Gaming security by obscurity

Dusko Pavlovic
Royal Holloway, University of London, and University of Twente
dusko.pavlovic@rhul.ac.uk

ABSTRACT

Shannon \[35\] sought security against the attacker with unlimited computational powers: *if an information source conveys some information, then Shannon's attacker will surely extract that information.* Diffie and Hellman \[12\] refined Shannon's attacker model by taking into account the fact that the real attackers are computationally limited. This idea became one of the greatest new paradigms in computer science, and led to modern cryptography.

Shannon also sought security against the attacker with unlimited logical and observational powers, expressed through the maxim that "the enemy knows the system". This view is still endorsed in cryptography. The popular formulation, going back to Kerckhoffs \[22\], is that "there is no security by obscurity", meaning that the algorithms cannot be kept obscured from the attacker, and that security should only rely upon the secret keys. In fact, modern cryptography goes even further than Shannon or Kerckhoffs in tacitly assuming that *if there is an algorithm that can break the system, then the attacker will surely find that algorithm*. The attacker is not viewed as an omnipotent computer any more, but he is still construed as an omnipotent programmer. The ongoing hackers' successes seem to justify this view.

So the Diffie-Hellman step from unlimited to limited computational powers has not been extended into a step from unlimited to limited logical or programming powers. Is the assumption that all feasible algorithms will eventually be discovered and implemented really different from the assumption that everything that is computable will eventually be computed? The present paper explores some ways to refine the current models of the attacker, and of the defender, by taking into account their limited logical and programming powers. If the adaptive attacker actively queries the system to seek out its vulnerabilities, can the system gain some security by actively learning attacker's methods, and adapting to them?

1. INTRODUCTION

New paradigms change the world. In computer science, they often sneak behind researchers' backs: the grand visions often fizzle into minor ripples (like the fifth generation of programming languages), whereas some modest goals engender tidal waves with global repercussions (like moving the cursor by a device with wheels, or connecting remote computers). So it is not easy to conjure a new paradigm when you need it.

Perhaps the only readily available method to generate new paradigms at leisure is by disputing the obvious. Just in case, I question on this occasion not one, but two generally endorsed views:

- **Kerckhoffs Principle** that there is no security by obscurity, and
- **Fortification Principle** that the defender has to defend all attack vectors, whereas the attacker only needs to attack one.

To simplify things a little, I argue that these two principles as related. The Kerckoffs Principle demands that a system should withstand attackers unhindered probing. In the modern security definitions, this is amplified to the requirement that the system should resist a family of attacks, irrespective of the details of their algorithms. The adaptive attackers are thus allowed to query the system, whereas the system is not allowed to query the attackers. The resulting *information asymmetry* makes security look like a game biased in favor of the attackers. The Fortification Principle is an expression of that asymmetry. In economics, information asymmetry has been recognized as a fundamental problem, worth the Nobel Prize in Economics for 2001 \[39, 31, 27\]. In security research, the problem does not seem to have been explicitly addressed, but there is, of course, no shortage of efforts to realize security by obscurity in practice — albeit without any discernible method. Although the practices of analyzing the attackers and hiding the systems are hardly waiting for anyone to invent a new paradigm, I will pursue the possibility that a new paradigm might be sneaking behind our backs again, like so many old paradigms did.

Outline of the paper

While I am on the subject of security paradigms, I decided to first spell out a general overview of the old ones. An attempt at this is in Sec. 2. It is surely incomplete, and perhaps wrongheaded, but it may help a little. It is difficult to communicate about the new without an agreement about...
2. OLD SECURITY PARADIGMS

Security means many things to many people. For a software engineer, it often means that there are no buffer overflows or dangling pointers in the code. For a cryptographer, it means that any successful attack on the cipher can be reduced to an algorithm for computing discrete logarithms, or to integer factorization. For a diplomat, security means that the enemy cannot read the confidential messages. For a credit card operator, it means that the total costs of the fraudulent transactions and of the measures to prevent them are low, relative to the revenue. For a bee, security means that no intruder into the beehive will escape her sting...

Is it an accident that all these different ideas go under the same name? What do they really have in common? They are studied in different sciences, ranging from computer science to biology, by a wide variety of different methods. Would it be useful to study them together?

2.1 What is security?

If all avatars of security have one thing in common, it is surely the idea that there are enemies and potential attackers out there. All security concerns, from computation to politics and biology, come down to averting the adversarial processes in the environment, that are poised to subvert the goals of the system. There are, for instance, many kinds of bugs in software, but only those that the hackers use are a security concern.

In all engineering disciplines, the system guarantees a functionality, provided that the environment satisfies some assumptions. This is the standard assume-guarantee format of the engineering correctness statements. Such statements are useful when the environment is passive, so that the assumptions about it remain valid for a while. The essence of security engineering is that the environment actively seeks to invalidate system’s assumptions.

Security is thus an adversarial process. In all engineering disciplines, failures usually arise from engineering errors and noncompliance. In security, failures arise in spite of the compliance with the best engineering practices of the moment. Failures are the first class citizens of security: every key has a lifetime, and in a sense, every system too. For all major software systems, we normally expect security updates, which usually arise from attacks, and often inspire them.

2.2 Where did security come from?

The earliest examples of security technologies are found among the earliest documents of civilization. Fig. 1 illustrates the situation where this technology was probably used. Alice has a lamb and Bob has built a secure vault, perhaps with multiple security levels, spacious enough to store both Bob’s and Alice’s assets. For each of Alice’s assets deposited in the vault, Bob issues a clay token, with an inscription identifying the asset. Alice can also give her bulla to Carol, who can also submit it to Bob, to withdraw the goods, or pass on to Dave. Bullae can thus be traded, and they facilitate exchange economy. The tokens used in the bullae evolved into the earliest forms of money, and the inscriptions on them led to the earliest numeral systems, as well as to Sumerian cuneiform script, which was one of the earliest alphabets.
Security thus predates literature, science, mathematics, and even money.

2.3 Where is security going?

Through history, security technologies evolved gradually, serving the purposes of war and peace, protecting public resources and private property. As computers pervaded all aspects of social life, security became interlaced with computation, and security engineering came to be closely related with computer science. The developments in the realm of security are nowadays inseparable from the developments in the realm of computation. The most notable such development is, of course, cyber space.

Paradigms of computation

In the beginning, engineers built computers, and wrote programs to control computations. The platform of computation was the computer, and it was used to execute algorithms and calculations, allowing people to discover, e.g., fractals, and to invent compilers, that allowed them to write and execute more algorithms and more calculations more efficiently. Then the operating system became the platform of computation, and software was developed on top of it. The era of personal computing and enterprise software broke out. And then the Internet happened, followed by cellular networks, and wireless networks, and ad hoc networks, and mixed networks. Cyber space emerged as the distance-free space of instant, costless communication. Nowadays software is developed to run in cyberspace. The Web is, strictly speaking, just a software system, albeit a formidable one. A botnet is also a software system. As social space blends with cyber space, many social (business, collaborative) processes can be usefully construed as software systems, that ran on social networks as hardware. Many social and computational processes become inextricable. Table 1 summarizes the crude picture of the paradigm shifts which led to this remarkable situation.

But as every person got connected to a computer, and every computer to a network, and every network to a network of networks, computation became interlaced with communication, and ceased to be programmable. The functioning of the Web and of web applications is not determined by the code in the same sense as in a traditional software system: after all, web applications do include the human users as a part of their runtime. The fusion of social and computational processes in cyber-social space leads to a new type of information processing, where the purposeful program executions at the network nodes are supplemented by spontaneous data-driven evolution of network links. While the network emerges as the new computer, data and metadata become inseparable, and a new type of security problems arises.

Paradigms of security

In early computer systems, security tasks mainly concerned sharing of the computing resources. In computer networks, security goals expanded to include information protection. Both computer security and information security essentially depend on a clear distinction between the secure areas, and the insecure areas, separated by a security perimeter. Security engineering caters for computer security and for information security by providing the tools to build the security perimeter. In cyber space, the secure areas are separated from the insecure areas by the "walls" of cryptography; and they are connected by the "gates" of cryptographic protocols.

3. A SECOND-HAND BUT ALMOST-NEW SECURITY PARADIGM: KNOW YOUR ENEMY

3.1 Security beyond architecture

Let us take a closer look at the paradigm shift to post-modern cyber security in Table 2. It can be illustrated as the shift from Fig. 3 to Fig. 4. The fortification in Fig. 3 represents the view that security is in essence an architectural task. A fortress consists of walls and gates, separating the secure area within from the insecure area outside. The
boundary between these two areas is the security perimeter. The secure area may be further subdivided into the areas of higher security and the areas of lower security. In cyber space, as we mentioned, the walls are realized using crypto systems, whereas the gates are authentication protocols. But as every fortress owner knows, the walls and the gates are not enough for security: you also need some soldiers to defend it, and some weapons to arm the soldiers, and some craftsmen to build the weapons, and so on. Moreover, you also need police and judges to maintain security within the fortress. They take care for the dynamic aspects of security. These dynamic aspects arise from the fact that sooner or later, the enemies will emerge inside the fortress: they will scale the walls at night (i.e. break the crypto), or sneak past the gatekeepers (break the protocols), or build up trust and enter with honest intentions, and later defect to the enemy; or enter as moles, with the intention to strike later. In any case, security is not localized at the security perimeters of Fig. 3 but evolves in-depth, like on Fig. 4, through social processes, like trust, privacy, reputation, influence.

In summary, besides the methods to keep the attackers out, security is also concerned with the methods to deal with the attackers once they get in. Security researchers have traditionally devoted more attention to the former family of methods. Insider threats have attracted a lot of attention recently, but a coherent set of research methods is yet to emerge.

Interestingly, though, there is a sense in which security becomes an easier task when the attacker is in. Although unintuitive at the first sight, this idea becomes natural when security processes are viewed in a broad context of the information flows surrounding them (and not only with respect to the data designated to be secret or private). To view security processes in this broad context, it is convenient to model them as games of incomplete information [4], where the players do not have enough information to predict the opponent’s behavior. For the moment, let me just say that the two families of security methods (those to keep the at-

<table>
<thead>
<tr>
<th>age</th>
<th>ancient times</th>
<th>middle ages</th>
<th>modern times</th>
</tr>
</thead>
<tbody>
<tr>
<td>platform</td>
<td>computer</td>
<td>operating system</td>
<td>network</td>
</tr>
<tr>
<td>applications</td>
<td>Quicksort, compilers</td>
<td>MS Word, Oracle</td>
<td>WWW, botnets</td>
</tr>
<tr>
<td>requirements</td>
<td>correctness, termination</td>
<td>liveness, safety</td>
<td>trust, privacy</td>
</tr>
<tr>
<td>tools</td>
<td>programming languages</td>
<td>specification languages</td>
<td>scripting languages</td>
</tr>
</tbody>
</table>

Table 1: Paradigm shifts in computation

<table>
<thead>
<tr>
<th>age</th>
<th>middle ages</th>
<th>modern times</th>
<th>postmodern times</th>
</tr>
</thead>
<tbody>
<tr>
<td>space</td>
<td>computer center</td>
<td>cyber space</td>
<td>cyber-social space</td>
</tr>
<tr>
<td>assets</td>
<td>computing resources</td>
<td>information</td>
<td>public and private resources</td>
</tr>
<tr>
<td>requirements</td>
<td>availability, authorization</td>
<td>integrity, confidentiality</td>
<td>trust, privacy</td>
</tr>
<tr>
<td>tools</td>
<td>locks, tokens, passwords</td>
<td>cryptography, protocols</td>
<td>mining and classification</td>
</tr>
</tbody>
</table>

Table 2: Paradigm shifts in security

![Figure 3: Static security](image)

![Figure 4: Dynamic security](image)
In the fortress mode, when the defenders’ goal is to keep the attackers out, it is often observed that the attackers only need to find one attack vector to enter the fortress, whereas the defenders must defend all attack vectors to prevent them. When the battle switches to the dynamic mode, and the defense moves inside, then the defenders only need to find one marker to recognize and catch the attackers, whereas the attackers must cover all their markers. This strategic advantage is also the critical aspect of the immune response, where the invading organisms are purposely sampled and analyzed for chemical markers. Some aspects of this observation have, of course, been discussed within the framework of biologically inspired security. Game theoretic modeling seems to be opening up a new dimension in this problem space. We present a sketch to illustrate this new technical and conceptual direction.

3.2 The game of attack vectors

Arena. Two players, the attacker A and the defender D, battle for some assets of value to both of them. They are given equal, disjoint territories, with the borders of equal length, and equal amounts of force, expressed as two vector fields distributed along their respective borders. The players can redistribute the forces and move the borders of their territories. The territories can thus take any shapes and occupy any areas where the players may move them, obeying the constraints that

1. the length of the borders of both territories must be preserved, and
2. the two territories must remain disjoint, except that they may touch at the borders.

It is assumed that the desired asset Θ is initially held by the defender D. Suppose that storing this asset takes an area of size θ. Defender's goal is thus to maintain a territory p_D with an area $\int p_D \geq \theta$. Attacker's goal is to decrease the size of p_D below θ, so that the defender must release some of the asset Θ. To achieve this, the attacker A must bring his forces to defender D's borders, and push into his territory. A position in the game can thus be something like Fig. 5.

Game. At each step in the game, each player makes a move by specifying a distribution of his forces along his borders. Both players are assumed to be able to redistribute their forces with equal agility. The new force vectors meet at the border, they add up, and the border moves along the resulting vector. So if the vectors are, say, in the opposite directions, the forces subtract and the border is pushed by the greater vector.

The players observe each other’s positions and moves in two ways:

1. Each player knows his own moves, i.e. distributions, and sees how his borders change. From the change in the previous move, he can thus derive the opponent’s

2. Each player sees all movement in the areas enclosed within his territory, i.e. observes any point on a straight line between any two points that he controls.

According to (b), the position in Fig. 5 allows A to see D’s next move. D, on the other hand only gets to know A’s move according to (a), when his own border changes. This depicts, albeit very crudely, the information asymmetry between the attacker and the defender.

Question. How should rational players play this game?

3.2.1 Fortification strategy

Goals. Since each player’s total force is divided by the length of his borders, the maximal area defensible by a given force has the shape of a disk. All other shapes with the boundaries of the same length enclose smaller areas. So D’s simplest strategy is to acquire and maintain the smallest disk-shaped territory of size θ.

This is the fortification strategy: D only responds to A’s moves.

A’s goal is, on the other hand, to create "dents" in D’s territory p_D, since the area of p_D decreases most when its convexity is disturbed. If a dent grows deep enough to reach across p_D, or if two dents in it meet, then p_D disconnects in two components. Given a constant length of the border, it is easy to see that the size of the enclosed area decreases exponentially as it gets broken up. In this way, the area enclosed by a border of given length can be made arbitrarily small.

But how can A create dents? Wherever he pushes, the defender will push back. Since their forces are equal and constant, increasing the force along one vector decreases the force along another vector.

Optimization tasks. To follow the fortification strategy, D just keeps restoring p_D to a disk of size θ. To counter D’s defenses, A needs to find out where they are the weakest. He can observe this wherever D’s territory p_D is within the current distribution of the forces along the common part of the border.

This is why the core of a medieval fortification was a round tower with a thick wall and a small space inside. The fortress itself often is not round, because the environment is not flat, or because the straight walls were easier to build; but it is usually at least convex. Later fortresses, however, had protruding towers — to attack the attacker. Which leads us beyond the fortification strategy...
A’s range, i.e. contained in the convex hull of p_A. So A needs to maximize the intersection of his range with D’s territory. Fig. 5 depicts a position where this is achieved: D is under A’s siege. It embodies the Fortification Principle, that the defender must defend all attack vectors, whereas the attacker only needs to select one. For a fast push, A randomly selects an attack vector, and waits for D to push back. Strengthening D’s defense along one vector weakens it along another one. Since all of D’s territory is within A’s range, A sees where D’s defense is the weakest, and launches the next attack there. In contrast, D’s range is initially limited to his own disk shaped territory. So D only “feels” A’s pushes when his own borders move. At each step, A pushes at D’s weakest point, and creates a deeper dent. A does enter into D’s range, but D’s fortification strategy makes no use of the information that could be obtained about A. The number of steps needed to decrease p_D below θ depends on how big are the forces and how small are the contested areas.

3.2.2 Adaptation strategy

What can D do to avoid the unfavorable outcome of the fortification strategy? The idea is that he should learn to know his enemy: he should also try to shape his territory to maximize the intersection of his range with A’s territory. D can lure A into his range simply letting A dent his territory. This is the familiar honeypot approach, illustrated on Fig. 6. Instead of racing around the border to push back against every attack, D now gathers information about A’s next moves within his range. If A maintains the old siege strategy, and pushes to decrease D’s territory, he will accept D’s territory, and enter into his range more and more.

Fig. 7 depicts a further refinement of D’s strategy, where the size of D’s territory, although it is still his main goal in the game, is assigned a smaller weight than the size of A’s territory within D’s range. This is the adaptation strategy. The shape of D’s territory is determined by the task of gathering the information about A. If A follows the final part of his siege strategy, he will accept to be observed in exchange for the territory, and the final position depicted on Fig. 8 will be reached. Here A’s attacks are observed and prevented. D wins. The proviso is that D has enough territory to begin with that there is enough to store his assets after he changes its shape in order to control A. Another proviso is that A blindly sticks with his siege strategy.

To prevent this outcome, A will thus need to refine his strategy, and not release D from his range, or enter his range so easily. However, if he wants to decrease D’s territory, A will not be able to avoid entering D’s range altogether. So both players’ strategy refinements will evolve methods to trade territory for information, making increasingly efficient use of the available territories. Note that the size of D’s territory must not drop below θ, whereas the size of A’s territory can, but then he can only store a part of whatever assets he may force D to part with.

A formalism for a mathematical analysis of this game is sketched in the Appendix.

3.3 What does all this mean for security?

The presented toy model provides a very crude picture of the evolution of defense strategies from fortification to adaptation. Intuitively, Fig. 5 can be viewed as a fortress under siege, whereas Fig. 8 can be interpreted as a macrophage localizing an invader. The intermediate pictures show the adaptive immune system luring the invader and sampling his chemical markers.

But there is nothing exclusively biological about the adaptation strategy. Figures 5-8 could also be viewed entirely in the context of Figures 3-4, and interpreted as the transition from the medieval defense strategies to modern political ideas. Fig. 8 could be viewed as a depiction of the idea of “preemptive siege”: while the medieval rulers tried to keep their enemies out of their fortresses, some of the modern ones try to keep them in their jails. The evolution of strategic thinking illustrated on Figures 5-8 is pervasive in all realms of security, i.e. wherever the adversarial behaviors are a problem, including cyber-security.

And although the paradigm of keeping an eye on your enemies is familiar, the fact that it reverts the odds of security and turns them in favor of the defenders does not seem to have received enough attention. It opens up a new game theoretic perspective on security, and suggests a new tool for it.

4. A BRAND NEW SECURITY PARADIGM: APPLIED SECURITY BY OBSCURITY

4.1 Gaming security basics

Games of information. In games of luck, each player has a type, and some secrets. The type determines player’s preferences and behaviors. The secrets determine player’s state. E.g., in poker, the secrets are the cards in player’s hand, whereas her type consists of her risk aversion, her gaming habits etc. The imperfect information means that all players’ types are a public information, whereas their states are unknown, because their secrets are private. In games of incomplete information, both players’ types and their secrets are unknown. The basic ideas and definitions of the complete and incomplete informations in games go all the way back to von Neumann and Morgenstern [13]. The ideas and techniques for modeling incomplete information are due to Harsanyi [18], and constitute an important part of game theory [27, 17, 6].

Security by secrecy. If cryptanalysis is viewed as a game, then the algorithms used in a crypto system can be viewed as the type of the corresponding player. The keys are, of course, its secrets. In this framework, Claude Shannon’s slogan that “the enemy knows the system” asserts that cryptanalysis should be viewed as a game of imperfect information. Since the type of the crypto system is known to the enemy, it is not a game of incomplete information. Another
statement of the same imperative is the Kerckhoffs’ slogan that “there is no security by obscurity”. Here the obscurity refers to the type of the system, so the slogan thus suggests that the security of a crypto system should only depend on the secrecy of its keys, and remain secure if its type is known. In terms of physical security, both slogans thus say that the thief should not be able to get into the house without the right key, even if he knows the mechanics of the lock. The key is the secret, the lock is the type.

Security by obscurity. And while all seems clear, and we all pledge allegiance to the Kerckhoffs’ Principle, the practices of security by obscurity abound. E.g., besides the locks that keep the thieves out, many of us use some child-proof locks, to protect toddlers from dangers. A child-proof lock usually does not have a key, and only provides protection through the obscurity of its mechanism.

On the cryptographic side, security by obscurity remains one of the main tools, e.g., in Digital Rights Management (DRM), where the task is to protect the digital content from its intended users. So our DVDs are encrypted to prevent copying; but the key must be on each DVD, or else the DVD could not be played. In order to break the copy protection, the attacker just needs to find out where to look for the key; i.e. he needs to know the system used to hide the key. For a sophisticated attacker, this is no problem; but the majority is not sophisticated. The DRM is thus based on the second-hand but almost-new paradigm from the preceding section: the DVD designers study the DVD users and hide the keys in obscure places. From time to time, the obscurity wears out, by an advance in reverse engineering, or by a lapse of defenders attention[3]. Security is then restored by analyzing the enemy, and either introducing new features to stall the ripping software, or by dragging the software distributors to court. Security by obscurity is an ongoing process, just like all of security.

4.2 Logical complexity

What is the difference between keys and locks? The conceptual problem with the Kerckhoffs Principle, as the requirement that security should be based on secret keys, and not on obscure algorithms, is that it seems inconsistent, at least at the first sight, with the Von Neumann architecture of our computers, where programs are represented as data. In a computer, both a key and an algorithm is a string of bits. Why can I hide a key and cannot hide an algorithm? More generally, why can I hide data, and cannot hide programs?

Technically, the answer boils down to the difference between data encryption and program obfuscation. The task of encryption is to transform a data representation in such a way that it can be recovered if and only if you have a key. The task of obfuscation is to transform a program representation so that the obfuscated program runs roughly the same as the original one, but that the original code (or some secrets built into it) cannot be recovered. Of course, the latter is harder, because encrypted data just need to be secret, whereas an obfuscated program needs to be secret and to run like the original program. In [5], it was shown that some programs must disclose the original code in order to perform the same function (and they disclose it in a nontrivial way, i.e. not by simply printing out their own code). The message seems consistent with the empiric evidence that reverse engineering is, on the average[4] effective enough that you don’t want to rely upon its hardness. So it is much easier to find out the lock mechanism, than to find the right key, even in the digital domain.

One-way programming? The task of an attacker is to construct an attack algorithm. For this, he needs to understand the system. The system code may be easy to reverse engineer, but it may be genuinely hard to understand, e.g. if it is based on a genuinely complex mathematical construction. And if it is hard to understand, then it is even harder to modify into an attack, except in very special cases. The system and the attack can be genuinely complex to construct, or to reconstruct from each other, e.g. if the constructions involved are based on genuinely complex mathematical constructions. This logical complexity of algorithms is orthogonal to their computational complexity: an algorithm that is easy to run may be hard to construct, even if the program resulting from that construction is relatively succinct, like e.g. [2]; whereas an algorithm that requires a small effort to construct may, of course, require a great computational effort when run.

The different roles of computational and of logical complexities in security can perhaps be pondered on the following example. In modern cryptography, a system C would be considered very secure if an attack algorithm k_C on it would yield a proof that $P=NP$. But how would you feel about a crypto system D such that an attack algorithm k_D would yield a proof that $P \neq NP$? What is the difference between the reductions

$$k_C \Rightarrow P = NP \quad \text{and} \quad k_D \Rightarrow P \neq NP \ ?$$

Most computer scientists believe that $P \neq NP$ is true. If $P = NP$ is thus false, then no attack on C can exist, whereas an attack on D may very well exist. On the other hand, after many decades of efforts, the best minds of mankind did not manage to construct a proof that $P \neq NP$. An attacker on the system D, whose construction of k_D would provide us with a proof of $P \neq NP$, would be welcomed with admiration and gratitude.

Since proving (or disproving) $P \neq NP$ is worth a Clay Institute Millenium Prize of $1,000,000, the system D seems secure enough to protect a bank account with $900,000. If an attacker takes your money from it, he will leave you with a proof worth much more. So the logical complexity of the system D seems to provide enough obscurity for a significant amount of security!

But what is logical complexity? Computational complexity of a program tells how many computational steps (counting them in time, memory, state changes, etc.) does

3The DVD Copy Scramble System (CSS) was originally reverse engineered to allow playing DVDs on Linux computers. This was possibly facilitated by an inadvertent disclosure from the DVD Copy Control Association (CAA). DVD CAA pursued the authors and distributors of the Linux DeCSS module through a series of court cases, until the case was dismissed in 2004 [5]. Ironically, the cryptography used in DVD CSS has been so weak, in part due to the US export controls at the time of design, that any computer fast enough to play DVDs could find the key by brute force within 18 seconds [8]. This easy cryptanalytic attack was published before DeCSS, but seemed too obscure for everyday use.

4However, the International Obfuscated C Code Contest [21] has generated some interesting and extremely amusing work.
the program take to transform its input into its output. Logical complexity is not concerned with the execution of the program, but with its logical construction. Intuitively, if computational complexity of a program counts the number of computational steps to execute it on an input of a given length, its logical complexity should count the number of computational steps that it takes to derive the program in a desired format, from some form of specification. This operation may correspond to specification refinement and code generation; or it may correspond to program transformation into a desired format, if the specification is another program; or it may be a derivation of an attack, if the specification is the system.

Formally, this idea of logical complexity seems related to the notion of logical depth, as developed in the realm of algorithmic information theory [10, 26, 6]. In the usual formulation, logical depth is viewed as a complexity measure assigned to numbers, viewed as programs, or more precisely as the Gödel-Kleene indices, which can be executed by a universal Turing machine, and thus represent partial recursions. Viewed as the Gödel-Kleene style program encodings, using the available computational steps that outputs code(p). The task of logical depth is essentially lower than the total cost of evaluating the program. Logical depth is viewed as a complexity measure of computational complexity of a program. Computational complexity of a program counts the number of computational steps to execute it on an input of a given length, or it may be a derivation of an attack, if the specification is the system.

We try to formalize this idea. Logical depth is formalized in terms of a universal Turing machine U, which takes code(p) of a program p and for any input x outputs

\[U(code(p), x) = p(x) \]

(1)

To formalize logical complexity, we also need a code generator \(\Gamma \), which for every program p with a logical specification \(spec(p) \) generates

\[\Gamma(spec(p)) = code(p) \]

(2)

so that \(U(\Gamma(spec(p)), x) = p(x) \) holds for all inputs x again. Composing the generator of the executable code with the universal Turing machine yields a universal specification evaluator G, defined by

\[G(\phi, x) = U(\Gamma(\phi), x) \]

(3)

This universal specification evaluator is analogous to the universal Turing machine in that it satisfies the equation

\[G(spec(p), x) = p(x) \]

(4)

This requirement should be formalized to capture the idea that the total cost of predicting all values of the program is essentially lower than the total cost of evaluating the program on all of its values.

One-way programmable security? If a proof of \(P \neq NP \) is indeed hard to construct, as the years of efforts suggest, then the program implementing an attack algorithm \(\mathcal{A}_D \) as above, satisfying \(\mathcal{A}_D \Rightarrow P \neq NP \), must be logically complex. Although the system \(D \) may be vulnerable to a computationally feasible attack \(\mathcal{A}_P \), constructing this attack may be computationally unfeasible. For instance, the attacker might try to derive \(\mathcal{A}_D \) from the given program \(D \). Deriving a program from another program must be based on "understanding", and some sort of logical homomorphism, mapping the meanings in a desired way. The attacker should thus try to extract \(spec(D) \) from \(D \) and then to construct \(spec(\mathcal{A}_D) \) from \(spec(D) \). However, if \(D \) is logically complex, it may be hard to extract \(spec(D) \), and "understand" \(D \), notwithstanding the fact that it may be perfectly feasible to reverse engineer \(code(D) \) from \(D \). In this sense, generating a logically complex program may be a one-way operation, with an unfeasible inverse. A simple algorithm \(\mathcal{A}_P \), and with it a simple proof of \(N \neq NP \), may, of course, exist. But the experience of looking for the latter suggests that the risk is low. Modern cryptography is based on accepting such risks.

Approximate logical specifications. While the actual technical work on the idea of logical complexity remains for future work, it should be noted that the task of providing a realistic model of attacker’s logical practices will not be accomplished realizing a universal execution engine \(G \) analogous with [1], for all programs \(p \) and inputs \(x \). So \(G \) executes \(spec(p) \) just like the \(U \) executes \(code(p) \). Moreover, we require that \(G \) is a homomorphism with respect to some suitable operations, i.e. that it satisfies something like

\[G(spec(p) \oplus spec(q), x) = p(x) + q(x) \]

(5)

where \(+ \) is some operation on data, and \(\oplus \) is a logical operation on programs. In general, \(G \) may satisfy such requirements with respect to several such operations, possibly of different arities. In this way, the structure of a program specification on the left hand side will reflect the structure of the program outputs on the right hand side. If a complex program \(p \) has \(spec(p) \) satisfying [4], then we can analyze and decompose \(spec(p) \) on the left hand side of [5], learn a generic structure of its outputs on the right hand side, and predict the behavior of \(p \) without running it, provided that we know the behaviors of the basic program components. The intended difference between the Gödel-Kleene code \(p \) in [4], and the executable logical specification \(spec(p) \) in [4] is that each \(code(p) \) must be evaluated on each x to tell \(p(x) \), whereas \(spec(p) \) allows us to derive \(p(x) \), e.g., from \(q(x) \) if \(spec(p) = \theta(spec(q)) \) and \(x = \phi y \) for an easy program transformation \(\Phi \) and data operation \(\phi \) satisfying \(G(\Phi(spec(q)), y) = \phi(q(y)) \). (See a further comment in Sec. [5]).

The notion of logical complexity can thus be construed as a strengthening of the notion of logical depth by the additional requirement that the execution engine \(G \) should preserve some composition operations. I conjecture that a logical specification framework for measuring logical complexity of programs can be realized as a strengthened version of the Gödel-Kleene-style program encodings, using the available program specification and composition tools and formalisms [9, 13, 14, 29, 33]. Logical complexity of a program could then be defined as the computational complexity of the simplest executable logical specification \(\phi \) that satisfies \(G(\phi, x) = p(x) \) for all inputs \(x \).
satisfying the homomorphism requirements with respect to some suitable logical operations. For a pragmatic attacker, it does not seem rational to analyze a program p all the way to $\text{spec}(p)$ satisfying (4), when most of the algorithms that he deals with are randomized. He will thus probably be satisfied with $\text{spec}_c(p)$ such that

$$\text{Prob}(G(\text{spec}_c(p), x) = p(x)) \geq \varepsilon$$

(6)

4.3 Logical complexity of gaming security

Logical specifications as beliefs. Approximate logical specifications bring us back to security as a game of incomplete information. In order to construct a strategy each player in such a game must supplement the available informations about the opponent by some beliefs. Mathematically, these beliefs have been modeled, ever since [15], as probability distributions over opponent’s payoffs functions. More generally, in games not driven by payoffs, beliefs can be modeled as probability distributions over the possible opponent’s behaviors, or algorithms. In the framework described above, such a belief can thus be viewed as an approximate logical specification of opponent’s algorithms. An approximation $\text{spec}_c(p)$ can thus be viewed not as a deterministic specification probably close to p, but as a probability distribution containing some information about p.

Since both players in a game of incomplete information are building beliefs about each other, they must also build beliefs about each other beliefs: A formulates a belief about B’s belief about A, and B formulates a belief about A’s belief about B. And so on to the infinity. This is described in more detail in the Appendix, and in still more detail in [4]. These hierarchies of beliefs are formalized as probability distributions over probability distributions. In the framework of logical complexity, the players thus specify approximate specifications about each other’s approximate specifications. Since these specifications are executable by the universal evaluator G, they lead into an algorithmic theory of incomplete information, since players’ belief hierarchies are now computable, i.e. they consist of sampleable probability distributions. Approximate specifications, on the other hand, introduce an interesting twist into algorithmic theory of information: while $\text{code}(\text{code}(p))$ could not be essentially simpler than $\text{code}(p)$ (because then we could derive for p simpler code than $\text{code}(p)$), $\text{spec}_c(\text{spec}_c(p))$ can be simpler than $\text{spec}_c(p)$.

5. FINAL COMMENTS

On games of security and obscurity. The first idea of this paper is that security is a game of incomplete information: by analyzing your enemy’s behaviors and algorithms (subsumed under what game theorists call his type), and by obscuring your own, you can improve the odds of winning this game.

This claim contradicts Kerckhoff’s Principle that there is no security by obscurity, which implies that security should be viewed as a game of imperfect information, by asserting that security is based on players’ secret data (e.g. cards), and not on their obscure behaviors and algorithms.

I described a toy model of a security game which illustrates that security is fundamentally based on gathering and analyzing information about the type of the opponent. This model thus suggests that security is not a game of imperfect information, but a game of incomplete information. If confirmed, this claim implies that security can be increased not only by analyzing attacker’s type, but also by obscuring defender’s type.

On logical complexity. The second idea of this paper is the idea of one way programming, based on the concept of logical complexity of programs. The devil of the logical complexity proposal lies in the “detail” of stipulating the logical operations that need to be preserved by the universal specification evaluator G. These operations determine what does it mean to specify, to understand, to explain an algorithm. One stipulation may satisfy some people, a different one others. A family of specifications structured for one G may be more suitable for one type of logical transformations and attack derivations, another family for another one. But even if we give up the effort to tease out logical structure of algorithms through the homomorphism requirement, and revert from logical complexity to logical depth, from homomorphic evaluators G, to universal Turing machines U, and from $\text{spec}(p)$ to $\text{code}(p)$, even the existing techniques of algorithmic information theory alone may suffice to develop one-way programs, easy to construct, but hard to deconstruct and transform. A system programmed in that way could still allow computationally feasible, but logically unfeasible attacks.

On security of profiling. Typing and profiling are frowned on in security. Leaving aside the question whether gathering information about the attacker, and obscuring the system, might be useful for security or not, these practices remain questionable socially. The false positives arising from such methods cause a lot of trouble, and tend to just drive the attackers deeper into hiding.

On the other hand, typing and profiling are technically and conceptually unavoidable in gaming, and remain respectable research topics of game theory. Some games cannot be played without typing and profiling the opponents. Poker and the bidding phase of bridge are all about trying to guess your opponents’ secrets by analyzing their behaviors. Players do all they can to avoid being analyzed, and many prod their opponents to sample their behaviors. Some games cannot be won by mere uniform distributions, without analyzing opponents’ biases.

Both game theory and immune system teach us that we cannot avoid profiling the enemy. But both the social experience and immune system teach us that we must set the thresholds high to avoid the false positives that the profiling methods are so prone to. Misidentifying the enemy leads to auto-immune disorders, which can be equally pernicious socially, as they are to our health.

Acknowledgement. As always, Cathy Meadows provided very valuable comments.

6. REFERENCES

APPENDIX

A. GAMING SECURITY FORMALISM

Can the idea of applied security by obscurity be realized? To test it, let us first make it more precise in a mathematical model. I first present a very abstract model of strategic behavior, capturing and distinguishing the various families of games studied in game theory, and some families not studied. The model is based on coalgebraic methods, along the lines of [31]. I will try to keep the technicalities at a minimum, and the reader is not expected to know what is a coalgebra.

A.1 Arenas

Definition 1. A player is a set of pairs \(A = (M_A, S_A) \), where the elements of \(M_A \) represent or moves available to \(A \), and the elements of \(S_A \) are the states that \(A \) may observe.

A simple response \(\Sigma : A \to B \) for a player \(B \) to a player \(A \) is a binary relation

\[
\Sigma : M_A \times S_B \times M_B \to \{0, 1\}
\]

When \(\Sigma(a, \beta, \beta', b) = 1 \), we write \(\langle a, \beta \rangle \xrightarrow{\Sigma} \langle \beta', b \rangle \), and say that the strategy \(\Sigma \) at \(B \)'s state \(\beta \) prescribes that \(B \) should respond to \(A \)'s move by the move \(b \) and update his state to \(\beta' \). The set of \(B \)'s simple responses to \(A \) is written \(SR(A, B) \).

A mixed response \(\Phi : A \to B \) for the player \(B \) to the player \(A \) is a matrix

\[
\Phi : M_A \times S_B \times M_B \to [0, 1]
\]

required to be finitely supported and stochastic in \(M_A \), i.e.

- \(\Phi_{a,\beta,b} = 0 \) holds for all but finitely many \(\beta, \beta' \) and \(b \).
- \(\sum_{\beta'} \Phi_{a,\beta,b} = 1 \).

When \(\Phi_{a,\beta,b} = p \) we write \(\langle a, \beta \rangle \xrightarrow{\Phi} \langle \beta', b \rangle \), and say that the strategy \(\Phi \) at \(B \)'s state \(\beta \) responds to \(A \)'s move \(a \) with a probability \(b \) by \(B \)'s move \(b \) leading him into the state \(\beta' \). The set of \(B \)'s mixed responses to \(A \) is written \(MR(A, B) \).

An arena is a specification of a set of players and a set of responses between them.

Responses compose. Given simple responses \(\Sigma : A \to B \) and \(\Gamma : B \to C \), we can derive a response \((\Sigma; \Gamma) : A \to C \) for the player \(C \) against \(A \) by taking the player \(B \) as a "man in the middle". The derived response is constructed as follows:

\[
\langle a, \beta \rangle \xrightarrow{\Sigma} \langle \beta', b \rangle \xrightarrow{\Gamma} \langle \gamma', c \rangle
\]

Following the same idea, for the mixed responses \(\Phi : A \to B \) and \(\Psi : B \to C \) we have the composite \((\Phi; \Psi) : A \to C \) with the entries

\[
(\Phi; \Psi)_{a,\gamma,c} = \sum_{\beta' b} \Phi_{a,\beta',b} \cdot \Psi_{b,\gamma,c}
\]

It is easy to see that these composition operations are associative and unitary, both for the simple and for the mixed responses.

A.2 Games

Arenas turn out to provide a convenient framework for a unified presentation of games studied in game theory [40], mathematical games [7], game semantics [1, 20], and some constructions in-between these areas [13]. Here we shall use them to succinctly distinguish between the various kinds of game with respect to the information available to the players. As mentioned before, game theorists usually distinguish three kinds of players’ information:

- data, or positions: e.g., a hand of cards, or a secret number; and
- types, or preferences: e.g., player’s payoff matrix, or a system that he uses are components of his type.

The games in which the players have private data or positions are the games of imperfect information. The games where the players have private types or preferences, e.g. because they don’t know each other’s payoff matrices, are the games of incomplete information. See [3] for more about these ideas.

In the technical details of the perfect-imperfect distinction, and [17] for the technical details of the complete-imperfect distinction.

But let us see how arenas capture these distinction, and what does all that have to do with security.

A.2.1 Games of perfect and complete information

In games of perfect and complete information, each player has all information about the other player’s data and preferences, i.e. payoffs. To present the usual stateless games in normal form, we consider the players \(A \) and \(B \) whose state spaces are the sets payoff bimatrices, i.e.

\[
S_A = S_B = \mathbb{R} \times \mathbb{R}^{M_A \times M_B}
\]

In other words, a state \(\sigma \in S_A = S_B \) is a pair of maps \(\sigma = (\sigma^A, \sigma^B) \) where \(\sigma^A \) is the \(M_A \times M_B \)-matrix of \(A \)'s payoffs; the entry \(m_{ab}^A \) is \(A \)'s payoff if \(A \) plays \(a \) and \(B \) plays \(b \). Ditto for \(\sigma_B \). Each game in the standard bimatrix form corresponds to one element of both state spaces \(S_A = S_B \). It is nominally represented as a state, but this state does not change. The main point here is that both \(A \) and \(B \) know this element. This allows both of them to determine the best response strategies \(\Sigma_A : B \to A \) for \(A \) and \(\Sigma_B : A \to B \) for \(B \), in the form

\[
\langle b, \sigma^A \rangle \xrightarrow{\Sigma_A} \langle \sigma^A, a \rangle \iff \forall x \in M_A, \sigma^A_{ab} \leq \sigma^A_{ax}
\]

and to compute the Nash equilibria as the fixed points of the composites \((\Sigma^B, \Sigma^A) : A \to A \) and \((\Sigma^A, \Sigma^B) : B \to B \). This is further discussed in [34]. Although the payoff matrices in games studied in game theory usually do not change, so the corresponding responses fix all states, and each response actually presents a method to respond in a
whole family of games, represented by the whole space of payoff matrices, it is interesting to consider, e.g., discounted payoffs in some iterated games, where the full force of the response formalism over the above state spaces is used.

A.2.2 Games of imperfect information

Games of imperfect information are usually viewed in extended form, i.e., with nontrivial state changes, because players’ private data can then be presented as their private states. Each player now has a set if private positions, P_A and P_B, which is not visible to the opponent. On the other hand, both player’s types, presented as their payoff matrices, are still visible to both. So we have

\[
S_A = P_A \times (\mathbb{R} \times \mathbb{R})^{M_A \times M_B} \\
S_B = P_B \times (\mathbb{R} \times \mathbb{R})^{M_A \times M_B}
\]

E.g., in a game of cards, A’s hand will be an element of P_A, B’s hand will be an element of P_B. With each response, each player updates his position, whereas their payoff matrices usually do not change.

A.2.3 Games of incomplete information

Games of incomplete information are studied in epistemic game theory [13, 22, 1], which is formalized through knowledge and belief logics. The reason is that each player here only knows with certainty his own preferences, as expressed by his payoff matrix. The opponent’s preferences and payoffs are kept in obscurity. In order to anticipate opponent’s behaviors, each player must build some beliefs about the other player’s preferences. In the first instance, this is expressed as a probability distribution over the other player’s possible payoff matrices. However, the other player also builds beliefs about his opponent’s preferences, and his behavior is therefore not entirely determined by his own preferences, but also by his beliefs about his opponent’s preferences. So each player also builds some beliefs about the other player’s beliefs, which is expressed as a probability distribution over the probability distributions over the payoff matrices. And so to the infinity. Harsanyi formalized the notion of players type as an element of such information space, which includes each player’s payoffs, his beliefs about the other player’s payoffs, his beliefs about the other player’s beliefs, and so on [13]. Harsanyi’s form of games of incomplete information can be presented in the arena framework by taking

\[
S_A = \mathbb{R}^{M_A \times M_B} + \Delta S_B \\
S_B = \mathbb{R}^{M_A \times M_B} + \Delta S_A
\]

where Δ denotes the disjoint union of sets, and ΔX es the space of finitely supported probability distributions over X, which consists of the maps $p: X \to [0, 1]$ such that

\[
|\{x \in X | p(x) > 0\}| < \infty \quad \text{and} \quad \sum_{x \in X} p(x) = 1
\]

Resolving the above inductive definitions of S_A and S_B, we get

\[
S_A = S_B = \prod_{i=0}^{\infty} \Delta^i \left(\mathbb{R}^{M_A \times M_B}\right)
\]

Here the state $\sigma^A \in S_A$ is thus a sequence

\[
\sigma^A = (\sigma^A_0, \sigma^A_1, \sigma^A_2, \ldots)
\]

where $\sigma^A_i \in \Delta^i \mathbb{R}^{M_A \times M_B}$. The even components σ^A_i represent A’s payoff matrix, A’s belief about B’s belief about A’s payoff matrix, A’s belief about B’s belief about A’s belief about B’s belief about A’s payoff matrix, and so on. The odd components σ^A_{i+1} represent A’s belief about B’s payoff matrix, A’s belief about B’s belief about A’s belief about B’s payoff matrix, and so on. The meanings of the components of the state $\sigma^B \in S_B$ are analogous.

A.3 Security games

We model security processes as a special family of games. It will be a game of imperfect information, since the players of security games usually have some secret keys, which are presented as the elements of their private state sets P_A and P_B. The player A is now the attacker, and the player D is the defender.

The goal of a security game is not expressed through payoffs, but through “security requirements” $\Theta \subseteq P_B$. The intuition is that the defender D is given a family of assets to protect, and the Θ are the desired states, where these assets are protected. The defender’s goal is to keep the state of the game in Θ, whereas the attacker’s goal is to drive the game outside Θ. The attacker may have additional preferences, expressed by a probability distribution over his own private states P_A. We shall ignore this aspect, since it plays no role in the argument here; but it can easily be captured in the arena formalism.

Since players’ goals are not to maximize their revenues, their behaviors are not determined by payoff matrices, but by their response strategies, which we collect in the sets $RA(A, D)$ and $RA(D, A)$. In the simplest case, response strategies boil down to the response maps, and we take $RA(A, D) = SR(A, D)$, or $RA(D, A) = MR(A, D)$. In general, though, A’s and D’s behavior may not be purely extensional, and the elements of $RA(A, D)$ may be actual algorithms.

While both players surely keep their keys secret, and some part of the spaces P_A and P_B are private, they may not know each other’s preferences, and may not be given each other’s “response algorithms”. If they do know them, then both defender’s defenses and attacker’s attacks are achieved without obscurity. However, modern security definitions usually require that the defender defends the system against a family of attacks without querying the attacker about his algorithms. So at least the theoretical attacks are in principle afforded the cloak of obscurity. Since the defender D thus does not know the attacker’s algorithms, we model security games as games of incomplete information, replacing the player’s spaces of payoff matrices by the spaces $RA(A, D)$ and $RA(D, A)$ of their response strategies to one another.

Like above, A thus only knows P_A and $RA(D, A)$ with certainty, and D only knows P_D and $RA(A, D)$ with certainty. Moreover, A builds his beliefs about D’s data and type, as a probability distribution over $P_D \times RA(A, D)$, and D builds similar beliefs about A. Since they then also have to build beliefs about each other’s beliefs, we have a mutually recurrent definition of the state spaces again:

\[
S_A = (P_A \times RA(D, A)) + \Delta S_B \\
S_D = (P_D \times RA(A, D)) + \Delta S_A
\]
Resolving the induction again, we now get

\[S_A = \prod_{i=0}^{\infty} \Delta^{2i}(P_A \times RA(D, A)) \times \Delta^{2i+1}(P_D \times RA(A, D)) \]

\[S_D = \prod_{i=0}^{\infty} \Delta^{2i}(P_D \times RA(A, D)) \times \Delta^{2i+1}(P_A \times RA(D, A)) \]

Defender’s state \(\beta \in S_D \) is thus a sequence \(\beta = \{ \beta_0, \beta_1, \beta_2, \ldots \} \), where

- \(\beta_0 = (\beta^\alpha_0, \beta^\alpha_1, \beta^\alpha_2) \in P_D \times RA(A, D) \) consists of
 - D’s secrets \(\beta^\alpha_0 \in P_D \), and
 - D’s current response strategy \(\beta^\alpha_1 \in RA(A, D) \)

- \(\beta_1 \in \Delta(P_A \times RA(D, A)) \) is D’s belief about A’s secrets and her response strategy;

- \(\beta_2 \in \Delta^2(P_D \times RA(A, D)) \) is D’s belief about A’s belief about D’s secrets and his response strategy;

- \(\beta_3 \in \Delta^3(P_A \times RA(D, A)) \) is D’s belief about A’s belief about D’s beliefs, etc.

Each response strategy \(\Sigma : A \to D \) prescribes the way in which D should update his state in response to A’s observed moves. E.g., if \(RA(D, A) \) is taken to consist of relations in the form \(\lambda : M^*_A = M \to \{0, 1\} \), where \(M^*_A \) is the set of nonempty strings in \(M_D \), then D can record the longer and longer histories of A’s responses to his moves.

Remark. The fact that, in a security game, A’s state space \(S_A \) contains \(RA(D, A) \) and \(RA(A, D) \) means that each player A is prepared for playing against a particular player D; while D is prepared for playing against A. This reflects the situation in which all security measures are introduced with particular attackers in mind, whereas the attacks are built to attack particular security measures. A technical consequence is that players’ state spaces are defined by the inductive clauses, which often lead to complex impredicative structures. This should not be surprising, since even informal security considerations often give rise to complex belief hierarchies, and the formal constructions of epistemic game theory \[13\, 27\, 18\] seem like a natural tool to apply.

A.4 The game of attack vectors

We specify a formal model of the game of attack vectors as a game of perfect but incomplete information. This means that the players know each other’s positions, but need to learn about each other’s type, i.e. plans and methods. The assumption that the players know each other’s position could be removed, without changing the outcomes and strategies, by refining the way the model of players’ observations. But this seems inelegant, and we omit it for simplicity.

Let \(\mathcal{O} \) denote the unit disk in the real plane. If we assume that it is parameterized in the polar coordinates, then \(\mathcal{O} = \{0\} \cup [0, 1] \times \mathbb{R}/2\pi \mathbb{Z} \), where \(\mathbb{R}/2\pi \mathbb{Z} \) denotes the circle. Let \(\mathcal{R} \subseteq \mathbb{R}^2 \) be an open domain in the real plane. Players’ positions can then be defined as continuous mappings of \(\mathcal{O} \) into \(\mathcal{R} \), i.e.

\[P_A = P_D = \mathcal{R}^\mathcal{O} \]

The rules of the game will be such that the attacker’s and the defender’s positions \(p_A, p_D \in \mathcal{R}^\mathcal{O} \) always satisfy the constraint that

\[p_A^\circ \cap p_D^\circ = \emptyset \]

where \(p^\circ \) denotes the interior of the image of \(p : \mathcal{O} \to \mathcal{R} \). The assumption that both players know both their own and the opponent’s positions means that both state spaces \(S_A \) and \(S_D \) will contain \(P_A \times P_D \) as a component. The state spaces are thus

\[S_A = (P_A \times P_D \times RA(D, A)) + \Delta S_D \]

\[S_D = (P_A \times P_D \times RA(A, D)) + \Delta S_D \]

To start off the game, we assume that the defender D has given some assets to secure, presented as an area \(\Theta \subseteq \mathcal{R} \). The defender wins as long as his position \(p_D \in P_D \) is such that \(\Theta \subseteq p_D^\circ \). Otherwise the defender loses. The attacker’s goal is to acquire the assets, i.e. to maximize the area \(\Theta \cap p_A^\circ \).

The players are given equal forces to distribute along the borders of their respective territories. Their moves are the choices of these distributions, i.e.

\[M_A = M_D = \Delta (\partial \Theta) \]

where \(\partial \Theta \) is the unit circle, viewed as the boundary of \(\Theta \), and \(\Delta (\partial \Theta) \) denotes the distributions along \(\partial \Theta \), i.e. the measurable functions \(m : \partial \Theta \to [0, 1] \) such that \(\int_{\partial \Theta} m = 1 \). How will D update his space after a move? This can be specified as a simple response \(\Sigma : A \to D \). Since the point of this game is to illustrate the need for learning about the opponent, let us leave out players’ type information for the moment, and assume that the players only look at their positions, i.e. \(S_A = S_D = P_A \times P_D \). To specify \(\Sigma : A \to B \), we must thus determine the relation

\[\langle m_A, p_A, p_D \rangle \overset{\Sigma}{\longrightarrow} \langle p_A', p_D', m_D \rangle \]

for any given \(m_A \in M_A, p_A \in P_A \), and \(P_D \in P_D \). We describe the updates \(p_A' \) and \(p_D' \) for an arbitrary \(m_D \), and leave it to D to determine which \(m_D \) is the best responses for him. So given the previous positions and both player’s moves, the new position \(p_A' \) will map a point on the boundary of the circle, viewed as a unit vector \(\vec{x} \in \mathcal{O} \) into the vector \(\vec{p}_A'(\vec{x}) \in \mathcal{R} \subseteq \mathbb{R}^2 \) as follows.

- If for all \(\vec{y} \in \mathcal{O} \) and for all \(s \in [0, m_A(\vec{x})] \) and all \(t \in [0, m_D(\vec{y})] \) holds \((1 + s)p_A'(\vec{x}) = (1 + t)p_D'(\vec{y})\) then set

\[p_A'(\vec{x}) = \frac{1 + m_A(\vec{x})}{2} \cdot p_A(\vec{x}) \]

- Otherwise, let \(\vec{y} \in \mathcal{O} \), \(s \in [0, m_A(\vec{x})] \) and \(t \in [0, m_D(\vec{y})] \) be the smallest numbers such that \((1 + s)p_A'(\vec{x}) = (1 + t)p_D'(\vec{y})\). Writing \(m_A'(\vec{x}) = m_A(\vec{x}) - s \) and \(m_D'(\vec{y}) = m_D(\vec{y}) - t \), we set

\[p_A'(\vec{x}) = \frac{1 + m_A'(\vec{x})}{2} \cdot p_A(\vec{x}) + \frac{1 + m_D'(\vec{y})}{2} \cdot p_D(\vec{y}) \]

This means that the player A will push her boundary by \(m_A(\vec{x}) \) in the direction \(p_A(\vec{x}) \) if she does not encounter \(D \) at any point during that push. If somewhere during that push she does encounter \(D \)’s territory, then they will push against each other, i.e. their push vectors will compose. More precisely, A will push in the direction \(p_A(\vec{x}) \) with the force \(m_A'(\vec{x}) = m_A(\vec{x}) - s \), that remains to her after the initial free push by \(s \); but moreover, her boundary will also be pushed in the direction \(p_D(\vec{y}) \) by the boundary of \(D \)’s territory, with the force \(m_D'(\vec{y}) = m_D(\vec{y}) - t \), that remains to \(D \) after his initial free push by \(t \). Since \(D \)’s update is defined analogously, a common boundary point will arise, i.e. players’ borders will remain adjacent. When the move...
next, there will be no free initial pushes, i.e. s and t will be 0, and the update vectors will compose in full force.

How do the players compute the best moves? Attacker’s goal is, of course, to form a common boundary and to push towards Θ, preferably from the direction where the defender does not defend. The defender’s goal is to push back. As explained in the text, the game is thus resolved on defender’s capability to predict attacker’s moves. Since the territories do not intersect, but A’s moves become observable for D along the part of the boundary of A’s territory that lies within the convex hull of D’s territory, D’s moves must be selected to maximize the length of the curve

$$\partial p_A \cap \text{conv}(p_D)$$

This strategic goal leads to the evolution described informally in Sec. 3.2.