
Enhancing Vulnerability Prioritization: Data-Driven Exploit
Predictions with Community-Driven Insights

Jay Jacobs
Cyentia Institute
jay@cyentia.com

Sasha Romanosky
RAND Corporation
sromanos@rand.org

Octavian Suciu
University of Maryland

osuciu@umd.edu

Ben Edwards
Cyentia Institute
ben@cyentia.com

Armin Sarabi
University of Michigan
arsarabi@umich.edu

ABSTRACT
The number of disclosed vulnerabilities has been steadily increasing
over the years. At the same time, organizations face significant
challenges patching their systems, leading to a need to prioritize
vulnerability remediation in order to reduce the risk of attacks.

Unfortunately, existing vulnerability scoring systems are either
vendor-specific, proprietary, or are only commercially available.
Moreover, these and other prioritization strategies based on vulner-
ability severity are poor predictors of actual vulnerability exploita-
tion because they do not incorporate new information that might
impact the likelihood of exploitation.

In this paper we present the efforts behind building a Special
Interest Group (SIG) that seeks to develop a completely data-driven
exploit scoring system that produces scores for all known vulnera-
bilities, that is freely available, andwhich adapts to new information.
The Exploit Prediction Scoring System (EPSS) SIG consists of more
than 170 experts from around the world and across all industries,
providing crowd-sourced expertise and feedback.

Based on these collective insights, we describe the design de-
cisions and trade-offs that lead to the development of the next
version of EPSS. This new machine learning model provides an
82% performance improvement over past models in distinguish-
ing vulnerabilities that are exploited in the wild and thus may be
prioritized for remediation.

KEYWORDS
software vulnerabilities, exploit prediction, machine learning, EPSS,
CVE

1 INTRODUCTION
Vulnerability management, the practice of identifying, prioritizing,
and patching known software vulnerabilities, has been a continuous
challenge for defenders for decades. This issue is exacerbated by the
increasing number of new vulnerabilities that are being disclosed
annually. For example,MITRE published1 25,068 new vulnerabilities
during the 2022 calendar year, a 24.3% increase over 2021.

Adding to the increasing rate of published vulnerabilities are
challenges incurred by practitioners when trying to remediate them.
Recent research conducted by Kenna Security and Cyentia tracked
exposed vulnerabilities at hundreds of companies and found that
the monthly median rate of remediation was only 15.5%, while
a quarter of companies remediated less than 6.6% of their open

1Not marked as REJECT or RESERVED.

vulnerabilities per month [20]. As a consequence of the increasing
awareness of software flaws and the limited capacity to remediate
them, vulnerability prioritization has become both a chronic and
an acute concern for every organization attempting to reduce their
attack surface.

The prioritization process involves scoring and ranking vulner-
abilities according to assessments, often based on the industry
standard Common Vulnerability Scoring System (CVSS) [17]. How-
ever, only the Base metric group of CVSS is being assigned and
distributed at scale by NIST, and this group of metrics is unable
to adapt to post-disclosure information, such as the publication of
exploits or technical artifacts, which can affect the odds of attacks
against a vulnerability being observed in the wild. As a result, while
only 5% of known vulnerabilities are exploited in the wild [21], nu-
merous prior studies have shown that CVSS does not perform well
when used to prioritize exploited vulnerabilities over those with-
out evidence of exploitation [1, 3, 15]. While several other efforts
have been made to capture exploitation likelihood in vulnerability
assessments, these approaches are either vendor-specific [24, 28]
or proprietary and not available publicly [26, 27, 36].
In order to improve remediation practices, network defenders need
a scoring systems that can accurately quantify likelihood of exploits
in the wild, and is able to adapt to new information published after
the initial disclosure of a vulnerability.
Any effort to developing a new capability to understand, antici-

pate, and respond to new cyber threats must overcome three main
challenges: i) it must address the requirements of practitioners who
rely on it; ii) it must provide significant performance improvements
over existing scoring systems; and iii) it must have a low barrier to
entry for adoption and use.

To address these challenges, a Special Interest Group (SIG) was
formed in early 2020 at the Forum of Incident Response and Security
Teams (FIRST). From its inception until the time of this writing,
the Exploit Prediction Scoring System (EPSS) SIG has gathered
170 members from across the world, representing practitioners,
researchers, government agencies, and software developers.2 The
SIG was created with the publication of the first EPSS model for
predicting the likelihood of exploits in the wild [22] and is organized
around a mailing list, a discussion forum, and bi-weekly meetings.
This unique environment represented an opportunity to understand
the challenges faced by practitioners when performing vulnerability
prioritization, and therefore address the first challenge raised above

2See https://www.first.org/epss.

ar
X

iv
:2

30
2.

14
17

2v
1 

 [
cs

.C
R

] 
 2

7 
Fe

b 
20

23

https://www.first.org/epss


by designing a scoring system that takes into account practitioner
requirements.

To address the second challenge and achieve significant perfor-
mance improvements, the SIG provided subject matter expertise,
which guided feature engineering with high utility at predicting
exploits in the wild. Finally, to address the challenges of designing
a public and readily-available scoring system, the SIG attracted a
set of industry partners willing to share proprietary data for the
development of the model, the output of which can then be made
public. This allowed EPSS scores to be publicly available at scale,
lowering the barrier to entry for those wanting to integrate EPSS
into their prioritization pipeline.

This paper presents the latest (third) iteration of the EPSS model,
as well as lessons learned in its design, and their impact on designing
a scoring system. The use of a novel and diverse feature set and state-
of-the-art machine learning techniques allows EPSS to improve
prediction performance by 82% over its predecessor (as measured by
the precision/recall Area Under the Curve improved to 0.779 from
0.429). EPSS is able to score all vulnerabilities published onMITRE’s
CVE List (and the National Vulnerability Database), and can reduce
the amount of effort required to patch critical vulnerabilities to
one-eighth of a comparable strategy based on CVSS. This paper
makes the following contributions:

(1) Present lessons learned from developing an exploit predic-
tion model that integrates the functional requirements of a
community of nearly 200 practitioners and researchers.

(2) Engineers novel features for exploit prediction and use them
to train the EPSS classifier for predicting the likelihood of
exploits in the wild.

(3) Analyzes the practical utility of EPSS by showing that it can
significantly improve remediation strategies compared to
static baselines.

2 EVOLUTION OF EPSS
EPSS was initially inspired by the Common Vulnerability Scor-
ing System (CVSS). The first EPSS model [22] was designed to be
lightweight, portable (i.e. implemented in a spreadsheet), and par-
simonious in terms of the data required to score vulnerabilities.
Because of these design goals, the first model used a logistic re-
gression which produced interpretable and intuitive scores, and
predicted the probability of exploitation activity being observed in
the first year following the publication of a vulnerability. In order to
be parsimonious, the logistic regression model was trained on only
16 independent variables (features) extracted at the time of vulner-
ability disclosure. While outperforming CVSS, the SIG highlighted
some key limitations which hindered its practical adoption.

Informed by this feedback, the second version of EPSS aimed to
address the major limitations of the first version. The first design
decision was to switch to a centralized architecture. By centralizing
and automating the data collection and scoring, a more complex
model could be developed to improve performance. This decision
came with a trade-off, namely a loss of the model’s portability
and thus, the ability to score vulnerabilities which are not publicly
disclosed (e.g., zero day vulnerabilities, or flaws that may never
be assigned a CVE ID). Nevertheless, focusing on public vulner-
abilities under the centralized model removed the need for each

implementation of EPSS to perform their own data collection, and
further allowed more complex features and models. The model used
in v2 is XGBoost [12], and the feature set was greatly expanded
from 16 to 1,164. These efforts led to a significant improvement
in predictive performance over the previous version by capturing
higher order interactions in the extended feature set. Another major
component of a centralized architecture was being able to adapt
to new vulnerability artifacts (e.g., the publication of exploits) and
produce new predictions, daily. Moreover, the SIG also commented
that producing scores based on the likelihood of exploitation within
the first year of a vulnerability’s lifecycle was not very practical,
since most prioritization decisions are made with respect to an
upcoming patching cycle. As a result, v2 switched to predicting
exploitation activity within the following 30-day window as of the
time of scoring, which aligns with the typical remediation window
of practitioners in the SIG.

For the third version of EPSS, the SIG highlighted a requirement
for improved precision at identifying vulnerabilities likely to be
exploited in the wild. This drove an effort to expand the sources of
exploit data by partnering with multiple organizations willing to
share data for model development, and engineer more complex and
informative features. These label and feature improvements, along
with a methodical hyper-parameter tuning approach, enabled im-
proved training of an XGBoost classifier. This allowed the proposed
v3 model to achieve an overall 82% improvement in classifier per-
formance over v2, with the Area Under the Precision/Recall Curve
increasing from 0.429 to 0.779. This boost in prediction performance
allows organizations to substantially improve their prioritization
practices and design data-driven patching strategies.

3 DATA
The data used in this research is based on 192,035 published vulnera-
bilities (not marked as “REJECT” or “RESERVED”) listed in MITRE’s
Common Vulnerabilities and Exposures (CVE) list through Decem-
ber 31, 2022. The CVE identifier has been used to combine records
across our disparate data sources. Table 1 lists the categories of
data, number of features in each category, and the source(s) or other
notes. In total, EPSS collects 1,477 unique independent variables
for every vulnerability.

3.1 Ground truth: exploitation in the wild
EPSS collects and aggregates evidence of exploits from multiple
sources: Fortiguard, Alienvault OTX, the Shadow Server Foundation
and GreyNoise (though not all sources cover the full time period).
Each of these data sources employ network- or host-layer intrusion
detection/prevention systems (IDS/IPS), or honeypots, in order to
identify attempted exploitation. These systems are also predomi-
nantly signature-based (as opposed to anomaly-based) detection
systems. Moreover, all of these organizations have large enterprise
infrastructures of sensor and collection networks. Fortiguard, for
example, manages tens of thousands of IDS/IPS devices that identify
and report exploitation activity from across the globe. Alienvault
OTX, GreyNoise and the Shadow Server Foundation also maintain
worldwide networks of sensors for detecting exploitation activity.

These data sources include the list of CVEs observed to be ex-
ploited on a daily basis. The data are then cleaned, and exploitation

2



Table 1: Description of data sources used in EPSS.

Description # of variables Sources
Exploitation activity in the wild (ground truth) 1 (with dates) Fortinet, AlienVault, ShadowServer, GreyNoise
Publicly available exploit code 3 Exploit-DB, GitHub, MetaSploit
CVE is listed/discussed on a list or website (“site”) 3 CISA KEV, Google Project Zero, Trend Micro’s Zero Day Initiative

(ZDI)
Social media 3 Mentions/discussion on Twitter
Offensive security tools and scanners 4 Intrigue, sn1per, jaeles, nuclei
References with labels 17 MITRE CVE List, NVD
Keyword description of the vulnerability 147 Text description in MITRE CVE List
CVSS metrics 15 National Vulnerability Database (NVD)
CWE 188 National Vulnerability Database (NVD)
Vendor labels 1,096 National Vulnerability Database (NVD)
Age of the vulnerability 1 Days since CVE published in MITRE CVE list

activity is consolidated into a single boolean value (0 or 1), iden-
tifying days on which exploitation activity was reported for any
given CVE across any of the available data sources. Structuring the
training data according to this boolean time-series enables us to
estimate the probability of exploitation activity in any upcoming
window of time, though the consensus in the EPSS Special Interest
Group was to standardize on a 30-day window to align with most
enterprise patch cycles.
The exploit data used in this research paper covers activity from July
1, 2016 to December 31st, 2022 (2,374 days / 78 months / 6.5 years),
over which we collected 6.4 million exploitation observations (date
and CVE combinations), targeting 12,243 unique vulnerabilities.
Based on this data, we find that 6.4% (12,243 of 192,035) of all
published vulnerabilities were observed to be exploited during this
period, which is consistent with previous findings [21, 22].

3.2 Explanatory variables/features
In total, EPSS leverages 1,477 features for predicting exploitation
activity. Next, we describe the data sources used to construct these
features.

Published exploit code. We first consider the correlation between
exploitation in the wild and the existence of publicly available
exploit code, which is collected from three sources (courtesy of
Cyentia3.): Exploit-DB, Github, and Metasploit. In total we identi-
fied 24,133 CVEs with published exploit code, consisting of 20,604
CVEs from Exploit-DB, 4,049 published on GitHub, and 1,905 pub-
lished on Metasploit modules. Even though Exploit-DB contains
the majority of published exploits, GitHub has become a valuable
source in recent years. For example, in 2022, 1,591 exploits were
published on GitHub, while Exploit-DB and Metasploit added 196
and 94 entries, respectively.

Public vulnerability lists. Next, we consider that exploitation
activity may be forecasted by the presence of vulnerabilities on
popular lists and/or websites that maintain and share information
about selective vulnerabilities. Google Project Zero maintains a

3https://www.cyentia.com/services/exploit-intelligence-service

listing4 of “publicly known cases of detected zero-day exploits”.5
This may help us forecast exploitation activity as the vulnerability
slides into N-day status. We include 162 unique CVEs listed by
Google Project Zero.

Trend Micro’s Zero Day Initiative (ZDI), the “world’s largest
vendor-agnostic bug bounty program”,6 works with researchers
and vendors to responsibly disclose zero-day vulnerabilities and
issue public advisories about vulnerabilities at the conclusion of
their process. We include 7,356 CVEs that have public advisories
issued by ZDI.

The Known Exploited Vulnerabilities (KEV) catalog from the US
Department of Homeland Security’s Cybersecurity and Infrastruc-
ture Security Agency (CISA) is an “authoritative source of vulnera-
bilities that have been exploited in the wild”.7 We include 866 CVEs
from CISA’s KEV list.

These sources lack transparency aboutwhen exploitation activity
was observed, and for how long this activity was ongoing. However,
because past exploitation attempts might influence the likelihood
of future attacks, we include these indicators as binary features for
our model.

Social media. Exploitation may also be correlated with social
media discussions, and therefore we collect Twitter mentions of
CVEs, counting these mentions within three different historical
time windows (7, 30, and 90 days). We only count primary and
original tweets and exclude retweets and quoted retweets. The
median number of daily unique tweets mentioning CVEs is 1,308
with the 25th and 75th percentile of daily tweets being 607 and
1,400 respectively. We currently make no attempt to validate the
content or filter out automated posts (from bots).

Offensive security tools. We also collect evidence of vulnerabil-
ities being used in offensive security tools that are designed, in
part, to identify vulnerabilities during penetration tests. We are
currently gathering information from four different offensive secu-
rity tools with varying numbers of CVEs identified in each: Nuclei
with 1,548 CVEs, Jaeles with 206 CVEs, Intrigue with 169 CVEs and
4https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/
view#gid=1190662839.
5https://googleprojectzero.blogspot.com/p/0day.html.
6https://www.zerodayinitiative.com/about.
7https://www.cisa.gov/known-exploited-vulnerabilities

3

https://www.cyentia.com/services/exploit-intelligence-service
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view#gid=1190662839
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view#gid=1190662839
https://googleprojectzero.blogspot.com/p/0day.html
https://www.zerodayinitiative.com/about
https://www.cisa.gov/known-exploited-vulnerabilities


Sn1per with 63 CVEs. These are encoded as binary features which
indicate whether each particular source is capable of scanning for
and reporting on the presence of each vulnerability.

References. In order to capture metrics around the activity and
analysis related to vulnerabilities, for each CVE, we count the num-
ber of references listed inMITRE’s CVE list, as well as the number of
references with each of the 16 reference tags assigned by NVD. The
labels and and their associated prevalence across CVEs are: Vendor
Advisory (102,965), Third Party Advisory (84,224), Patch (59,660),
Exploit (54,633), VDB Entry (31,880), Issue Tracking (16,848), Mail-
ing List (15,228), US Government Resource (11,164), Release Notes
(9,308), Permissions Required (3,980), Broken Link (3,934), Prod-
uct (3,532), Mitigation (2,983), Technical Description (1,686), Not
Applicable (961), and Press/Media Coverage (124).

Keyword description of the vulnerability. To capture attributes of
vulnerabilities themselves, we use the same process as described
in previous research [21, 22]. This process detects and extracts
hundreds of common multiword expressions used to describe and
discuss vulnerabilities. These expressions are then grouped and
normalized into common vulnerability concepts. The top tags we
included and associated CVEs are as follows: “remote attacker”
(80,942), “web” (31,866), “code execution” (31,330), “denial of service”
(28,478), and ‘authenticated” (21,492). In total, we include 147 binary
features for identifying such tags.

We followed the same process as EPSS v1 for extracting mulit-
word expressions from the text from references using Rapid Auto-
matic Keyword Extraction [31].

CVSS metrics. To capture other attributes of vulnerabilities, we
collect CVSS base metrics. These consist of exploitability measure-
ments (attack vector, attack complexity, privilege required, user
interaction, scope) and the three impact measurements (confiden-
tiality, integrity and availability). These categorical variables are
encoded using one-hot encoding. We collected CVSS version 3 in-
formation from NVD for 118,087 vulnerabilities. However, 73,327
vulnerabilities published before CVSSv3 was created and are only
scored in NVD using CVSSv2. To address this, we developed a sepa-
rate and dedicated machine learning model to estimate the CVSSv3
measurement values for each of these vulnerabilities.

We use a process similar to prior work [25], where for each CVE,
we use the CVSSv2 sub-components for CVEs which have both
CVSSv2 and CVSSv3 scores. We then train a feedforward neural
network to predict CVSSv3 vectors. The model was validated using
8-fold, yearly stratified, cross-validation, achieving 74.9% accuracy
when predicting the exact CVSSv3 vector. For 99.9% of vectors, we
predict the majority (5 or more) of the individual metrics correctly.
For each individual portion of the CVSSv3 vector we were able to
achieve a minimum of 93.4% accuracy (on the Privileges Required
metric). We note that this exceeds the accuracy achieved by [25],
and likely warrants further research into the robustness of CVSSv3
prediction and its possible application to future versions of CVSS.

CWE. We also capture the observation that different types of
vulnerabilities may be more or less attractive to attackers, using the

Common Weakness Enumeration (CWE), which is a “community-
developed list of software and hardware weakness types”.8 We
collect the CWE assignments from NVD, noting that 21,570 CVEs
do not have a CWE assigned. We derived binary features for CWEs
found across at least 10 vulnerabilities, resulting in 186 CWE iden-
tifiers being included. In addition, we maintain two features for
vulnerabilities where CWE information is not available, or the
assigned CWEs are not among the common ones. The top CWE
identifiers and their vulnerability counts are CWE 79 (20,797), CWE
119 (11,727), CWE 20 (9,590), CWE 89 (8,790), CWE 787 (7,624), CWE
200 (7,270), CWE 264 (5,485), CWE 22 (4,918), CWE 125 (4,743), and
CWE 352 (4,081).

Vulnerable vendors. We suspect exploitation activity may be cor-
related to the market share and/or install base companies achieve.
Therefore, we parse through the Common Platform Enumeration
(CPE) data provided by NVD in order to identify platform records
marked as “vulnerable”, and extract only the vendor portion of the
record. We did not make any attempt to fill in missing information
or correct any typos or misspellings that may occasionally appear
in the records. We ranked vendors according to the number of
vulnerabilities, creating one binary feature for each vendor, and
evaluated the effect of including less frequent vendors as features.
We observed no performance improvements by including vendors
with fewer than 10 CVEs in our dataset. As a result, we extracted
1,040 unique vendor features in the final model. The most preva-
lent vendors and their vulnerability counts are Microsoft (10,127),
Google (9,100), Oracle (8,970), Debian (7,627), Apple (6,499), IBM
(6,409), Cisco (5,766), RedHat (4,789), Adobe (4,627), Fedora Project
(4,166).

Age of the vulnerability. Finally, the age of a vulnerability might
contribute or detract from the likelihood of exploitation. Intuitively,
we expect old vulnerabilities to be less attractive to attackers due to
a smaller vulnerable population. To capture this, we create a feature
which records the number of days elapsed from CVE publication
to the time of feature extraction in our model.

4 MODELING APPROACH
4.1 Preparing ground truth and features
Exploitation activity is considered as any recorded attempt to ex-
ploit a vulnerability, regardless of the success of the attempt, and
regardless of whether the targeted vulnerability is present. All ob-
served exploitation activity is recorded with the date the activity
occurred and aggregated across all data sources by the date and
CVE identifier. The resulting ground truth is a binary value for each
vulnerability of whether exploitation activity was observed or not,
for each day.

Since many of the features may change day by day, we construct
features for the training data on a daily basis. In order to reduce
the size of our data (and thus the time and memory needed to
train models) we aggregate consecutive daily observations where
features do not change. The size of the exposure and the number of
days with exploitation activity are included in the model training.

When constructing the test data, a single date is selected (typi-
cally "today", see next section) and all of the features are generated
8https://cwe.mitre.org

4

https://cwe.mitre.org


based on the state of vulnerabilities for that date. Since the final
model is intended to estimate the probability of exploitation in the
next 30 days, we construct the ground truth for the test data by
looking for exploitation activity over the following 30 days from
the test date selected.

4.2 Model selection
The first EPSS model [22] sought not only to accurately predict
exploitation but do so in a parsimonious, easy to implement way.
As a result, regularized logistic regression (Elasticnet) was chosen
to produce a generalized linear model with only a handful of vari-
ables. The current model relaxes this requirement in the hopes of
improving performance and providing more accurate exploitation
predictions. In particular, capturing non-linear relationships be-
tween inputs and exploitation activity will better predict the finer
grain exploitation activity.

Removing the requirement of a simple model with the need to
model complex relationships expands the universe of potential mod-
els. Indeed many machine learning algorithms have been developed
for this exact purpose. However, testing all models is impractical
because each model requires significant engineering and calibration
to achieve an optimal outcome. We therefore focus on a single type
of model that has proven to be particularly performant on these
data. Recent research has illustrated that panel (tabular) data, such
as ours, can be most successfully modeled using tree based methods
(in particular gradient boosted trees for regression) [18], arriving at
similar or better predictive performance with less computation and
tuning in comparison to other methods such as neural networks.
Given the results in [18] we focus our efforts on tuning a common
implementation of gradient boosted trees, XGBoost [12].
XGBoost is a popular, well documented, and performant implemen-
tation of the gradient boosted tree algorithm in which successive
decision trees are trained to iteratively reduce prediction error.

4.3 Train/test split and measuring performance
In order to reduce over-fitting, We implement two restrictions. First,
we implement a time-based test/train split, constructing our train-
ing data sets on data up to and including October 31, 2021. We then
construct the test data set based on the state of vulnerabilities on
December 1st, 2021, providing one month between the end of the
training data and the test data. As mentioned above, the ground
truth in the test data is any exploitation activity from December
1st to December 30th, 2021. Second, we use 5-fold cross validation,
with the folds based on each unique CVE identifier. This selectively
removes vulnerabilities from the training data and tests the perfor-
mance on the hold out set, thus further reducing the likelihood of
over-fitting.

Finally, we measure performance by calculating the area under
the curve (AUC) based on precision and recall across the full range
of predictions. We selected precision-recall since we have severe
class imbalance in exploited vulnerabilities, and using accuracy or
traditional Receiver Operator Characteristic (ROC) curves may be
misleading due to that imbalance.

Table 2: Non-default hyperparameter values for XGBoost al-
gorithm and data selection

Parameter Value
Time Horizon 1 year
Learning rate 0.11
Max depth tree depth 20
Subsample ratio of the training instances 0.75
Minimum loss reduction for leaf node partition 10
Maximum delta step 0.9
The number of boosting rounds 65

4.4 Tuning and optimizing model performance
Despite being a well studied approach, the use of gradient boosted
trees and XGBoost for prediction problems still requires some ef-
fort to identify useful features and model tuning to achieve good
model performance. This requires a-priori decisions about which
features to include and the hyperparameter values for the XGBoost
algorithm.

The features outlined in subsection 3.2 includes 28,724 variables.
Many of these variables are binary features indicating whether a
vulnerability affects a particular vendor or can be described by a
specific CWE. While the XGBoost algorithm is efficient, including
all of variables in our inference is technically infeasible. To reduce
the scope of features we take a naive, yet demonstrably effective ap-
proach at removing variables below a specific occurrence rate [39].
This reduced the input feature set to 1,477 variables.

One additional challenge with our data is the temporal nature
of our predictions. In particular, exactly how much historical data
should be included in the data set. In addition to the XGBoost
hyperparameters and the sparsity threshold, we also constructed
four different sets of training data for 6 months and then 1, 2 and
3 years, to determine what time horizons would provide the best
predictions.

To identify the time horizon and sparsity threshold described
above as well as the other hyperparameters needed by our imple-
mentation of gradient boosted trees we take a standard approach
described in [38]. We first define reasonable ranges for the hyper-
parameters, use Latin Hypercube sampling over the set of possible
combinations, compute model performance for that set of hyper-
parameters, then finally build an additional model (also a gradient
boosted tree) to predict performance given a set of hyperparameters,
using the model to maximize performance.

The results of the above process results in the parameters selected
in Table 2. Note that of the tested time horizons, none dramatically
outperformed others, with 1 year only slightly outperforming other
tested possibilities.

5 EVALUATION
5.1 Precision (efficiency) and recall (coverage)
Precision and recall are commonly used machine learning perfor-
mance metrics, but are not intuitive for security practitioners, and
therefore can be difficult to contextualize what these performance
metrics represent in practice.

5



Precision (efficiency) measures how well resources are being
allocated, (where low efficiency represents wasted effort), and is
calculated as the true positives divided by the sum of the true and
false positives.
In the vulnerability management context, efficiency addresses the
question, “out of all the vulnerabilities remediated, how many were
actually exploited?” If a remediation strategy suggests patching 100
vulnerabilities, 60 of which were exploited, the efficiency would be
60%.
Recall (coverage), on the other hand, considers how well a remedia-
tion strategy actually addresses those vulnerabilities that should be
patched (e.g., that have observed exploitation activity), and is calcu-
lated as the true positives divided by the sum of the true positives
and false negatives.
In the vulnerability management context, coverage addresses the
question, “out of all the vulnerabilities that are being exploited,
how many were actually remediated?” If 100 vulnerabilities are
exploited, 40 of which are patched, the coverage would be 40%.
Therefore, for the purpose of this article, we use the terms effi-
ciency and coverage interchangeably with precision and recall,
respectively, in the discussions below.

5.2 Model performance
After several rounds of experiments to find the optimal set of fea-
tures, amount of historical data, and model parameters as discussed
in the previous section, we generated one final model using all vul-
nerabilities from November 1st, 2021 to October 31st, 2022. We then
predicted the probability of exploitation activity in the next 30 days
based on the state of vulnerabilities on December 1st, 2022. Using
evidence of exploitation activity for the following 30 days (through
Dec 30th, 2022), we measured overall performance as shown in
Figure 1. For comparison, we also show performance metrics for
the EPSS versions 1 and 2, as well as CVSS v3 base scores for the
same date and exploitation activity (Dec 1st, 2022). Figure 1 in-
cludes points along the precision-recall curves that represent the
thresholds with each prioritization strategy.

Figure 1 clearly illustrates the significant improvement of the
EPSS v3 model over previous versions, as well as the CVSS version
3 base score.
EPSS v3 produces an area under the curve (AUC) of 0.7795, and an F1
score of 0.728. A remediation strategy based on this F1 score would
prioritize remediation for vulnerabilities with EPSS probabilities
of 0.36 and above, and would achieve an efficiency of 78.5% and
coverage of 67.8%.
In addition, this strategy would prioritize remediation of 3.5% of all
published vulnerabilities (representing the level of effort).

EPSS v2 has an AUC of 0.4288 and a calculated F1 score at 0.451,
which prioritizes vulnerabilities with a probability of 0.16 and above.
At the F1 threshold, EPSS v2 achieves an efficiency rating of 45.5%
and coverage of 44.8% and prioritizes 4% of the vulnerabilities in
our study. EPSS v1 has an AUC of 0.2998 and a calculated F1 score at
0.361, which prioritizes vulnerabilities with a probability of 0.2 and
above. At the F1 threshold, EPSS v1 achieves an efficiency rating of
43% and coverage of 31.1% and prioritizes 2.9% of the vulnerabilities
in our study. Finally, CVSS v3.x base score has an AUC of 0.051
and a calculated F1 score at 0.108, which prioritizes vulnerabilities

Labeled points show thresholds,
CVEs scoring at or above
threshold are prioritized

0.5

0.05

0.05

0.05

1

0.1

0.1

0.1

2

0.2
0.2

0.2

3

0.3
0.3

0.3

4

0.4
0.4

0.4

5

0.5
0.5

0.5

6

0.6 0.6

0.6

7

0.7 0.7

0.7

8

0.8
0.8

0.8

9

0.9

0.9
0.9

10
EPSS v1

EPSS v2

E
P

S
S

 v3

CVSS v3.x Base Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall (Coverage)

Pr
ec

is
io

n 
(E

ffi
ci

en
cy

)

Figure 1: Performance of EPSS v3 compared to previous ver-
sions and CVSS Base Score

with a CVSS base score of 9.7 or higher. At the F1 threshold, CVSS
v3.x achieves an efficiency rating of 6.5% and coverage of 32.3% and
prioritizes 13.7% of the vulnerabilities in our study.

5.3 Probability calibrations
A significant benefit of this model over alternative exploit scoring
systems (described above) is that the output scores are true proba-
bilities (i.e., probability of any exploitation activity being observed
in the next 30 days) and can therefore be scaled to produce a threat
score based on one or more vulnerabilities, such as would be found
in a single network device (laptop, server), network segment, or an
entire enterprise. For example, standard mathematical techniques
can be used to answer questions like “what is the probability that
at least one of this asset’s vulnerabilities will be exploited in the
next 30 days?” Such estimates, however, are only useful if they
are calibrated and therefore reflect the true likelihood of the event
occurring.

In order to address this, we measure calibration in a two ways.
First we calculate a Brier Score [8] which produces a score between
0 and 1, with 0 being perfectly calibrated and 1 being perfectly
uncalibrated (the original 1950 paper doubles the range from 0 to
2). Our final estimate revealed a Brier score of 0.0162, which is
objectively very low (good). We also plot the predicted (binned) val-
ues against the observed (binned) exploitation activity (commonly
referred to as a “calibration plot”) as shown in Figure 2. The closer
the plotted line is to a 45 degree line (i.e. a line with a slope of 1,
represented by the dashed line), the greater the calibration. Again,
by visual inspection, our plotted line very closely matches the 45
degree line.

5.4 Simple Remediation Strategies
Research conducted by Kenna Security and Cyentia tracked vul-
nerabilities at hundreds of companies and found that on average,

6



0.1%

1%

10%

100%

0.1% 1% 10% 100%
Predicted Probability of

Exploitation on Dec 1, 2022

O
bs

er
ve

d 
w

ith
 E

xp
lo

ita
tio

n 
Ac

tiv
ity

in
 3

0 
da

ys
 fo

llo
w

in
g 

De
c 

1,
 2

02
2

Figure 2: Calibration Plot comparing predicted probabilities
to observed exploitation period in the following 30 days

companies were only able to remediate about 15.5% of their open
vulnerabilities in a month[20]. This research also found that re-
source capacity for remediating vulnerabilities varies considerably
across companies, which suggests that any vulnerability remedi-
ation strategy should accommodate varying levels of corporate
resources and budgets. Indeed, organizations with fewer resources
(presumably smaller organizations) may prefer to emphasize ef-
ficiency over coverage, to optimize their spending, while larger
organizations may accept less efficient strategies in exchange for
the greater coverage (i.e. more vulnerabilities patched).

Therefore, we compare the amount of effort required (as mea-
sured by the number of vulnerabilities needing to be remediated)
for differing remediation strategies. Figure 3 highlights the per-
formance of 6 simple (but practical) vulnerability prioritization
strategies based on our test data (December 1st, 2022).9

The first diagram in the upper row considers a strategy based on
the CVSS v3.x vector of “Privilege Required: None”. Being able to
exploit a vulnerability that doesn’t require any established account
credentials is an attractive vulnerability to exploit, as an attacker.
While this strategy would yield 88.1% coverage, it would achieve
only 5.1% efficiency. That is, from a defender perspective, this class
of vulnerabilities represents over 130,000 (70%) of all published
CVEs, and would easily surpass the resources capacity of most
organizations.
“Code Execution” is another attractive vulnerability attribute for
attackers since these vulnerabilities could allow the attacker to
achieve full control of a target asset. However, remediating all the
code execution vulnerabilities (17% or about 32,000 of all CVEs)
would achieve 48% coverage and 11.4% efficiency.

9Performance is then measured based on exploitation activity in the following 30 days.

Effort: 70.4% of CVEs
Coverage: 88.1%
Efficiency: 5.1%

CVSS:3.1/PR:N

Effort: 17.2% of CVEs
Coverage: 48.0%
Efficiency: 11.4%

Tag:Code Execution

Effort: 10.9% of CVEs
Coverage: 34.7%
Efficiency: 13.0%

Exploit:Exploit DB

Effort: 6.2% of CVEs
Coverage: 16.9%
Efficiency: 11.1%

CWE-119: Buffer Overflow

Effort: 1.0% of CVEs
Coverage: 14.9%
Efficiency: 60.5%

Exploit:metasploit

Effort: 0.5% of CVEs
Coverage: 5.9%
Efficiency: 53.2%

Site:KEV

All CVEs CVEs Prioritized Exploited

Figure 3: Alternative strategies based on simple heuristics

The middle row of Figure 3 shows remediation strategies for
vulnerabilities published in Exploit DB (left), and Buffer Overflows
(CWE-119; right3), respectively.

The bottom row of Figure 3 is especially revealing. The bottom
right diagram shows performance metrics for a remediation strat-
egy based on patching vulnerabilities from the Known Exploited
Vulnerabilities (KEV) list (as of Dec 1, 2022) from DHS/CISA. The
KEV list is meant to prioritize vulnerability remediation for US Fed-
eral agencies as per Binding Operational Directive 22-0110. Strictly
following the KEV would remediate half of one percent (0.5%) of all
published CVEs, and produce a relatively high efficiency of 53.2%.
However, with almost 8,000 unique CVEs with exploitation activity
in December, the coverage obtained from this strategy is only 5.9%.

Alternatively, the strategy identified in the bottom left diagram
shows a remediation strategy based on whether a vulnerability
appears in a Metasploit module. In this case, a network defender
would need to remediate almost twice as many vulnerabilities on

10"See https://www.cisa.gov/binding-operational-directive-22-01"

7



Threshold: 9.1+
Effort: 15.1% of CVEs
Coverage: 33.5%
Efficiency: 6.1%

CVSS v3.x

Threshold: 0.062+
Effort: 15.1% of CVEs
Coverage: 57.0%
Efficiency: 15.4%

EPSS v1

Threshold: 0.037+
Effort: 15.4% of CVEs
Coverage: 69.9%
Efficiency: 18.5%

EPSS v2

Threshold: 0.022+
Effort: 15.3% of CVEs
Coverage: 90.4%
Efficiency: 24.1%

EPSS v3

All CVEs CVEs Above Threshold Exploited

Figure 4: Strategy comparisons holding the level of effort
constant

the KEV list, but would enjoy 13% greater efficiency (60.5% vs 53.2%)
and almost three times more coverage (14.9% vs 5.9%).
Therefore, based on this simple heuristic (KEV vs Metasploit), the
Metasploit strategy outperforms the KEV strategy.

5.5 Advanced remediation strategies
Next we explore the real-world performance of our model, using
two separate approaches. We first compare coverage among four
remediation strategies while holding the level of effort constant (i.e.
the number of vulnerabilities needing to be remediated), we then
compare levels of effort while holding coverage constant.

Figure 4 compares the four strategies while maintaining approxi-
mately the same level of effort. That is, the blue circle in the middle
of each figure – representing the number of vulnerabilities that
would need to be remediated – is fixed to the same size for each
strategy, at approximately 15% or about 28,000 vulnerabilities. The
CVSS strategy, for example, would remediate vulnerabilities with
a base score of 9.1 or greater, and would achieve coverage and
efficiency of 33.5% and 6.1%, respectively.

A remediation strategy based on EPSS v2, on the other hand,
would remediate vulnerabilities with an EPSS v2 score of 0.037 and
greater, yielding 69.9% coverage and 18.5% efficiency. Already, this
strategy doubles the coverage and triples the efficiency, relative to
the CVSS strategy.

Even better results are achieved with a remediation strategy
based on EPSS v3 which enjoys 90.4% coverage and 24.1% efficiency.

Figure 5 compares the four strategies while maintaining approxi-
mately the same level of coverage. That is, the proportion of the red

Threshold: 7+
Effort: 58.1% of CVEs
Coverage: 82.1%
Efficiency: 3.9%

CVSS v3.x

Threshold: 0.015+
Effort: 44.3% of CVEs
Coverage: 82.2%
Efficiency: 7.6%

EPSS v1

Threshold: 0.012+
Effort: 39.0% of CVEs
Coverage: 84.7%
Efficiency: 8.9%

EPSS v2

Threshold: 0.088+
Effort: 7.3% of CVEs
Coverage: 82.0%
Efficiency: 45.5%

EPSS v3

All CVEs CVEs Above Threshold Exploited

Figure 5: Strategy comparisons holding the coverage con-
stant

circle (exploitation activity) covered by the blue circle (number of
vulnerabilities needing to be remediated). The baseline for coverage
is set by a CVSS strategy of remediating vulnerabilities with a base
score of 7 and above (CVEs with a "High" or "Critical" CVSS score).
Such a strategy yields a respectable coverage at 82.1% but at the cost
of a higher level of effort, needing to remediate 58.1% or 110,000
of all published CVEs. Practitioners can achieve a similar level of
coverage (82%) using EPSS v3 and prioritizing vulnerabilities scored
at 0.088 and above but with a much lower level of effort, needing
to only remediate 7.3% or just under 14,000 vulnerabilities.
Remediating CVEs rated as High or Critical with CVSS v3 gives
a respectable level of coverage at 82.1%, but requires remediating
58.1% of published CVEs. On the other hand, EPSS v3 can achieve
the same level of coverage but reduces the amount of effort from
58.1% to 7.3% of all CVEs, or fewer than 14000 vulnerabilities.

6 DISCUSSION AND FUTUREWORK
Currently, the EPSS model ingests data concerning which vulnera-
bilities were exploited on which days. However, exploitation has
many other characteristics, which may be useful to capture and ex-
amine. For example, we may be interested in studying the number
of exploits per vulnerability (volume), fragmentation of exploitation
over time (that is, the pattern of periods of exploitation), or preva-
lence, which would measure the spread of exploitation, typically
by counting the number of devices detecting exploitation. We leave
these topics for future work.

8



6.1 Limitations and adversarial consideration
This research is conducted with a number of limitations. First,
insights are limited to data collected from our data partners and the
geographic and organizational coverage of their network collection
devices. While these data providers collectively manage hundreds
of thousands of sensors across the globe, and across organizations of
all sizes and industries, they do not observe every attempted exploit
event in every network. Nevertheless, it is plausible to think that the
data used, and therefore any inferences provided, are representative
of all mass exploitation activity.

In regard to the nature of how vulnerabilities are detected, any
signature-based detection device is only able to alert on events
that it was programmed to observe. Therefore, we are not able to
observe vulnerabilities that were exploited but undetected by the
sensor because a signature was not written.

Moreover, the nature of the detection devices generating the
events will be biased toward detecting network-based attacks, as
opposed to attacks from other attack vectors such as host-based
attacks or methods requiring physical proximity.11 Similarly, these
detection systemswill be typically installed on public-facing perime-
ter internet devices, and therefore less suited to detecting computer
attacks against internet of things (IoT) devices, automotive net-
works, ICS, SCADA, operational technology (OT), medical devices,
etc.

Given the exploit data from the data partners, we are not able
to distinguish between exploit activity generated by researchers or
commercial entities, versus actual malicious exploit activity. While
it is likely that some proportion of exploitation does originate from
non-malicious sources, at this point we have no reliable way of
estimating the true proportion. However, based on the collective
authors’ experience, and discussions with our data providers, we
do not believe that this represents a significant percentage of ex-
ploitation activity.

While these points may limit the scope of our inferences, to the
extent that our data collection is representative of an ecosystem of
public-facing, network-based attacks, we believe that many of the
insights presented here are generalizable beyond this dataset.

In addition to these limitations, there are other adversarial con-
siderations that fall outside the scope of this paper. For example, one
potential concern is the opportunity for adversarial manipulation
either of the EPSS model, or using the EPSS scores. For example,
it may be possible for malicious actors to poison or otherwise ma-
nipulate the input data to the EPSS model (e.g. Github, Twitter).
These issues have been studied extensively in the context of ma-
chine learning for exploit prediction [32] and other tasks [10, 33],
and their potential impact is well understood. Given that we have
no evidence of such attacks in practice, and our reliance on data
from many distinct sources which would reduce the leverage of
adversaries, we leave an in-depth investigation of the matter for
future work. Additionally, it is possible that malicious actors may
change their strategies based on EPSS scores. For example, if net-
work defenders increasingly adopt EPSS as the primary method
for prioritizing vulnerability remediation, thereby deprioritizing

11For example, it is unlikeley to find evidence of exploitation for CVE-2022-37418 in
our data set, a vulnerability in the remote keyless entry systems on specific makes and
models of automobiles.

Exploit Code

CVE (age+refs)

CVSS Vectors

Sites

Scanners

Twitter

Tag

CWE

Vendor

0 0.01 0.1 0.5 1 2 3 5
Shapley Value

Density

Figure 6: Density plots of the absolute SHAP values for each
family of features

vulnerabilities with lower EPSS scores, it may be conceivable that
attackers begin to strategically incorporate these lower scoring
vulnerabilities into their tactics and malware. While possible, we
are not aware of any actual or suggestive evidence to this effect.

Finally, while evolving the model from a logistic regression
to a more sophisticated machine learning approach greatly im-
proved performance of EPSS, an important consequence is that
interpretability of variable contributions is more difficult to quan-
tify as we discuss in the next section.

6.2 Variable importance and contribution
While an XGBoost model is not nearly as intuitive or interpretable
as linear regression, we can use SHAP values [23] to reduce the
opacity of a trained model by quantifying feature contributions,
breaking down the score assigned to a CVE as 𝜙0 +∑

𝑖 𝜙𝑖 , where
𝜙𝑖 is the contribution from feature 𝑖 , and 𝜙0 is a bias term. We use
SHAP values due to their good properties such as local accuracy
(attributions sum up to the output of the model), missingness (miss-
ing features are given no importance), and consistency (modifying
a model so that a feature is given more weight never decreases its
attribution).

The contributions from different classes of variables in the ker-
nel density plot are shown in Figure 6. First, note that the figure
displays the absolute value of the SHAP values, in order to infer
the contribution of the variable away from zero. Second, note the
horizontal axis is presented on log scale to highlight that the ma-
jority of features do not contribute much weight to the final output.
In addition, the thin line extending out to the right in Figure 6
illustrates how there are instances of features within each class
that contribute a significant amount. Finally, note that Figure 6
is sorted in decreasing mean absolute SHAP value for each class
of features, highlighting the observation that published exploit
code is the strongest contributor to the estimated probability of
exploitation activity.

Figure 7 identifies the 30 most significant features with their
calculated mean absolute SHAP value. Again, note that higher
values infer a greater influence (either positive or negative) on

9



Tag: Buffer Overflow
Exploit: Github

CVSS: 3.1/Scored
Site: KEV

Tag: Denial of Service
Tag: XSS

CVSS: 3.1/I:H
NVD: Patch Ref

NVD: 3party Advisory Ref
Tag: Local

NVD: Vendor Advisory Ref
CVSS: 3.1/UI:N
Vendor: Adobe
Scanner: Nuclei

Tag: SQLi
NVD: US Gov Ref
NVD: VDB Ref

NVD: Exploit Ref
Exploit: metasploit

Site: ZDI
CVSS: 3.1/C:H
CVSS: 3.1/A:H
CVSS: 3.1/PR:N
CVSS: 3.1/AV:N

Vendor: Microsoft
CVE: Age of CVE

Exploit: Exploit DB
Tag: Code Execution

Tag: Remote
CVE: Count of References

0.0 0.1 0.2 0.3 0.4
Mean Absolute Shapley Value

Figure 7: Mean absolute SHAP value for individual features

the final predicted value. Note that Figure 6 is showing the mean
absolute SHAP value from an entire class of features. So even though
Exploit Code as a class of features has a higher mean absolut SHAP
value, the largest individual feature is coming from the count of
references in the published CVE (which is in the "CVE" class).
Note how the most influential feature is the count of the number
of references in MITRE’s CVE List, followed by “remote attack-
ers,” “code execution,” and published exploit code in Exploit-DB,
respectively.

7 LITERATURE REVIEW AND RELATED
SCORING SYSTEMS

This research is informed by multiple bodies of literature. First,
there are a number of industry efforts that seek to provide some
measure of exploitability for individual vulnerabilities, though there
is wide variation in their scope and availability. First, the basemetric
group of CVSS, the leading standard for measuring the severity
of a vulnerability, is composed of two parts, measuring impact
and exploitability [17]. The score is built on expert judgements,
capturing, for example the observation that a broader ability to
exploit a vulnerability (i.e., remotely across the Internet, as opposed
to requiring local access to the device); a more complex exploit
required, or more user interaction required, all serve to increase the
apparent likelihood that a vulnerability could be exploited, all else
being equal. CVSS has been repeatedly shown by prior work [2, 3],
as well as our own evidence, to be insufficient for capturing all
the factors that drive exploitation in the wild. The U.S. National

Vulnerability Database (NVD) includes a CVSS base score with
nearly all vulnerabilities it has published. Because of the wide-
spread use of CVSS, specifically the base score, as a prioritization
strategy we will compare our performance against CVSS as well as
our previous models.

Exploit likelihood is alsomodeled through various vendor-specific
metrics. In 2008, Microsoft introduced the Exploitability Index for
vulnerabilities in their products [24]. It provides 4 measures for
the likelihood that a vulnerability will be exploited: whether an
exploitation has already been detected, and whether exploitation is
more or less likely, or unlikely. The metric has been investigated
before [15, 30, 40] and was shown to have limited performance at
predicting exploitation in the wild [13, 30] or the development of
functional exploits [34].

Redhat provides a 4-level severity rating: low, moderate, im-
portant, and critical [28]. In addition to capturing a measure of
the impact to a vulnerable system, this index also captures some
notion of exploitability. For example, the “low” severity rating rep-
resents vulnerabilities that are unlikely to be exploited, whereas
the “critical” severity rating reflects vulnerabilities that could be
easily exploited by an unauthenticated remote attacker. Like the
Exploitability Index, Redhat’s metric is vendor-specific and has
limitations reflecting exploitation likelihood [34].

A series of commercial solutions also aim to capture the likeli-
hood of exploits. Tenable, a leading vendor of intrusion detection
systems, created the Vulnerability Priority Rating (VPR), which,
like CVSS, combines information about both impact to a vulnerable
system, and the exploitability (threat) of a vulnerability in order to
help network defenders better prioritize remediation efforts [36].
For example, the threat component of VPR “reflects both recent
and potential future threat activity” by examining whether exploit
code is publicly available, whether there are mentions of active
exploitation on social media or in the dark web, etc. Rapid 7’s Real
Risk Score product uses its own collection of data feeds to produce
a score between 1-1000. This score is a combination of the CVSS
base score, “malware exposure, exploit exposure and ease of use,
and vulnerability age” and seeks to produce a better measure of
both exploitability and “risk” [26]. Recorded Future’s Vulnerability
Intelligence product integrates multiple data sources, including
threat information, and localized asset criticality [27]. The predic-
tions, performance evaluations and implementation details of these
solutions are not publicly available.

These industry efforts are either vendor-specific, score only sub-
sets of vulnerabilities, based on expert opinion and assessments and
therefore not entirely data-driven, or proprietary and not publicly
available.

Our work is also related to a growing academic research field of
predicting and detecting vulnerability exploitation. A large body
of work focuses on predicting the emergence of proof-of-concept
or functional exploits [5–7, 9, 14, 29, 34], not necessarily whether
these exploits will be used in the wild, as is done with EPSS. Papers
predicting exploitation in the wild have used alternative sources of
exploitation, most notably data from Symantec’s IDS, to build pre-
diction models [4, 11, 16, 19, 32, 35, 37]). Most of these papers build
vulnerability feature sets from commonly used data sources such
as NVD or OSVDB, although some of them use novel identifiers
for exploitation: [32] infers exploitation using Twitter data, [37]

10



uses patching patterns and blacklist information to predict whether
organizations are facing new exploits, while [35] uses natural lan-
guage processing methods to infer context of darkweb/deepweb
discussions.
Compared to other scoring systems and research described above,
EPSS is a rigorous and ongoing research effort is; an international,
community-driven effort; designed to predict vulnerability exploita-
tion in the wild; available for all known and published vulnerabili-
ties; updated daily to reflect new vulnerabilities and new exploit-
related information; made available freely to the public.

8 CONCLUSION
In this paper, we presented results from an international, community-
driven effort to collect and analyze software vulnerability exploit
data, and to build a machine learning model capable of estimating
the probability that a vulnerability would be exploited within 30
days following the prediction. In particular, we described the pro-
cess of collecting each of the additional variables, and described
the approaches used to create the machine learning model based
on 6.4 million observed exploit attempts. Through the expanded
data sources we achieved an unprecedented 82% improvement in
classifier performance over the previous iterations of EPSS.

We illustrated practical use of EPSS by way of comparison with a
set of alternative vulnerability remediation strategies. In particular,
we showed the sizeable and meaningful improvement in coverage,
efficiency and level of effort (as measured by the number of vul-
nerabilities that would need to be remediated) by using EPSS v3
over any and all current remediation approaches, including CVSS,
CISA’s KEV list, and Metasploit.

As the EPSS effort continues to grow, acquire and ingest new
data, and improve modeling techniques with each new version, we
believe it will continue to improve in performance, and provide
new and fundamental insights into vulnerability exploitation for
many years to come.

9 ACKNOWLEDGEMENTS
We would like to acknowledge the participants of the EPSS Special
Interest Group (SIG), as well as the organizations that have con-
tributed to the EPSS data model to include: Forinet, Shadow Server
Foundation, Greynoise, Alien Vault, Cyentia, and FIRST.

REFERENCES
[1] Luca Allodi and Fabio Massacci. 2012. A Preliminary Analysis of Vulnerability

Scores for Attacks in Wild. In CCS BADGERS Workshop. Raleigh, NC.
[2] Luca Allodi and Fabio Massacci. 2012. A preliminary analysis of vulnerability

scores for attacks in wild: The EKITS and SYN datasets. In Proceedings of the 2012
ACM Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security. 17–24.

[3] Luca Allodi and Fabio Massacci. 2014. Comparing vulnerability severity and
exploits using case-control studies. ACM Transactions on Information and System
Security (TISSEC) 17, 1 (2014), 1–20.

[4] Mohammed Almukaynizi, Eric Nunes, Krishna Dharaiya, Manoj Senguttuvan,
Jana Shakarian, and Paulo Shakarian. 2017. Proactive Identification of Exploits in
theWild Through Vulnerability Mentions Online. In 2017 International Conference
on Cyber Conflict (CyCon US). IEEE, 82–88.

[5] Kenneth Alperin, Allan Wollaber, Dennis Ross, Pierre Trepagnier, and Leslie
Leonard. 2019. Risk prioritization by leveraging latent vulnerability features in a
contested environment. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security. 49–57.

[6] Navneet Bhatt, Adarsh Anand, and Venkata SS Yadavalli. 2021. Exploitabil-
ity prediction of software vulnerabilities. Quality and Reliability Engineering
International 37, 2 (2021), 648–663.

[7] Mehran Bozorgi, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2010.
Beyond Heuristics: Learning to Classify Vulnerabilities and Predict Exploits.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 105–114.

[8] Glenn W Brier et al. 1950. Verification of forecasts expressed in terms of proba-
bility. Monthly weather review 78, 1 (1950), 1–3.

[9] Benjamin L Bullough, Anna K Yanchenko, Christopher L Smith, and Joseph R
Zipkin. 2017. Predicting Exploitation of Disclosed Software Vulnerabilities Using
Open-source Data. In Proceedings of the 3rd ACM on International Workshop on
Security and Privacy Analytics. 45–53.

[10] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. 2018. Adversarial attacks and defences: A survey. arXiv
preprint arXiv:1810.00069 (2018).

[11] Haipeng Chen, Rui Liu, Noseong Park, and VS Subrahmanian. 2019. Using
twitter to predict when vulnerabilities will be exploited. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
3143–3152.

[12] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting
system. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 785–794.

[13] DarkReading 2008. Black Hat: The Microsoft Exploitability Index: More Vulnera-
bility Madness. DarkReading. https://www.darkreading.com/risk/black-hat-the-
microsoft-exploitability-index-more-vulnerability-madness.

[14] Michel Edkrantz and Alan Said. 2015. Predicting Cyber Vulnerability Exploits
with Machine Learning.. In SCAI. 48–57.

[15] C Eiram. 2013. Exploitability/Priority Index Rating Systems (Approaches, Value,
and Limitations).

[16] Yong Fang, Yongcheng Liu, Cheng Huang, and Liang Liu. 2020. FastEmbed:
Predicting vulnerability exploitation possibility based on ensemble machine
learning algorithm. PloS one 15, 2 (2020), e0228439.

[17] FIRST 2019. A complete guide to the common vulnerability scoring system.
https://www.first.org/cvss/v3.0/specification-document.

[18] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. 2022. Why do tree-based
models still outperform deep learning on typical tabular data?. In Thirty-sixth
Conference on Neural Information Processing Systems Datasets and Benchmarks
Track.

[19] Mohammad Shamsul Hoque, Norziana Jamil, Nowshad Amin, and Kwok-Yan
Lam. 2021. An Improved Vulnerability Exploitation Prediction Model with Novel
Cost Function and Custom Trained Word Vector Embedding. Sensors 21, 12
(2021), 4220.

[20] Cyentia Institute and Kenna Security. 2022. Prioritization to Prediction Vol 8.
(2022). https://www.kennasecurity.com/resources/prioritization-to-prediction-
reports/

[21] Jay Jacobs, Sasha Romanosky, Idris Adjerid, andWade Baker. 2020. Improving vul-
nerability remediation through better exploit prediction. Journal of Cybersecurity
6, 1 (2020), tyaa015.

[22] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Idris Adjerid, and Michael
Roytman. 2021. Exploit Prediction Scoring System (EPSS). Digital Threats:
Research and Practice 2, no. 3 (2021): 1-17. 2, 3 (2021), 1–17.

[23] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. In Advances in neural information processing systems. 4765–4774.

[24] Microsoft 2020. Microsoft Exploitability Index. Microsoft. https://www.microsoft.
com/en-us/msrc/exploitability-index.

[25] Maciej Nowak, Michał Walkowski, and Sławomir Sujecki. 2021. Conversion of
CVSS Base Score from 2.0 to 3.1. In 2021 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM). IEEE, 1–3.

[26] Rapid7 2023. Prioritize Vulnerabilities Like an Attacker. Rapid7. https://www.
rapid7.com/products/insightvm/features/real-risk-prioritization/.

[27] Recorded Future 2023. Prioritize patching based on risk. Recorded Future.
https://www.recordedfuture.com/platform/vulnerability-intelligence.

[28] RedHat 2023. Severity ratings. RedHat. https://access.redhat.com/security/
updates/classification/.

[29] Alexander Reinthal, Eleftherios Lef Filippakis, and Magnus Almgren. 2018. Data
modelling for predicting exploits. In Nordic Conference on Secure IT Systems.
Springer, 336–351.

[30] Reuters. [n. d.]. Microsoft correctly predicts reliable exploits just 27% of the time.
https://www.reuters.com/article/urnidgns852573c400693880002576630073ead6/
microsoft-correctly-predicts-reliable-exploits-just-27-of-the-time-
idUS186777206820091104.

[31] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic
keyword extraction from individual documents. Text mining: Applications and
theory (2010), 1–20.

[32] Carl Sabottke, Octavian Suciu, and Tudor Dumitras, . 2015. Vulnerability Disclo-
sure in the Age of Social Media: Exploiting Twitter for Predicting {Real-World}
Exploits. In 24th USENIX Security Symposium (USENIX Security 15). 1041–1056.

11

https://www.darkreading.com/risk/black-hat-the-microsoft-exploitability-index-more-vulnerability-madness
https://www.darkreading.com/risk/black-hat-the-microsoft-exploitability-index-more-vulnerability-madness
https://www.first.org/cvss/v3.0/specification-document
https://www.kennasecurity.com/resources/prioritization-to-prediction-reports/
https://www.kennasecurity.com/resources/prioritization-to-prediction-reports/
https://www.microsoft.com/en-us/msrc/exploitability-index
https://www.microsoft.com/en-us/msrc/exploitability-index
https://www.rapid7.com/products/insightvm/features/real-risk-prioritization/
https://www.rapid7.com/products/insightvm/features/real-risk-prioritization/
https://www.recordedfuture.com/platform/vulnerability-intelligence
https://access.redhat.com/security/updates/classification/
https://access.redhat.com/security/updates/classification/
https://www.reuters.com/article/urnidgns852573c400693880002576630073ead6/microsoft-correctly-predicts-reliable-exploits-just-27-of-the-time-idUS186777206820091104
https://www.reuters.com/article/urnidgns852573c400693880002576630073ead6/microsoft-correctly-predicts-reliable-exploits-just-27-of-the-time-idUS186777206820091104
https://www.reuters.com/article/urnidgns852573c400693880002576630073ead6/microsoft-correctly-predicts-reliable-exploits-just-27-of-the-time-idUS186777206820091104


[33] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumi-
tras. 2018. When does machine learning {FAIL}? generalized transferability for
evasion and poisoning attacks. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). 1299–1316.

[34] Octavian Suciu, Connor Nelson, Zhuoer Lyu, Tiffany Bao, and Tudor Dumitras, .
2022. Expected exploitability: Predicting the development of functional vul-
nerability exploits. In 31st USENIX Security Symposium (USENIX Security 22).
377–394.

[35] Nazgol Tavabi, Palash Goyal, Mohammed Almukaynizi, Paulo Shakarian, and
Kristina Lerman. 2018. Darkembed: Exploit prediction with neural language
models. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[36] Tenable 2020. What Is VPR and How Is It Different from CVSS? Tenable. https:
//www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss.

[37] Chaowei Xiao, Armin Sarabi, Yang Liu, Bo Li, Mingyan Liu, and Tudor Dumitras.
2018. From patching delays to infection symptoms: Using risk profiles for an
early discovery of vulnerabilities exploited in the wild. In 27th USENIX Security
Symposium (USENIX Security 18). 903–918.

[38] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–316.

[39] Yiming Yang and Jan O Pedersen. 1997. A comparative study on feature selection
in text categorization. In Icml, Vol. 97. Citeseer, 35.

[40] Awad A Younis and Yashwant K Malaiya. 2015. Comparing and evaluating CVSS
base metrics and microsoft rating system. In 2015 IEEE International Conference
on Software Quality, Reliability and Security. IEEE, 252–261.

12

https://www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss
https://www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss

	Abstract
	1 Introduction
	2 Evolution of EPSS
	3 Data
	3.1 Ground truth: exploitation in the wild
	3.2 Explanatory variables/features

	4 Modeling Approach
	4.1 Preparing ground truth and features
	4.2 Model selection
	4.3 Train/test split and measuring performance
	4.4 Tuning and optimizing model performance

	5 Evaluation
	5.1 Precision (efficiency) and recall (coverage)
	5.2 Model performance
	5.3 Probability calibrations
	5.4 Simple Remediation Strategies
	5.5 Advanced remediation strategies

	6 Discussion and Future Work
	6.1 Limitations and adversarial consideration
	6.2 Variable importance and contribution

	7 Literature Review and Related Scoring Systems
	8 Conclusion
	9 Acknowledgements
	References

