On equivalence between Zeta and R-sequence

Misha Bucko

24 November 2011

This paper covers a conjecture of equivalence between a statement regarding Ξ matrix and Zeta.

1 Definitions

Definition 1. For natural n > 1, we have: $n = \prod_{i=1}^{i=k} p_i^{e_i} \mu$ function is defined as $\Omega(n) = \sum_{i=1}^{i=k} e_i$. From definition we have: $\forall x, y \in N\Omega(xy) = \Omega(x) + \Omega(y)$ and $\forall x, y \in N\Omega(x^y) = y\Omega(x)$.

Definition 2. Ξ matrix is the matrix where each row contains all the numbers $i \in N$ -th column contains all consecutive numbers n of $\Omega(n) = i$.

	2	4	8	16	•••	2^{κ}
[1]	3	6	12	24		$3 * 2^{k-1}$
	5	9	18	36		$5\delta(k-1) + 9 * 2^{(k-2)}$
	7	10	20	40		$7\delta(k-1) + 10 * 2^{(k-2)}$
						•••

Definition 3. From Ξ matrix, one can find R-sequence, i.e. sequence r(n)=3,9,10,27,28,30,... such that $\forall x \in N \exists nx = r(n), m \in N : \forall z \in N \Xi[n + z, m] = 2\Xi[n + z - 1, m]$

Definition 4. ξ matrix is a created from Ξ by raplacement of *i*-th column by division of *i*-th column by i + 1-th column from Ξ matrix. R-sequence in ξ matrix will be referred to as *R*1-sequence.

2 Conjecture

 $\frac{1}{2}$ appears in *R*1-sequence and all its R-sided numbers. There is exactly none of $\frac{1}{2}$ in L-sided numbers. This is also equivalent to Riemann Zeta conjecture.

3 References

[1] Misha Bucko, http://mishabucko.wordpress.com