google warned Microsoft about this

vulnerability existing in the core of Internet Explorer XML
services.

 The 12th of June 2012 Microsoft published a security advisory with

a temporary fix.

 On June 18th 2012 the Metasploit Project released an exploit

module.

 On June 19th 2012 a Metasploit update was released, which
proposed a 100% reliable exploit for Internet Explorer 6/7/8/9 on
Windows XP, Vista, and all the way to Windows 7 SP1.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

The flaw

 The vulnerability exists in the MSXML3, MSXML4 and MSXML6
Microsoft dynamic-linked libraries.

 To trigger the flaw one must try to access an XML node (object
in memory) that has not been appropriately initialized.

 This leads to memory corruption in such a way that an
attacker could execute arbitrary code in the context of the
current user.

 This category of flaw can frequently be abused by arranging
the heap and stack memory areas with memory addresses
previously known by the attacker before the weak code triggers
the bug.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

What is XML?

According to Wikipedia:

 The Extensible Markup Language (XML) defines a set of rules

for encoding documents in a format that is both human-readable
and machine-readable.

 The design goals of XML emphasize simplicity, generality, and
usability over the Internet.

 It is a textual data format with strong support via Unicode for
many programming languages.

 It is also widely used for the representation of arbitrary data
structures, typically in web services.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Details about the crash

 The crash is produced in the msxml3.dll module.

 The function name where Internet Explorer generates the access
violation is _dispatchImpl::InvokeHelper.

 The instruction which produces the crash is a call to a pointer
generated by the content of the ECX register plus the 0x18h
value.

 In the present document we analyze the whole process from the
heap and stack spray, until the bug is triggered and the code
execution is reached.

 Our lab environment is an English Windows XP SP3 operating
system with IE 6.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Crash proof of concept

 A working proof of concept could be coded in these two ways:

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

The crash in Windbg

 Here is the crash within WinDBG debugger:

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Loading the vulnerable module

 In order to analyze this flaw we first create a simple HTML file.

 The main purpose is to load the vulnerable module first.

 Once the module is just loaded in memory, a breakpoint is set at
the very beginning of the function
_dispatchImpl::InvokeHelper.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Loading the vulnerable module

 The msxml3.dll module is now loaded at the 0x7498000
memory address.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Some important points

 Until the HTML page is rendered the _dispatchImpl::InvokeHelper
function will be called four times, however the instruction which permits
arbitrary code execution will be hit at the fourth entry.

 Before the _dispatchImpl::InvokeHelper function is reached the heap will
be already prepared in order to contain the or al,0x0C sled which gently
leads to the execution of shellcode.

 The or al,0x0C instruction does not affects any critical data. The goal is to
"slide" the flow of code to its ultimate destination.

 Since the shellcode is sitting in multiple chunks in the heap right after the or

al,0x0C sled the probability of successful arbitrary code execution is very
high. (see slide 13)

 The stack will be sprayed with fake pointers 0c0c0c08 in order to

successfully reach the or al,0x0c sled. (see slide 17)

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (1)

 After the _dispatchImpl::InvokeHelper function is first reached, this is

the status of the call stack.

 At this point the heap is already arranged with the or al,0x0C pattern.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (2)

 It is possible to observe the copy procedure of the dword values 0c0c0c0c
into the heap area.

 The copy routine is executed from the msvcrt!memcpy function which was

called by the jscript.dll module.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (3)

 After finishing the aforementioned copy procedure, the heap is

properly arranged:

Beginning of Shellcode

Or al,0x0c Sled

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (4)

 This is the call stack when the function

_dispatchImpl::InvokeHelper is hit the second time:

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (5)

 Here is the call stack after the vulnerable function is thirdly

reached:

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (6)

 Finally, we can observe the call stack after the
_dispatchImpl::InvokeHelper function has been accessed for the fourth
time.

 At this point the fake pointers were written into the stack, as shown in the

next slide.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (7)

 The fake pointers copy procedure is being executed by the memcpy
routine called from the jscript module.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (8)

 Here is the status of the stack after finishing the aforementioned
routine.

Fake pointers

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (9)

 As said before, from this point the vulnerable code will finally lead to

arbitrary code execution.

 The function prolog is executed as usual.

 At the 0x749BD6C3 address 0x10C bytes are reserved for the local

variables, thus we can observe the previously injected fake pointers.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (10)

 At the address 0x749BD6C9 other arguments are pushed in
order to call the SetErrorInfo function from the Oleaut32.dll
module.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (11)

 After returning from the SetErrorInfo function the routine
FindIndex is also called:

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (12)

 When the code returns from the FindIndex function the EAX
value is set to zero.

 Thus, the conditional jump at the address 0x749BD6FC is not
performed.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (13)

 The flow of code continues until it reaches the instruction “lea eax,
[ebp-0x1c]” which loads the EAX register with one of the fake
pointers.

 This starts to be interesting. However we have not hit the bug yet. :]

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (14)

 Later, the code flow calls the Oleaut32!VariantInit function.

 We will not go deeper into this function as this is not interesting
for this analysis.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (15)

 After returning from the Oleaut32!VariantInit function the code pushes the EBX register
which was previously set to zero.

 Later, the code loads EAX with a pointer of injected dword values.

 However the low word was partially corrupted during the execution. Nevertheless this will
not affect the arbitrary code execution.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (16)

 The code continues running until it reaches a call to the pointer of
[esi+0x20] which resolves to the DOMNode::_invokeDOMNode
function.

 We are not going deeper into all the subsequent calls from this point,
however the next slide shows the call stack until reaching the last
function into the process of creating the XML node. During this phase
the “get_definition” function is finally accessed.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (17)

 The Node::get_definition function is accessed.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (18)

 When the code returns from the DOMNode::_invokeDOMNode
function the value of the EAX register is set to 1.

 So the JL jump at the address 0x749BD74B is not executed.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (19)

 After the non-taken jump the code takes a dword from
[ebp+0x14] and moves it into the EAX register.

 EAX now holds the 0x0c0c0c08 value.

!

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (20)

 But wait… The value is directly moved into the EAX register… And what was
indeed the previously moved value?

 Decompiling the msxml3.dll module with IDA shows us that the value matches
with a local variable that was not properly initialized.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (21)

 Later, because of the comparison between EAX and EBX at
0x749BD754 the JZ jump instruction at 0x749BD758 is not taken.

 The code continues… And lastly, the content of the EAX pointer is
transferred into the ECX register.

!

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (22)

 Since from the address 0x749BD75F the following instructions will not
modify the ECX register, the call instruction at the address
0x749BD772 will successfully reach the or al,0x0c sled.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (23)

 The or al,0x0c sled is successfully executed until it finds the
shellcode.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Analysis of the vulnerability (24)

 Shellcode execution is achieved:

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Some temporary mitigations

 Microsoft created a new workaround in the form of a fix-it.

 The “Fix it” package makes a minor change at runtime to either

msxml3.dll, msxml4.dll or msxml6.dll modules every time
Internet Explorer is loaded.

 This modification causes Internet Explorer to properly initialize the
previously uninitialized variable which is the main problem of this
vulnerability.

 Deploy the Enhanced Mitigation Experience Toolkit.

 Configure Internet Explorer to prompt before running Active
Scripting or disable Active Scripting in the Internet and Local
Intranet security zones.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

REFERENCES

 http://technet.microsoft.com/en-
us/security/advisory/2719615

 http://support.microsoft.com/kb/2719615
 http://googleonlinesecurity.blogspot.co.uk/2012/06/micros

oft-xml-vulnerability-under.html
 https://community.rapid7.com/community/metasploit/blog/

2012/06/18/metasploit-exploits-critical-microsoft-
vulnerabilities

 http://blogs.technet.com/b/srd/archive/2012/06/13/msxml-
fix-it-before-fixing-it.aspx

 http://en.wikipedia.org/wiki/XML
 http://research.swtch.com/sparse
 http://www.corelan.be

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

THANK-YOU FOR READING

Your questions are always welcome!

brian.mariani@htbridge.ch
frederic.bourla@htbridge.ch

	Diapositive numéro 1
	Diapositive numéro 2
	Diapositive numéro 3
	Diapositive numéro 4
	Diapositive numéro 5
	Diapositive numéro 6
	Diapositive numéro 7
	Diapositive numéro 8
	Diapositive numéro 9
	Diapositive numéro 10
	Diapositive numéro 11
	Diapositive numéro 12
	Diapositive numéro 13
	Diapositive numéro 14
	Diapositive numéro 15
	Diapositive numéro 16
	Diapositive numéro 17
	Diapositive numéro 18
	Diapositive numéro 19
	Diapositive numéro 20
	Diapositive numéro 21
	Diapositive numéro 22
	Diapositive numéro 23
	Diapositive numéro 24
	Diapositive numéro 25
	Diapositive numéro 26
	Diapositive numéro 27
	Diapositive numéro 28
	Diapositive numéro 29
	Diapositive numéro 30
	Diapositive numéro 31
	Diapositive numéro 32
	Diapositive numéro 33
	Diapositive numéro 34
	Diapositive numéro 35
	Diapositive numéro 36
	Diapositive numéro 37

