
1 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

DOS ATTACKS USING SQL

WILDCARDS

Ferruh Mavituna

www.portcullis-security.com

This paper discusses abusing Microsoft SQL Query wildcards to consume CPU in database servers.

This can be achieved using only the search field present in most common web applications1.

If an application has the following properties then it is highly possibly vulnerable to wildcard attacks:

1- An SQL Server Backend;

2- More than 300 records in the database and around 500 bytes of data per row;

3- An application level search feature.

As you might notice I have just described 90% of Microsoft SQL Server based CMSs, blogs, CRMs and

e-commerce web applications. Other databases could be vulnerable depending on how the

applications implement search functionalities although common implementation of the search

functionality in SQL Server back-end applications is vulnerable.

 SEARCH QUERIES
The SQL Server supports the following wildcards in LIKE queries2. “%”,” []”,”[^]” and “_”

If you were to enter 'foo' into the search box, the resulting SQL query might be:

SELECT * FROM Article WHERE Content LIKE '%foo%'

In a decent database with 1-100000 records the query above will take less than a second. The

following query, in the very same database, will take about 6 seconds with only 2600 records. 3

1 This attack does not only affect web applications, also can occur in any
other application with a back-end database and search functionality.
2 http://msdn2.microsoft.com/en-us/library/aa933232(SQL.80).aspx

http://www.portcullis-security.com/

2 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

SELECT TOP 10 * FROM Article

WHERE Content LIKE

'%_[^!_%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_%'

So, if an attacker wanted to tie up the CPU for 6 seconds they would enter the following to the search

box:

[^!%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_

Furthermore, if multiple search terms are supplied (separated with spaces), the application will often

separate them with spaces, e.g. If we search for 'foo bar', the resulting SQL query will be:

SELECT * FROM Article WHERE Content LIKE '%foo%' OR Content LIKE '%bar%'

This leads to an even more efficient attack if we supply several wildcard attacks separated with

spaces. This will cause a SQL Query similar to the following to be run in the database:

SELECT TOP 10 * FROM Article

WHERE Content LIKE

'%_[^!_%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_%'

OR Content LIKE

'%_[X_%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_%'

OR Content LIKE

'%_[()_%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_%'

This takes 36 seconds in the same database and consumes 100% of CPU during the execution. As seen

in this example the affects of extra OR statements are linear. This problem allows an attacker to

consume database resources and the database connection pool within 1-2 minutes with a humble

Internet connection such as 0.5-1.0 Mbit/s., maybe even with a dial-up connection.

The query time is also strongly correlated with number of records searched and the length of each

field searched.

 TESTING FOR SQL WILD CARD DOS
Testing is quite simple; just craft a query which will not return a result4 and includes several wildcards.

Send this data through the search feature of the application. If the application takes more time than

a usual search, it is vulnerable. More details about crafting a wildcard attack can be found under

“Crafting Search Keywords” below.

During testing I used the “Web Application Stress Tool5” to carry out attacks. Any similar tool can be employed

for this purpose.

 CONNECTION POOLI NG
Depending on the connection pooling settings of the application and the time taken for attack query

to execute, an attacker might be able to consume all connections in the connection pool, which will

cause database queries to fail for legitimate users.

3 These benchmarks based on a test hardware, timing might differ in
another systems. Benchmarks timing generally refers to CPU Time.
4 To be able to force the database server to scan whole index,
5 http://www.microsoft.com/downloads/details.aspx?FamilyID=e2c0585a-
062a-439e-a67d-75a89aa36495&displaylang=en

3 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

By default in ASP.NET, the maximum allowed connections in the pool is 100 and timeout is 30

seconds. Thus if an attacker can run 100 multiple queries with 30+ seconds execution time within 30

seconds no one else would be able to use the database related parts of the application.

Therefore a DoS attack against an application no longer takes 1000 bots, anyone with a decent

Internet connection can do this!

It should be noted that Connection Pool Exhausting attacks do not have to consume a lot of CPU, it’s

enough for them to run for a long time in the database server. Other reasons for long-running

queries could include buggy SLEEP6 code, several DNS requests or HTTP requests in the executed

query.

 CRAFTING SEARCH KEYWORDS
Some points to consider while crafting search keywords are:

 Queries should return a few results as possible or even none at all. In this way we can be

sure that we actually forced database server to search all records;

 During the OR combinations every OR statement should be different, otherwise the database

will optimise it. Changing one character is enough;

 In Microsoft SQL Server, my experience7 showed me that every character after an open

bracket “[” causes unusually longer execution time, this can be used to improve the affect, some

examples:

LIKE '%_[a[! -z]@$!_% - 1050 ms.

LIKE '%_[aaaaaaaaa[! -z]@$!_%' - 1600 ms.

LIKE '%_[aaa[! -z]@$!_%' - 3700 ms.

 Longer queries will generally result with longer execution time. Craft the longest possible

query allowed by the application;

 Starting with % and ending with % generally will cause more expensive queries;

 Some implementations might cache search results. During the testing every search query

should be slightly different to avoid this;

 Performance is always about experimenting. Try different combinations to find the most

expensive queries for that particular target system and data.

 REAL WORLD IMPACT
It has been said that this issue affects almost all SQL Server backend systems with a search feature. To

show how common is this problem I downloaded and tested some open source web applications for

this issue.

6 Several DBMSs have this sort of functionality such as ORACLE
DBMS_SLEEP. Also a database server can implement this functionality by invoking
underlying OS commands.
7 These experiments were based on Fuzzing, Manual tweaking over fuzzed
results and testing them in test applications.

4 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

Both of the test applications listed in here are forum applications, which does not mean that other applications

are safe. These were just easy to setup and test also they are prone to get bigger in data level which makes them

more vulnerable to wildcard attacks. Besides these, I did several tests against bespoke web applications. Results

were similar.

 SAMPLE FORUM APPL ICATION S
 I used two forum applications one was ASP.NET and the other was Classic ASP with an SQL Server

backend.

 After 2000 records one search query takes more than 30 seconds to execute, which leads to

timeout database connection.

 Example setups stopped responding within 2 minutes with a connection speed of 1.5Mb.

 OTHER DBMSS
Even though other database servers are not included in this paper they are vulnerable to this attack

with different search operators but SQL Server is the only major database system which comes with

extra wildcards in the LIKE queries.

The following search operators are vulnerable to this problem:8

 PostgreSQL RegExp Match (~9)

 SQL Server Full Text Search Functionality (CONTAINS10)

 MS Access LIKE Queries (LIKE11)

 MySQL REGEXP (REGEXP12)

 INCREASING THE IMPACT
Some applications allow users to choose different options for the advanced search functionality. This

will generally help an attacker to increase the impact.

 If an application allows you to choose the fields to search in:

o If it searches them with OR operator then select all fields;

o If it's using AND operator to do searches then select the largest field such as text data

type instead of a varchar type and do not use spaces to avoid several AND conditions

in the query.

 Choose OR conditions where possible. This is generally corresponds to the "Any of These

Keywords" option in the web applications;

8 Other major DBMSs should have similar functionalities but it’s out of the
scope of this paper
9 http://www.postgresql.org/docs/current/static/functions-matching.html
10 http://msdn2.microsoft.com/en-us/library/ms142538.aspx
11 http://office.microsoft.com/en-us/access/HP051881851033.aspx
12 http://dev.mysql.com/doc/refman/5.0/en/string-comparison-
functions.html

5 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

 Try to force the application to join tables as much as possible (although in rare instances joins

can decrease query time);

 Generally applications will try to join conditions with OR operators by default, try using spaces

between entered keywords as i.e. : _[r/a)_%_fm_ _(r/b)_ _(r-d)_

 DDOS (D ISTR IBUTED DENIA L OF SERV ICE) ATTACKS
If an application accepts search queries over GET requests13 then an attacker can use a “Web

Spamming Tool14” to auto-register to open forums, send forum posts and blog comments with the

URL of this search or can send this search URL as the “src” value of an image tag. In this way attacker

can use other websites visitors to attack the targeted application.

Obviously it is possible for an attacker to perform XSS attacks in some popular websites and then by

producing several “Iframe” or “image” tags, to attack the application. In this situation, applications

that use POST requests are still vulnerable since an attacker can force victims to carry out POST

requests over an XSS vulnerability.

 APPLI CATION LEVEL DOS
These described attacks generally will affect database servers not the application itself but from an

attacker's point of view there are some possibilities for performing application level DoS by exploiting

search features in the application15. This is mainly about causing the application to process so many

records and consume CPU in the application server.

In wildcard attacks it is generally a good idea to not return any records since that means you have

done the largest search in the index but when it comes to DoS attacks against the application itself we

should try to return as many as records that we can. This will cause the application to process those

records and depending on the application level algorithm and the SQL query, this might result in a big

impact. If the application actually tries to return 100.000 records because of a buggy paging SQL

query, this will consume a lot of CPU in the application and database layers.

One real world example of this can be seen in Subsonic ORM system16, where if an attacker can send

“-1” as the requested data page number, the application will try to return all results in the dataset.

Paging issues are not only common in search pages, they are also quite common in other listing pages

where query conditions cannot be controlled by the attacker. Supplying large numbers, negative

numbers and unexpected input can force an application to return all of the results in one response.

 SQL INJECTIO N AND DO S ATTACK S
I have talked about DoS in the application without SQL Injection but if an application is vulnerable to

SQL Injection DoS attacks are quite trivial. Different DBMSs provide different functions to achieve this.

13 Application shouldn’t have a CSRF protection either
14 XRumer is an example of Web Spamming Tools -
http://www.botmaster.net/movies/XFull.htm
15 Logical problems or different Application Level DoS Attacks like filling up
the database, locking accounts, password reset spam are out of the scope of this
document.
16
http://www.codeplex.com/subsonic/WorkItem/View.aspx?WorkItemId=16112

6 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

An infinite loop with some expensive functions17 will consume the CPU as soon as the connection

times out. Some DBMSs also provide specific functions such as BENCHMARK in MySQL which allows

executing a function repeatedly.

Using SQL Injection the possibilities of DoS are endless, for example an attacker can simply DROP all

tables in the database. Depending on the privileges of an attacker, they can even shutdown the

system or database server.

 PROTECTION
It is important to realise that wildcard attacks are not the result of a flaw at the database level, it is

the application that is at fault. The application should be responsible for filtering wildcards. The

subsections below detail some mitigation strategies which can be implemented at the application

level to protect against wildcard attacks.

 L IMITING SE ARCH
If the application does not require this sort of advanced search, all wildcards should be escaped or

filtered.

Alternatively, the application should restrict access to the advanced search functionality by

implementing CAPTCHA.

In order to maintain usability, an application could implement different solutions such as only

allowing registered users to access the search functionality. Each user should be given a quota of

searches per day or a quota of CPU time to prevent registered users from mounting wildcard attacks.

Obviously registration would need to implement a CAPTCHA solution, to prevent automated

registration.

Since longer queries generally take longer to process a limit on the number of characters or words in a

query could be enforced.

17 Such as SHA1() in MySQL

7 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

 WHITE L ISTING
Where possible the application should have a white list of accepted characters. After white listing

wildcard characters should be escaped unless wildcard queries are required.

 CAPTCHA SECUR ITY
This paper refers to CAPTCHA18 as a security mechanism. However, weak CAPTCHA implementations

can be a problem, for example:

 CAPTCHAs that actually be solved by a computer;

 Poor implementation of CAPTCHAs at the application level – i.e. Where the CAPTCHA

solution is stored in an image filename or ALT attribute.

In some conditions implementing CAPTCHA or similar functionality might not be enough. In this paper

I showed some examples where a query takes about 40 seconds. This is not acceptable by any means.

In this situation even a manual attack can cause DoS using this sort of queries.

 L IMITING SQL QU ERY EXECUT ION TIME
To improve security, the database connection timeout could be reduced, or the execution time of for

search queries could be limited. However, limiting execution time for search queries might not be an

easy task in some web application frameworks or languages.

 PREVENTING A PPL ICATION LEVE L DO S
Limiting the number of records returned by database queries using LIMIT or TOP or similar keywords

will help to prevent application level DoS attacks.

Typically each record returned to the application will need to be processed before being sent to the

user – e.g. converted to presentation markup (often HTML). Processing 1 million records for example

would most likely cause a significant load on the application layer.

The application should carry out strict checking over user input, especially in the record paging

functionality. Such as input should be numeric, should be positive and should not be more than the

defined maximum number of records.

 CSRF PROTECTIONS
CRSF19 (Cross-site Request Forgery) protections are essential to prevent the types of DDoS attacks

discussed above. This is particularly important for pages which are CPU-intensive to generate.

18 Completely Automated Public Turing test to tell Computers and Humans
Apart - http://en.wikipedia.org/wiki/Captcha
19 http://en.wikipedia.org/wiki/Cross-site_request_forgery

8 Ferruh Mavituna, DoS Attacks Using SQL Wildcards

DOCUMENT HISTORY
 20/04/2008 – Idea & Experimentation

 25/04/2008 – Initial Write-up and Peer Reviews

 28/04/2008 - Revising the paper based on Peer Reviews

 02/05/2008 –Improvements in several sections based on new fuzz results and analyses,

 08/05/2008 – Improvements and proof read,

 09/05/2008 – Ready to public Release

CREDITS & THANKS
Thanks to Mark Lowe of Portcullis Computer Security for peer review, proof reading and all of his help during

the research. Thanks to Bedirhan Urgun of WTG (www.webguvenligi.org) and Sumit Siddarth of Portcullis

Computer Security for peer reviews.

http://www.webguvenligi.org/

	DoS Attacks Using SQL Wildcards
	Search Queries
	Testing for SQL Wildcard DoS
	Connection Pooling
	Crafting Search Keywords
	Real World Impact
	Sample Forum Applications

	Other DBMSs
	Increasing the Impact
	DDoS (Distributed Denial of Service) Attacks

	Application Level DoS
	SQL Injection and DoS Attacks
	Protection
	Limiting Search
	White Listing
	Captcha Security
	Limiting SQL Query Execution Time
	Preventing Application Level DoS
	CSRF Protections

	Document History
	Credits & Thanks

